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Status as of Mo, 19.10.2015 08:30 Dear Students - welcome to the second lecture of our
course “biomedical informatics”, please remember from the last lecture the definition:
According to the American Association of Medical Informatics (AMIA) the term Medical
Informatics has now been expanded to Biomedical Informatics and is defined as “the
interdisciplinary field that studies and pursues the effective use of biomedical data,
information, and knowledge for scientific inquiry, problem solving, and decision making,
motivated by efforts to improve human health”. [1]

It is important to know: Bioinformatics + Medical Informatics = Biomedical Informatics
(see Slide 1-42).

Note: Computers are just the vehicles to realize the central goals: To harness the power
of the machines to support and to amplify human intelligence [2].

[1] Shortliffe, E. H. 2011. Biomedical Informatics: Defining the Science and its Role in
Health Professional Education. In: Holzinger, A. & Simonic, K.-M. (eds.) Information
Quality in e-Health. Lecture Notes in Computer Science LNCS 7058. Heidelberg, New
York: Springer, pp. 711-714.

[2] Holzinger, A. 2013. Human-Computer Interaction and Knowledge Discovery (HCI-
KDD): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A.,
Kittl, C., Simos, D. E., Weippl, E. & Xu, L. (eds.) Multidisciplinary Research and Practice for
Information Systems, Springer Lecture Notes in Computer Science LNCS 8127.
Heidelberg, Berlin, New York: Springer, pp. 319-328.

Regarding the current trend towards personalized medicine have a read of this paper:
Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized
Medicine: Cognitive Science meets Machine Learning. IEEE Intelligent Informatics
Bulletin, 15, (1), 6-14.

Online available via:

http://www.comp.hkbu.edu.hk/~cib/2014/Dec/article2 /iib_vol15no1_article2.pdf
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Schedule Ty

. Back to the future: Fundamentals of Data, Information and Knowledge

. Structured Data: Coding, Classification (ICD, SNOMED, MeSH, UMLS)

. Biomedical Databases: Acquisition, Storage, Information Retrieval and Use
. Semi structured and weakly structured data (structural homologies)

. Multimedia Data Mining and Knowledge Discovery

. Knowledge and Decision: Cognitive Science & Human-Computer Interaction
. Biomedical Decision Making: Reasoning and Decision Support

-
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. Intelligent Information Visualization and Visual Analytics
= 10. Biomedical Information Systems and Medical Knowledge Management
= 11. Biomedical Data: Privacy, Safety and Security

= 12. Methodology for Information Systems: System Design, Usability and
Evaluation
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In this second lecture we start with a look on data sources, review some data structures,
discuss standardization versus structurization, review the differences between data,
information and knowledge and close with an overview about information entropy.
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Keywords Ty

= Computational space (high-dimensional)
= Data structures

= DIK-Model

= DIKW-Model

= Dimensionality of data

" Information complexity

= |nformation entropy

= Perceptual space (low-dimensional)

= Standardization versus Structurization
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A central topic is the dimensionality of data and the interrelated (connected) curse of
dimensionality which refers to various phenomena that arise when analyzing and
organizing data in high-dimensional spaces (thousands of dimensions) that do not occur
in low-dimensional settings such as the three-dimensional physical space of our
everyday world.
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Learning Goals Ty

= .. be aware of the types and categories of
different data sets in biomedical informatics;

= . know some differences between data,
information, knowledge and wisdom;

= .. be aware of standardized/non-standardized
and well-structured/un-structured data;

... have a basic overview on information theory
and the concept of information entropy;

Fn,mmwmm 474 Med Informatics L02
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Advance Organizer (1/2) pflTU

= Abduction = cyclical process of generating possible explanations (i.e., identification of a
set of hypotheses that are able to account for the clinical case on the basis of the
available data) and testing those (i.e., evaluation of each generated hypothesis on the
basis of its expected consequences) for the abnormal state of the patient at hand;

= Abstraction = data are filtered according to their relevance for the problem solution
and chunked in schemas representing an abstract description of the prublem)e.g.,
abstracting that an adult male with haemoglobin concentration less than 14g/dL is an
anaemic patient);

» Artefact/surrogate = error or anomaly in the perception or representation of
information trough the involved method, equipment or process;

= Data = physical entities at the lowest abstraction level which are, e_g. generated by a
patient (patient data) or a (biclogical) process; data contain no meaning;

= Data quality = Includes quality parameter such as : Accuracy, Completeness, Update
status, Relevance, Consistency, Reliability, Accessibility;

= Data structure = way of storing and organizing data to use it efficiently;

= Deduction = deriving a particular valid conclusion from a set of general premises;

= DIK-Model = Data-Information-Knowledge three level model

= DIKW-Model = Data-Information-Knowledge-Wisdom four level model

= Disparity = containing different types of information in different dimensions

= Heart rate variability (HRV) = measured by the variation in the beat-to-beat interval;

=  HRV artifact = noise through errors in the location of the instantaneous heart beat,
resulting in errors in the calculation of the HRV, which is highly sensitive to artifact and
errors in as low as 2% of the data will result in unwanted biases in HRV calculations:

Fn.nnuwmm 5/74 Med informatics L0Z
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Advance Organizer (2/2) pflTU

* Induction = deriving a likely general conclusion from a set of particular statements;

* Information = derived from the data by interpretation (with feedback to the clinician);

= Information Entropy = a measure for uncertainty: highly structured data contain low
entropy, if everything is in order there is no uncertainty, no surprise, ideally H=0

* Knowledge = obtained by inductive reasoning with previously interpreted data,
collected from many similar patients or processes, which is added to the "body of
knowledge” (explicit knowledge). This knowledge is used for the interpretation of other
data and to gain implicit knowledge which guides the clinician in taking further action;

= Large Data = consist of at least hundreds of thousands of data points

*  Multi-Dimensionality = containing more than three dimensions and data are multi-
variate

*  Multi-Modality = a combination of data from different sources

*  Multivariate = encompassing the simultaneous observation and analysis of more than
one statistical variable;

= Reasoning = process by which clinicians reach a conclusion after thinking on all facts;
= Spatiality = contains at least one (non-scalar) spatial component and non-spatial data

= Structural Complexity = ranging from low-structured (simple data structure, but many
instances, e.g., flow data, volume data) to high-structured data (complex data
structure, but only a few instances, e.g., business data)

= Time-Dependency = data is given at several points in time (time series data)

=  Voxel = volumetric pixel = volumetric picture element

Fn.nnmwmm &/74 Med informatics L0Z
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Common Mathematical Notations with LaTeX commands gty
: Mathematical
“In mathematics you don’t understand vl r:mtat;.m
¥ s Olation
things. You just get used to them” -
John von Neumann
Data
n Number of samples
o Number of input variables
X=[X,..., Matrix of input samples
¥ = [¥1yeeesVal Vector of output samples
Z=[X.¥] Combined input-output training data or
Z=z,..., Representation of data points in a feature space
Distribution
P Probability
Fix) Cumulative probability distribution function (edf)
pix) Probability density function (pdf)
X, ¥ Joint probability density function
% o) Probability density function, which is parameterized
plvix) Conditional density
nHx) Target function
F A. Holzinger 709.043 T Med Informatics LOZ

A recommendable small booklet is:
Scheinerman, E. R. 2011. Mathematical Notation: A Guide for Engineers and Scientists,
Baltimore (MD), Scheinerman.

Which also includes the most important LATEX commands for producing maths symbols

http://www.ams.jhu.edu/~ers/notation/
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Glossary Ty

= ApEn = Approximate Entropy;
* (.., =Datain computational space;
* DIK = Data-Information-Knowledge-3-Level Model;

= DIKW = Data-Information-Knowledge-Wisdom-4-Level
Model;

= GraphEn = Graph Entropy;

* H = Entropy (General);

= HRV = Heart Rate Variability;
= MaxEn = Maximum Entropy;
= MinEn = Minimum Entropy;

* NE = Normalized entropy (measures the relative
informational content of both the signal and noise);

* [Py, = Datain perceptual space;
PDB = Protein Data Base;
= SampEn = Sample Entropy;

Fn,ummmm 8/74 Med Informatics L02

components through p and w (Golan, Judge, and Miller; 1996);
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= Heterogeneous, distributed, inconsistent data
sources (need for data integration & fusion) [1]

* Complex data (high-dimensionality — challenge
of dimensionality reduction and visualization) [2]

= Noisy, uncertain, missing, dirty, and imprecise,
imbalanced data (challenge of pre-processing)

= The discrepancy between data-information-
knowledge (various definitions)

= Big data sets (manual handling of the data is
awkward, and often impossible) [3]

1 Holzinger A, Dehmer M, & Jurisica | [2014) Enowledge Discovery and interactive Data Mining in Bloinformatics - State-of-the-Art, future
challenges and research directions. BMC Bininformatics 15(56):11.

2. Hund, M., Sturm, W., Schreck, T, Ullrich, T, Keim, D,, Majnaric, L. & Holzinger, A. 2005, Analysis of Patient Groups and Immunization Results
Bazed on Subspace Clustering. In: LNAI 9250, 358-3168

3. Holringer, A, Stocker, C, & Dehmaer, M. 2014, Big Complex Biomedical Data: Towards a Taxonomy of Data. in CCI5 455, Springer 3-18

F A. Holzinger 709.049 9/74 Med Informatics LO2

Holzinger, A., Dehmer, M. & Jurisica, I. 2014. Knowledge Discovery and interactive Data Mining in
Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics,
15, (S6), I1.

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of
Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston, K.,
Aldo, F,, Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial
Intelligence LNAI 9250. Cham: Springer International Publishing, pp. 358-368.

Holzinger, A., Stocker, C. & Dehmer, M. 2014. Big Complex Biomedical Data: Towards a Taxonomy
of Data. In: Obaidat, M. S. & Filipe, J. (eds.) Communications in Computer and Information Science
CCIS 455. Berlin Heidelberg: Springer pp. 3-18.

Related recommended reading:

Dong-Hee, S. & Min Jae, C. 2015. Ecological views of big data: Perspectives and issues. Telematics
and Informatics, 32, (2), 311-320.

Dong, X. L. & Srivastava, D. 2015. Big Data Integration. Synthesis Lectures on Data Management, 7,
(1), 1-198.

Wuy, X. D., Zhy, X. Q., Wy, G. Q. & Ding, W. 2014. Data Mining with Big Data. IEEE Transactions on
Knowledge and Data Engineering, 26, (1), 97-107.

Shneiderman, B. 2014. The Big Picture for Big Data: Visualization. Science, 343, (6172), 730-730.

Sackman, J. E. & Kuchenreuther, M. 2014. Marrying Big Data with Personalized Medicine.
Biopharm International, 27, (8), 36-38.
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Traditional Statistics versus Machine Learning Ty
= Data in traditional = Data in Machine
Statistics Learning

* High-dimensional
data ( > R199)

= Problem: not noise,
but complexity

® Much structure, but

= Low-dimensional
data ( <R*99)

= Problem: Much
noise in the data

= Not much structure the structure but
in the data but it can not be
can be represented represented by a
by a simple model simple model
Lecun, ¥, Bengio, Y. & Hinton, G, 2015. Deep learning. Nature, 521, {7553), 436-444,
Fmﬂdﬂu«m: 10/74 Med informatics L02

With regard to data, the difference between classical statistics and modern machine
learning is that machine learning discovers intricate structures in large data sets to
indicate how a machine should change its internal parameters.

WS 2015
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John von Neumann and his high-speed computer, approx. 1952
Our first question is: Where does the data come from? The second question: What kind of

data is this? The third question: How big is this data? So, let us look at some biomedical
data sources (see Slide 2-1):

WS 2015
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Slide 2-1: Biomedical Data Sources Ty

A
Collective m ‘/
Individual =3
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Molecule “
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Due to the increasing trend towards personalized and molecular medicine, biomedical data results from various sources in
different structural dimensions, ranging from the microscopic world (e.g. genomics, epigenomics, metagenomics,
proteomics, metabolomics) to the macroscopic world (e.g. disease spreading data of populations in public health
informatics). Just for orientation: the Glucose molecule has a size of 900 pm = 900 X 10~'?m and the Carbon atom approx.
300 pm. A hepatitis virus is relatively large with 45 nm = 45 x 10™% and the X-Chromosome much bigger with 7 ym =

7 X 107% m.

Here a lot of “big data” is produced, e.g. genomics, metabolomics and proteomics data. This is really “big data” - the data
sets enormously large - whereas in each individual we estimate many Terabytes (1 TB = 1 x 1012 Byte = 1000 GByte) of
genomics data, we are confronted with Petabytes of proteomics data and the fusion of those for personalized medicine
results in Exabytes of data (1 EB = 1 x 108 Byte).

Of course these amounts are for each human individual, however, we have a current world population of 7 Billion ( 1
Billion in English language is 1 Milliard in European language) people (= 7 x 10° people). So you can see that this is really
“big data”. This “natural” data is then fused with “produced” data, e.g. the unstructured data (text) in the patient records,
or data from physiological sensors etc. - these data is also rapidly increasing in size and complexity. You can imagine that
without computational intelligence we have no chance to survive in this complex big data sets.

http://learn.genetics.utah.edu/content/begin/cells/scale/
C-Atom 340 pm =340.10-12m

Molecule Glucose 900 pm

Virus Hepatitis Virus 45 nm = 45.10-9 m

Microscope 200.10-9 m

Confocalmicroscopy 20.10-6 m

Electron-Microscopy 0,1.10-9 m

X-Chromosome 7.10-6 m

DNA 2.10-9m

Encyme = Metabolomics

Holzinger, A., Dehmer, M. & Jurisica, I. 2014. Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-
the-Art, future challenges and research directions. BMC Bioinformatics, 15, (S6), I1.

WS 2015
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Slide 2-2: Taxonomy of data Ty

= Physical level -> bit = binary digit = basic
indissoluble unit (= Shannon, Sh), # Bit (!)
in Quantum Systems -> qubit

= Logical Level -> integers, booleans, characters,
floating-point numbers, alphanumeric strings, ...

= Conceptual (Abstract) Level -> data-structures, e.g.
lists, arrays, trees, graphs, ...

= Technical Level -> Application data, e.g. text,
graphics, images, audio, video, multimedia, ...

= “Hospital Level” -> Narrative (textual) data, genetic
data, numerical measurements (physiological data,
lab results, vital signs, ...), recorded signals (ECG,
EEG, ...), Images (cams, x-ray, MR, CT, PET, ...)

F A Holzinger 709.043 13/74 Med Informatics LOZ

Most of our computers are Von-Neumann machines (see chapter 1), consequently at the lowest physical layer, data is
represented as patterns of electrical on/off states (1/0, H/L, high/low); we speak of a bit, which is also known as Bit, the
Basic indissoluble information unit (Shannon, 1948). Do not confuse this Bit with the IEC 60027-2 symbol bit - in small
letters - which is used as an SI dimension prefix (e.g. 1 Kbit = 1024 bit, 1 Byte = 8 bit). Beginning with the physical level of
data we can determine various levels of data structures (see Slide 2-2):

Refer to: http://physics.nist.gov/cuu/Units/binary.html

1) Physical level: in a Von-Neumann system: bit; in a Quantum system: qubit

Note: Regardless of its physical realization (e.g. voltage, or mechanical state, or black/white etc.), a bit is always logically
either 0 or 1 (analog to a light-switch). A qubit has similarities to a classical bit, but is overall very different: A classical bit
is a scalar variable with the single value of either 0 or 1, so the value is unique, deterministic and unambiguous. A qubit is
more general in the sense that it represents a state defined by a pair of complex numbers (a, b), which express the
probability that a reading of the value of the qubit will give a value of 0 or 1. Thus, a qubit can be in the state of 0, 1, or
some mixture - referred to as a superposition - of the 0 and 1 states. The weights of 0 and 1 in this superposition are
determined by (a, b) in the following way: qubit 2 (a,b) = a - Op;y + b - 1,; . Please be aware that this model of
quantum computation is not the only one (Lanzagorta & Uhlmann, 2008).

For a recent overview on quantum computation please refer to: http://peterwittek.com/book.html

2) Logical Level:

1) Primitive data types, including:

a) Boolean data type (true/false);

b) numerical data type (e.g. integer (Z), floating-point numbers (“reals”), etc.);

2) composite data types, including: a) array, b) record, c) union, d) set (stores values without any particular order, and no
repeated values), €) object (contains others);

3) String and text types, including:

a) alphanumeric characters,

b) alphanumeric strings (= sequence of characters to represent words and text)

3) Abstract Level: including abstract data structures, e.g. queue (FIFO), stack (LIFO), set (no order, no repeated values),
lists, hash table, arrays, trees, graphs, ...

4) Technical Level: Application data formats, e.g. text, vector graphics, pixel images, audio signals, video sequences,
multimedia, ...

5) Hospital Level: Narrative (textual, natural language) patient record data (structured/unstructured and
standardized/non-standardized), Omics data (genomics, proteomics, metabolomics, microarray data, fluxomics,
phenomics), numerical measurements (physiological data, time series, lab results, vital signs, blood pressure, CO, partial
pressure, temperature, ...), recorded signals (ECG, EEG, ENG, EMG, EOG, EP ...), graphics (sketches, drawings, handwriting,
...); audio signals, images (cams, x-ray, MR, CT, PET, ...), etc.

WS 2015
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Slide 2-3: Example Data Structures (1/3): List Ty
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Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, 5. E. {2004) Weblogo: A sequence logo
generator. Genome Research, 14, &6, 1188-1190.
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In biomedical informatics we have a lot to do with abstract data types (ADT),
consequently we briefly review the most important ones here. For details please refer to
a course on Algorithm & Data structures, or to a classic textbook such as (Aho, Hopcroft
& Ullman, 1983), (Cormen et al., 2009), or in German (Ottmann & Widmayer, 2012),
(Holzinger, 2003) and please take into consideration that data structures and algorithms
go hand in hand, so a must-have-on-the-desk of every computer scientist is: Cormen, T.
H., Leiserson, C. E., Rivest, R. L. & Stein, C. 2009. Introduction to Algorithms (3rd edition),
Cambridge (MA), The MIT Press.

List is a sequential collection of items ay, a,, ..., a,, accessible one after another,
beginning at the head and ending at the tail z. In a Von-Neumann machine it is a widely
used data structure for applications which do not need random access. It differs from the
stack (last-in-first-out, LIFO) and queue (first-in-first-out, FIFO) data structures insofar,
that additions and removals can be made at any position in the list. In contrast to a
simple set S the order is important. A typical example for the use of a list is a DNA
sequence. The combination of GGGTTTAAA is such a list, the elements of the list are the
nucleotide bases.

Nucleotides are the joined molecules which form the structural units of the RNA and the
DNA and play the central role in metabolism.

WS 2015
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Slide 2-4: Example Data Structures (2/3): Graph Ty

Evolutionary dynamics act on populations. .
Neither genes, nor cells, nor individuals evolve;

only populations evolve. N
EY N
linftial population Salact Tor reproduchion ﬂ'

Seloct for geain Finplace
W=

wy, DO 0 0 Wi
Lieberman, E., Hauert, C. & Nowak, M. A. 0 wg 0 0 0
(2005) Evolutionary dynamics on graphs. o o 0 Wy O
Nature, 433, 7023, 312-316. L =
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Graph is a pair G = (V, E), where V(G) is a set of finite, non-empty vertices (nodes) and E (G) is a set of edges (lines, arcs),
which are 2-element subsets of V. If E is a set of ordered pairs of vertices (arcs, directed edges, arrows), then itis a
directed graph (digraph). The distances between the edges can be represented within a distance-matric (two
dimensional array).

The edges in a graph can be multidimensional objects, e.g. vectors containing the results of multiple Gen-expression
measures. For this purpose the distance of two edges can be measured by various distance metrics.

Graphs are ideally suited for representing networks in medicine and biology, e.g. metabolism pathways, etc.

In bioinformatics, distance matrices are used to represent protein structures in a coordinate-independent manner, as well
as the pairwise distances between two sequences in sequence space. They are used in structural and sequential alignment,
and for the determination of protein structures from NMR or X-ray crystallography. Evolutionary dynamics act on
populations. Neither genes, nor cells, nor individuals evolve; only populations evolve.

This so called Moran process describes the stochastic evolution of a finite population of constant size: In each time step,
an individual is chosen for reproduction with a probability proportional to its fitness; a second individual is chosen for
death. The offspring of the first individual replaces the second and individuals occupy the vertices of a graph. In each time
step, an individual is selected with a probability proportional to its fitness; the weights of the outgoing edges determine
the probabilities that the corresponding neighbor will be replaced by the offspring. The process is described by a
stochastic matrix W, where ,, denotes the probability that an offspring of individual i will replace individual j. At each
time step, an edge ij is selected with a probability proportional to its weight and the fitness of the individual at its tail. The
Moran process is a complete graph with identical weights (Lieberman, Hauert & Nowak, 2005).

Graphs can be represented computationally by an Adjacency list, Adjacency matrix and an Incidence matrix. The first pre-
processing step is to produce point cloud data sets from raw data, see:

Holzinger, A., Malle, B, Bloice, M., Wiltgen, M., Ferri, M., Stanganellj, I. & Hofmann-Wellenhof, R. 2014. On the Generation of
Point Cloud Data Sets: Step One in the Knowledge Discovery Process. In: Holzinger, A. & Jurisica, I. (eds.) Interactive
Knowledge Discovery and Data Mining in Biomedical Informatics, Lecture Notes in Computer Science, LNCS 8401. Berlin
Heidelberg: Springer, pp. 57-80.
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=974579&pCurrPk=83005

For the specific task of getting graphs from image data have a look at: Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph
Extraction from Image Data. In: Slezak, D., Peters, J. F., Tan, A.-H. & Schwabe, L. (eds.) Lecture Notes in Artificial
Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=868952&pCurrPk=80830

WS 2015
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Slide 2-5: Example Data Structures (3/3) Tree Ty
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Tree is a collection of elements called nodes, one of which is distinguished as a root,
along with a relation ("parenthood") that places a hierarchical structure on the nodes. A
node, like an element of a list, can be of whatever type we wish. We often depict a node as
a letter, a string, or a number with a circle around it. Formally, a tree can be defined
recursively in the following manner:

1. A single node by itself is a tree. This node is also the root of the tree.

2.Suppose nisanode and T1,T2,..., Tk are trees with roots n1,n2,..., nk, respectively.
We can construct a new tree by making n be the parent of nodes n1,n2,..., nk. In this
tree nis the rootand T1,T2,..., Tk are the subtrees of the root. Nodes n1,n2,...,nk are
called the children of node n.

Dendrogram (from Greek dendron "tree", -gramma "drawing") is a tree diagram
frequently used to illustrate the arrangement of the clusters produced by hierarchical
clustering. Dendrograms are often used in computational biology to illustrate the
clustering of genes or samples. The origin of such dendrograms can be found in (Darwin
1859).

The example by (Hufford et al., 2012) shows a neighbor-joining tree and the changing
morphology of domesticated maize and its wild relatives. Taxa in the neighbor-joining
tree are represented by different colors: parviglumis (green), landraces (red), improved
lines (blue), mexicana (yellow) and Tripsacum (brown). The morphological changes are
shown for female inflorescences and plant architecture during domestication and
improvement.
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Data Integration
and Data Fusion in
the Life Sciences

F A Holzinger 709.043 17/74 Med Informatics LOZ

Please remember the key problems in dealing with data include:

1) Heterogeneous data sources (need for data fusion and data integration)

2) Complexity of the data (high-dimensionality)

3) Noisy, uncertain data (challenge of pre-processing)

4) The discrepancy between data-information-knowledge (various definitions)
5) Big data sets (manual handling of the data is impossible)

WS 2015
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Slide 2-6: “Big Data” pools in the health domain Ty
Biomedical R&D data Clinical patient data
(e.g. clinical trial data) (e.g. EPR, images, lab etc.)

Weakly structured, highly fragmented, with low integration

Health business data Private patient data
(e.g. costs, utilization, etc.) {e.g. AAL, monitoring, etc.)

Manyika, J., Chui, M., Brown, B., Bughin, |., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next
frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.
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Now that we have seen some examples of data from the biomedical domain, we can look
at the “big picture”. Manyika et al. (2011) localized four major data pools in the US health
care and describe that the data are highly fragmented, with little overlap and low
integration. Moreover, they report that approx. 30 % of clinical text/numerical data in
the United States, including medical records, bills, laboratory and surgery reports, is still
not generated electronically. Even when clinical data are in digital form, they are usually
held by an individual provider and rarely shared (see Slide 2-4).

Biomedical research data, e.g. clinical trials, predictive modeling etc., is produced by
academia and pharmaceutical companies and stored in data bases and libraries. Clinical
data is produced in the hospital and are stored in hospital information systems (HIS),
picture archiving and communication systems (PACS) or in laboratory data bases, etc.
Much data is health business data produced by payors, providers, insurances, etc. Finally,
there is an increasing pool of patient behavior and sentiment data, produced by various
customers and stakeholders, outside the typical clinical context, including the growing
data from the wellness and ambient assisted living domain.
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Slide 2-7a: Omics-data integration (1/2)
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A major challenge in our networked world is the increasing amount of data - today called “big data”. The trend towards
personalized medicine has resulted in a sheer mass of the generated (-omics) data, (see Slide 2-7). In the life sciences
domain, most data models are characterized by complexity, which makes manual analysis very time-consuming and
frequently practically impossible (Holzinger, 2013).

More and more Omics-data are generated, including:
1) Genomics data (e.g. sequence annotation),

2) Transcriptomics data (e.g. microarray data); the transcriptome is the set of all RNA molecules, including mRNA, rRNA,

tRNA and non-coding RNA produced in the cells.
3) Proteomics data: Proteomic studies generate large volumes of raw experimental data and inferred biological results
stored in data repositories, mostly openly available; an overview can be found here: (Riffle & Eng, 2009). The outcome of
proteomics experiments is a list of proteins differentially modified or abundant in a certain phenotype. The large size of
proteomics datasets requires specialized analytical tools, which deal with large lists of objects 4) Metabolomics (e.g.
enzyme annotation), the metabolome represents the collection of all metabolites in a cell, tissue, organ or organism.

5) Protein-DNA interactions,

6) Protein-protein interactions; PPI are at the core of the entire interactomics system of any living cell.
7) Fluxomics (isotopic tracing, metabolic pathways),

8) Phenomics (biomarkers),

9) Epigenetics, is the study of the changes in gene expression - others than the DNA sequence, therefore the prefix “epi-“

10) Microbiomics
11) Lipidomics

Omics-data integration helps to address interesting biological questions on the biological systems level towards
personalized medicine (Joyce & Palsson, 2006).
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Slide 2-7b: -Omics-data integration (2/2) Ty

= Genomics (sequence annotation)

Transcriptomics (microarray)

= Proteomics (Proteome Databases)

= Metabolomics (enzyme annotation)
* Fluxomics (isotopic tracing, metabolic pathways)
* Phenomics (biomarkers)

* Microbiomics (microorganisms) ,
= Lipidomics (pathways of cellular lipids]
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More and more Omics-data are generated, including:

1) Genomics data (e.g. sequence annotation),

2) Transcriptomics data (e.g. microarray data); the transcriptome is the set of all RNA molecules, including mRNA, rRNA,
tRNA and non-coding RNA produced in the cells.

3) Proteomics data: Proteomic studies generate large volumes of raw experimental data and inferred biological results
stored in data repositories, mostly openly available; an overview can be found here: (Riffle & Eng, 2009). The outcome of
proteomics experiments is a list of proteins differentially modified or abundant in a certain phenotype. The large size of
proteomics datasets requires specialized analytical tools, which deal with large lists of objects (Bessarabova et al., 2012).
4) Metabolomics (e.g. enzyme annotation), the metabolome represents the collection of all metabolites in a cell, tissue,
organ or organism.

5) Protein-DNA interactions,

6) Protein-protein interactions; PPI are at the core of the entire interactomics system of any living cell.

7) Fluxomics (isotopic tracing, metabolic pathways),

8) Phenomics (biomarkers),

9) Epigenetics, is the study of the changes in gene expression - others than the DNA sequence, therefore the prefix “epi-“
10) Microbiomics

11) Lipidomics

Omics-data integration helps to address interesting biological questions on the biological systems level towards
personalized medicine (Joyce & Palsson, 2006).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908408/

For more information please refer to: Gomez-Cabrero, D., Abugessaisa, 1., Maier, D.,
Teschendorff, A., Merkenschlager, M., Gisel, A., Ballestar, E., Bongcam-Rudloff, E., Conesa,
A. & Tegner, ]. 2014. Data integration in the era of omics: current and future challenges.
BMC Systems Biology, 8, (Suppl 2), I1.
http://www.biomedcentral.com/1752-0509/8/S2/11
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Slide 2-8: Example of typical clinical data sets Ty

= 50+ Patients per day ~ 5000
data points per day ...

Aggregated with specific
scores (Disease Activity
Score, DAS)

= Current patient status is gl
related to previous data t 1

= = convolution over time

» = time-series data

Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, 1. (2011). Optimizing Long-Term Treatment
of Rheumatoid Arthritis with Systematic Documentation. Pervasive Health - 5th International
Conference on Pervasive Computing Technologies for Healthcare, Dublin, IEEE, 550-554.
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A further challenge is to integrate the data and to make it accessible to the clinician. While there is much research on the
integration of heterogeneous information systems, a shortcoming is in the integration of available data. Data fusion is the
process of merging multiple records representing the same real-world object into a single, consistent, accurate, and useful
representation (Bleiholder & Naumann, 2008).

An example for the mix of different data for solving a medical problem can be seen in Slide 2-8.

A good example for complex medical data is RCQM, which is an application that manages the flow of data and information
in the rheumatology outpatient clinic (50 patients per day, 5 days per week) of Graz University Hospital, on the basis of a
quality management process model. Each examination produces 100+ clinical and functional parameters per patient. This
amassed data are morphed into better useable information by applying scoring algorithms (e.g. Disease Activity Score,
DAS) and are convoluted over time. Together with previous findings, physiological laboratory data, patient record data
and Omics data from the Pathology department, these data constitute the information basis for analysis and evaluation of
the disease activity. The challenge is in the increasing quantities of such highly complex, multi-dimensional and time series
data, see an example here: Simonic, K. M., Holzinger, A,, Bloice, M. & Hermann, J. Optimizing Long-Term Treatment of
Rheumatoid Arthritis with Systematic Documentation. Proceedings of Pervasive Health - 5th International Conference on
Pervasive Computing Technologies for Healthcare, 2011 Dublin. IEEE, 550-554.
http://www.biomedcentral.com/1472-6947/13/103
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Slide 2-9: Standardization vs. Structurization
-
o Holzinger, A. (2011) Weakly
£ |  structured Data in Health-
2 | Informatics: The Challenge for _ _
2 | Human-Computer Interaction. In: Omics Data Natural
= Baghaei, N., Baxter, G., Dow, L & Language
o Kimani, 5. (Eds.) Proceedings of Text
= INTERACT 2011 Workshop:
Promaoting and supporting healthy
living by design. Lisbon, IFIR 5-7.
=
=
2 Databases
z Libraries
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o
s, owt
Standardized Non-Standardized
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Do not confuse structure with standardization (see Slide 2-9). Data can be standardized (e.g. numerical entries in
laboratory reports) and non-standardized. A typical example is non-standardized text - imprecisely called “Free-Text” or
“unstructured data” in an electronic patient record (Kreuzthaler et al., 2011).

Standardized data is the basis for accurate communication. In the medical domain, many different people work at
different times in various locations. Data standards can ensure that information is interpreted by all users with the same
understanding. Moreover, standardized data facilitate comparability of data and interoperability of systems. It supports
the reusability of the data, improves the efficiency of healthcare services and avoids errors by reducing duplicated efforts
in data entry.

Data standardization refers to

a) the data content;

b) the terminologies that are used to represent the data;

c) how data is exchanged; and

iv) how knowledge, e.g. clinical guidelines, protocols, decision support rules, checklists, standard operating procedures are
represented in the health information system (refer to IOM).

Technical elements for data sharing require standardization of identification, record structure, terminology, messaging,
privacy etc. The most used standardized data set to date is the international Classification of Diseases (ICD), which was
first adopted in 1900 for collecting statistics (Ahmadian et al., 2011), which we will discuss in —Lecture 3.
Non-standardized data is the majority of data and inhibit data quality, data exchange and interoperability.
Well-structured data is the minority of data and an idealistic case when each data element has an associated defined
structure, relational tables, or the resource description framework RDF, or the Web Ontology Language OWL (see
—Lecture 3).

Note: Ill-structured is a term often used for the opposite of well-structured, although this term originally was used in the
context of problem solving (Simon, 1973).

Semi-structured is a form of structured data that does not conform with the strict formal structure of tables and data
models associated with relational databases but contains tags or markers to separate structure and content, i.e. are
schema-less or self-describing; a typical example is a markup-language such as XML (see —Lecture 3 and 4).
Weakly-Structured data is the most of our data in the whole universe, whether it is in macroscopic (astronomy) or
microscopic structures (biology) - see —»Lecture 5.

Non-structured data or unstructured data is an imprecise definition used for information expressed in natural language,
when no specific structure has been defined. This is an issue for debate: Text has also some structure: words, sentences,
paragraphs. If we are very precise, unstructured data would meant that the data is complete randomized - which is usually
called noise and is defined by (Duda, Hart & Stork, 2000) as any property of data which is not due to the underlying model
but instead to randomness (either in the real world, from the sensors or the measurement procedure).
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Note: The curse of dimensionality
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Bengio, 5. & Bengio, Y.
2000. Taking on the curse
of dimensionality in joint
distributions using neural
networks. |IEEE Transactions
on MNeural Networks, 11,
(3), 550-557.
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“Multivariate” and “multidimensional” are modern words and consequently overused in
literature. Each item of data is composed of variables, and if such a data item is defined
by more than one variable it is called a multivariable data item.

Variables are frequently classified into two categories: dependent or independent.

Some more readings on the homepage of Yosuhua Bengio, University of Montreal:
http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html

And the MILA Lab - Montreal Institute for Learning Algorithms

http://www.mila.umontreal.ca/
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Slide 2-10: Data Dimensionality examples Ty

= 0-D data = a data point existing isolated from other
data, e.g. integers, letters, Booleans, etc.

= 1-D data = consist of a string of 0-D data, e.g.
Sequences representing nucleotide bases and amino
acids, SMILES etc.

= 2-D data = having spatial component, such as
images, NMR-spectra etc.

= 2.5-D data = can be stored as a 2-D matrix, but can
represent biological entities in three or more
dimensions, e.g. PDB records

= 3-D data = having 3-D spatial component, e.g. image
voxels, e-density maps, etc.

= H-D Data = data having arbitrarily high dimensions
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In Physics, Engineering and Statistics a variable is a physical property of a subject, whose
quantity can be measured, e.g. mass, length, time, temperature, etc.

In mathematics a 0-dimensional space (nil-dimensional) is a topological space that has
dimension zero - which is an infinitesimal small point.

a 1-dimensional space is a line in R1

a 2-dimensional space is the plane in R2

A 3-dimensional space is a sphere (or cube, cylinder etc.) in R3
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Example: 1-D data (univariate sequential data objects) Ty

SMILES (Simplified Molecular Input Line Entry Specification)

... Is @ compact machine and human-readable chemical
nomenclature:

e.g. Viagra:

CCc1nn(C)c2c(=0)[nH]c(ncl12)c3cc(ccc30CC)S(=0)(=0)N4ACC
N(C)CC4

...1s Canonicalizable
...is Comprehensive
...iIs Well Documented

http://www.daylight.com/dayhtml_tutorials/languages/smiles/index. html
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SMILES data (.smi) consists of a string obtained by the symbol nodes encountered in a
depth-first tree traversal of a chemical graph, which is first trimmed to remove hydrogen
atoms and cycles are broken to turn it into a spanning tree. Where cycles have been
broken, numeric suffix labels are included to indicate the connected nodes.
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Example: 2-D data (bivariate data) Ty
A ; B
. ] e =
=iy e 4 e T2t
". -. - . a': g

Kastrinaki et al. (2008) Functional, molecular & proteomic characterisation of bone marrow
mesenchymal stem cells in rheumatoid arthritis. Annals of Rheumatic Diseases, 67, 6, 741-749,
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Proteomic analysis of mesenchymal stem cells (MSCs). Two-dimensional gel
electrophoresis was performed using whole protein cell

extracts from P2 MSC cultures of patients with rheumatoid arthritis (RA) (n = 10) (A)
and healthy controls (n = 6) (B). After scanning, spot detection,

quantification and normalisation, gels were compared using Hierarchical Clustering
Software and Pearson test (C). No cluster could be detected using

these proteomic profiles.

Proteomic analysis: Two-dimensional electrophoresis was performed using P2 MSCs in
patients with RA (n=10) and healthy controls (n = 6)

(fig 4A,B). By using the Hierarchical Clustering method, we could not define any
cluster that might discriminate patient and control cells (fig 4C). The Pearson correlation
coefficient was not significantly different between patient and control cells (r=0.933
(0.022) and r=0.929 (0.020), respectively). These data corroborate the lack of
significant changes in cytokine production between patients and controls.
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Example: 2.5-D data (structural information and metadata) Ty,
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The PDB is a large repository containing 3-D structural information, established in 1971
Data a stored in 2D but can in fact represent biological entities in three or more
dimensions
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Example: 3-D Voxel data (volumetric picture elements) Ty

Scheins, J. )., Herzog,
H. & Shah, N. ). (2011)
Fully-3D PET Image
Reconstruction Using
Scanner-Independent,
Adaptive Projection
Data and Highly
Rotation-Symmetric
Voxel Assemblies.
Medical Imaging, 1EEE
Transactions on, 30, 3,
879-892,
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Transaxial (left), coronal (middle), and sagittal (right) images of a patient who was
scanned for 30 min in list-mode with the BrainPET scanner; the recording was started 20
min after injection of about 300 MBq fluor-deoxy-glucose.
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Slide 2-11 A space is a set of points Ty

Hou, 1., Sims, G. E.,, Zhang, C. & Kim, 5.-H, 2003, A global representation of the protein fold
space. Proceedings of the National Academy of Sciences, 100, (5), 2386-2390.

F A Holzinger 709.043 28/74 Med Informatics LOZ

In Mathematics, hence in Informatics, however, a variable is associated with a space -
often an n-dimensional Euclidean space R,, - in which an entity (e.g. a function) or a
phenomenon of continuous nature is defined. The data location within this space can be
referenced by using a range of coordinate systems (e.g. Cartesian, Polar-coordinates,
etc.): The dependent variables are those used to describe the entity (for example the
function value) whilst the independent variables are those that represent the coordinate
system used to describe the space in which the entity is defined. If a dataset is composed
of variables whose interpretation fits this definition our goal is to understand how the
‘entity’ is defined within the n-dimensional Euclidean space R,,. Sometimes we may
distinguish between variables meaning measurement of property, from variables
meaning a coordinate system, by referring to the former as variate, and referring to the
latter as dimension (Dos Santos & Brodlie, 2002), (dos Santos & Brodlie, 2004).

A space is a set of points. A metric space has an associated metric, which enables us to
measure distances between points in that space and, in turn, implicitly define their
neighborhoods. Consequently, a metric provides a space with a topology, and a metric
space is a topological one. Topological spaces feel alien to us because we are accustomed
to having a metric.

Biomedical Example: A protein is a single chain of amino acids, which folds into a
globular structure. The Thermodynamics Hypothesis states that a protein always folds
into a state of minimum energy. To predict protein structure, we would like to model the
folding of a protein computationally. As such, the protein folding problem becomes an
optimization problem: We are looking for a path to the global minimum in a very high-
dimensional energy landscape;
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Slide 2-12 Point Cloud Data Sets ﬂ'[,':;'.

Let us collect n-dimensional i observations: X; = [Xj1, .., Xin|
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Point cloud in R? topological space metric space

Zomorodian, A. 1. 2005. Topology for computing, Cambridge (MA), Cambridge University Press.
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Let us collect n-dimensional i observations in the Euclidean vector space R™and we get:
Eq. 2-1
x; = [xi1, -, Xin]

A cloud of points sampled from any source (e.g. medical data, sensor network data, a
solid 3-D object, surface etc.). Those data points can be coordinated as an unordered
sequence in an arbitrarily high dimensional Euclidean space, where methods of algebraic
topology can be applied. The main challenge is in mapping the data back into R3 or to be
more precise into R?, because our retina is inherently perceiving data in R?. The cloud of
such data points can be used as a computational representation of the respective data
object. A temporal version can be found in motion-capture data, where geometric points
are recorded as time series. Now you will ask an obvious question: “How do we visualize
a four-dimensional object?” The obvious answer is: “How do we visualize a three
dimensional object?” Humans do not see in three spatial dimensions directly, but via
sequences of planar projections integrated in a manner that is sensed if not
comprehended. Little children spend a significant time of their first year of life learning
how to infer three-dimensional spatial data from paired planar projections, and many
years of practice have tuned a remarkable ability to extract global structure from
representations in a strictly lower dimension (Ghrist, 2008). Because we have the same
problem here in this book, we must stay in R? and therefore the example in Slide 2-12
(Zomorodian, 2005).

In Einstein's theory of Special Relativity, Euclidean 3-space plus time (the "4t-
dimension") are unified into the Minkowski space
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Slide 2-13: Example Metric Space Ty

A set S with a metric function d is a metric space

NN p
bt dij = Z(xik_xijz

k=1

Doob, J. L. 1994. Measure theory, Springer New York.
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A metric space has an associated metric, which enables to measure the distances
between points in that space and, implicitly define their neighborhoods. Consequently, a
metric provides a space with a topology, hence a metric space is a topological space.

A set X with a metric function d is called a metric space. We give it the metric topology of
d, where the set of open balls

Most of our “natural” spaces are a particular type of metric spaces: the Euclidean spaces:
The Cartesian product of n copies of R, the set of real numbers, along with the Euclidean
metric:

Eq. 2-2

p
a(i,j) = Z(xik - Xjk)2
k=1

is the n-dimensional Euclidean space R™.

We may induce a topology on subsets of metric spaces as follows:

If A © X with topology T, then we get the relative or induced topology T4 by defining T4
For more information refer to (Zomorodian, 2005) or (Edelsbrunner & Harer, 2010).
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Slide 2-14 Mapping Data R" +t - R* + tor R® + ¢ Ty
Cognitive Space Computational space

Perception Visualization

i s _:' 1"5 - a

gt L g

2 = I
Human intelligence Madchine intelligence

H uman Interactiun Camputer

Holzinger, A. 2012. On Knowledge Discovery and interactive intelligent visualization of
biomedical data. In: DATA - International Conference on Data Technologies and Applications.
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Knowledge Discovery from Data: By getting insight into the data; the gained information
can be used to build up knowledge. The grand challenge is to map higher dimensional
data into lower dimensions, hence make it interactively accessible to the end-user
(Holzinger, 2012), (Holzinger, 2013).

This mapping from R™ — R? is the core task of visualization and a major component for
knowledge discovery: Enabling effective interactive human control over powerful
machine algorithms to support human sensemaking (Holzinger, 2012), (Holzinger,
2013).

Holzinger, A. 2013. Human-Computer Interaction & Knowledge Discovery (HCI-KDD):
What is the benefit of bringing those two fields to work together? In: Alfredo Cuzzocrea, C.
K., Dimitris E. Simos, Edgar Weippl, Lida Xu (ed.) Multidisciplinary Research and Practice
for Information Systems, Springer Lecture Notes in Computer Science LNCS 8127.
Heidelberg, Berlin, New York: Springer, pp. 319-328.

An important topic is subspace clustering: Hund, M., Sturm, W., Schreck, T., Ullrich, T.,
Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of Patient Groups and Immunization
Results Based on Subspace Clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S. & Peng, H.
(eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250.
Cham: Springer International Publishing, pp. 358-368.
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=1198810&pC
urrPk=85960
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Example: Data structures - Classification Ty
Data
structures
Separable Aggregated
Qualitative Quantitative Mixed Pure

/ ‘__\_"_s / :é Aggregated attribute = a homomarphic

map J from a relational system <A; =>
Nominal Ordinal Interval Ratio into a relational system <B; =>;

where A and B are two distinct sets of
data elements.

Dastani, M. (2002) The Role of Visual Perception This is in contrast with other attributes
in Data Visualization. Journal of Visual Languages since the set B is the set of data
and Computing, 13, 601-622. elerments instead of atomic values,

F A Holzinger 709.043 33/74 Med Informatics LOZ

Multivariate dataset is a dataset that has many dependent variables and they might be
correlated to each other to varying degrees. Usually this type of dataset is associated
with discrete data models.

Multidimensional dataset is a dataset that has many independent variables clearly
identified, and one or more dependent variables associated to them. Usually this type of
dataset is associated with continuous data models.

In other words, every data item (or object) in a computer is represented (stored) as a set
of features. Instead of the term features we may use the term dimensions, because an
object with n-features can also be represented as a multidimensional point in an n-
dimensional space. Dimensionality reduction is the process of mapping an n-dimensional
point, into a lower k-dimensional space - this is the main challenge in visualization see
—Lecture 9.

The number of dimensions can sometimes be small, e.g. simple 1D-data such as
temperature measured at different times, to 3D applications such as medical imaging,
where data is captured within a volume. Standard techniques—contouring in 2D;
isosurfacing and volume rendering in 3D—have emerged over the years to handle this
sort of data. There is no dimension reduction issue in these applications, since the data
and display dimensions essentially match.
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Slide 2-15: Categorization of Data (Classic “scales”) Ty
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Stevens, 5. 5. (1946) On the theory of scales of measurement. Science, 103, 677-680.
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Data can be categorized into qualitative (nominal and ordinal) and quantitative (interval
and ratio): Interval and ratio data are parametric, and are used with parametric tools in
which distributions are predictable (and often Normal).

Nominal and ordinal data are non-parametric, and do not assume any particular
distribution. They are used with non-parametric tools such as the Histogram.

The classic paper on the theory of scales of measurement is (Stevens, 1946).
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We can summarize what we learned so far about data: Data can be numeric, non-
numeric, or both. Non-numeric data can include anything from language data (text) to
categorical, image, or video data. Data may range from completely structured, such as
categorical data, to semi-structured, such as an XML File containing meta information, to
unstructured, such as a narrative “free-text”. Note, that term unstructured does not mean
that the data are without any pattern, which would mean complete randomness and
uncertainty, but rather that “unstructured data” are expressed so, that only humans can
meaningfully interpret it. Structure provides information that can be interpreted to
determine data organization and meaning, hence it provides a context for the
information. The inherent structure in the data can form a basis for data representation.
An important, yet often neglected issue are temporal characteristics of data: Data of all
types may have a temporal (time) association, and this association may be either discrete
or continuous (Thomas & Cook, 2005).

In Medical Informatics we have a permanent interaction between data, information and
knowledge, with different definitions (Bemmel & Musen, 1997), see Slide 2-16:
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Slide 2-16: Clinical View of Data, Information, Knowledge  mgilaTu
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M. A. (1997) Handbook of

Medical Informatics. . .
Heidelberg, Springer.
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Data are the physical entities at the lowest abstraction level which are, e.g. generated by
a patient (patient data) or a biological process (e.g. Omics data). According to (Bemmel &
Musen, 1997) data contain no meaning,.

Information is derived by interpretation of the data by a clinician (human intelligence).

Knowledge is obtained by inductive reasoning with previously interpreted data,
collected from many similar patients or processes, which is added to the so called body
of knowledge in medicine, the explicit knowledge. This knowledge is used for the
interpretation of other data and to gain implicit knowledge which guides the clinician in
taking further action.
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Slide 2-17: From Patient Data to Medical Knowledge Ty
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For hypothesis generation and testing, four types of inferences exist (Peirce, 1955): abstraction, abduction, deduction, and
induction. The first two drive hypothesis generation while the latter drive hypothesis testing, see Slide 2-17:

Abstraction means that data are filtered according to their relevance for the problem solution and chunked in schemas
representing an abstract description of the problem (e.g., abstracting that an adult male with haemoglobin concentration
less than 14g/dL is an anaemic patient). Following this, hypotheses that could account for the current situation are related
through a process of abduction, characterized by a "backward flow" of inferences across a chain of directed relations which
identify those initial conditions from which the current abstract representation of the problem originates. This provides
tentative solutions to the problem at hand by way of hypotheses. For example, knowing that disease A will cause symptom
B, abduction will try to identify the explanation for B, while deduction will forecast that a patient affected by disease A will
manifest symptom B: both inferences are using the same relation along two different directions (Patel & Ramoni, 1997).
Abduction is characterized by a cyclical process of generating possible explanations (i.e., identification of a set of
hypotheses that are able to account for the clinical case on the basis of the available data) and testing those explanations
(i.e., evaluation of each generated hypothesis on the basis of its expected consequences) for the abnormal state of the

patient at hand (Patel, Arocha & Zhang, 2004).
The hypothesis testing procedures can be inferred from Slide 2-17:

General knowledge is gained from many patients, and this general knowledge is then
applied to an individual patient. We have to determine between:

Reasoning is the process by which a clinician reaches a conclusion after thinking about
all the facts;

Deduction consists of deriving a particular valid conclusion from a set of general
premises;

Induction consists of deriving a likely general conclusion from a set of particular
statements.

Reasoning in the “real world” does not appear to fit neatly into any of these basic types.
Therefore, a third form of reasoning has been recognized by Peirce (1955), where
deduction and induction are inter-mixed;
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Slide 2-18: Life is complex information Ty

Lane, N. & Martin, W. (2010} The energetics of genome complexity.
Nature, 467, 7318, 929-934,
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The question “what is information?” is still an open question in basic research, and any
definition is depending on the view taken. For example, the definition given by Carl-
Friedrich von Weizsacker: “Information is what is understood,” implies that information
has both a sender and a receiver who have a common understanding of the
representation and the means to convey information using some properties of the
physical systems, and his addendum: “Information has no absolute meaning; it exists
relatively between two semantic levels” implies the importance of context (Marinescu
2011). Without doubt information is a fundamentally important concept within our
world and life is complex information, see Slide 2-14:

Many systems, e.g. in the quantum world to not obey the classical view of information. In
the quantum world and in the life sciences traditional information theory often fails to
accurately describe reality ... for example in the complexity of a living cell: All complex

life is composed of eukaryotic (nucleated) cells (Lane & Martin, 2010). A good example of

such a cell is the protist Euglena Gracilis (in German “Augentierchen”) with a length of
approx. 30 um. Life can be seen as a delicate interplay of energy, entropy and
information, essential functions of living beings correspond to the generation,
consumption, processing, preservation and duplication of information.

P: Complexity <> Information <> Energy <> Entropy
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Slide 2-19: Human Information Processing Model Ty
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Wickens, C. D. (1984) Engineering psychology and human performance, Columbus: Merrill.
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The etymological origin of the word information can be traced back to the Greek “forma”
and the Latin “information” and “informare”, to bring something into a shape (“in-a-
form”). Consequently, the naive definition in computer science is “information is data in
context” and therefore different than data or knowledge.

However, we follow the notion of (Boisot & Canals, 2004) and define that information is
an extraction from data that, by modifying the relevant probability distributions, has
direct influence on an agent’s knowledge base. For a better understanding of this
concept, we first review the model of human information processing by Wickens (1984):
The model by Wickens (1984) beautifully emphasizes our view on data, information and
knowledge: the physical data from the real-world are perceived as information through
perceptual filters, controlled by selective attention and form hypotheses within the
working memory. These hypotheses are the expectations depending on our previous
knowledge available in our mental model, stored in the long-term memory. The
subjectively best alternative hypothesis will be selected and processed further and may
be taken as outcome for an action. Due to the fact that this system is a closed loop, we get
feedback through new data perceived as new information and the process goes on.
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Slide 2-20: Knowledge as a set of expectations Ty
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Boisot, M. & Canals, A. 2004, Data, information and knowledge: have we got it right?
Journal of Evolutionary Economics, 14, (1), 43-67.
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The incoming stimuli from the physical world must pass both a perceptual filter and a
conceptual filter.

The perceptual filter orientates the senses (e.g. visual sense) to certain types of stimuli
within a certain physical range (e.g. visual signal range, pre-knowledge, attention etc.).
Only the stimuli which pass through this filter get registered as incoming data -
everything else is filtered out. At this point it is important to follow our physical principle
of data: to differentiate between two notions that are frequently confused: an
experiment’s (raw, hard, measured, factual) data and its (meaningful, subjective)
interpreted information results. Data are properties concerning only the instrument; it is
the expression of a fact. The result concerns a property of the world. The following
conceptual filters extract information-bearing data from what has been previously
registered.

Both types of filters are influenced by the agents’ cognitive and affective expectations,
stored in their mental models. The enormous utility of data resides in the fact that it can
carry information about the physical world. This information may modify set
expectations or the state-of-knowledge. These principles allow an agent to act in
adaptive ways in the physical world (Boisot & Canals, 2004).

Confer this process with the human information processing model by (Wickens, 1984),
seen in Slide 2-19 and discussed in —Lecture 7.
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Entropy has many different definitions and applications, originally in statistical physics

and most often it is used as a measure for disorder.
In information theory, entropy can be used as a measure for the uncertainty in a
data set.

To demonstrate how useful entropy can be - you can have a look at this paper:
Holzinger, A., Stocker, C., Peischl, B. & Simonic, K.-M. 2012. On Using Entropy for
Enhancing Handwriting Preprocessing. Entropy, 14, (11), 2324-2350.
http://www.mdpi.com/1099-4300/14/11/2324
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Zlde 2-21: evipoma

My greatest concern was what to call it. I thought of calling it “information”.
hut the word was overly used, so I decided to call it “uncertainty”. When T dis-
cussed it with John von Newmann, he had o better idea. Von Newmann told me,
“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanies under that name, so it already hos
a name. In the secaond place, and more important, nobody knows what entropy
really is, so in a debate you will always have the advantage,”

Tribus, M. & Mclrvine, E. C_ (1971) Energy and Information. Scientific American, 225, 3, 179-184.
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The concept of entropy was first introduced in thermodynamics (Clausius, 1850), where
it was used to provide a statement of the second law of thermodynamics. Later, statistical
mechanics provided a connection between the macroscopic property of entropy and the
microscopic state of a system by Boltzmann. Shannon was the first to define entropy and
mutual information.

Shannon (1948) used a Gedankenexperiment (thought experiment) to propose a
measure of uncertainty in a discrete distribution based on the Boltzmann entropy of
classical statistical mechanics, see Slide 2-22:
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Slide 2-22: Entropy H as a measure for uncertainty (1/3) Ty
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F A Holzinger 709.043 43/74 Med Informatics LOZ

An example shall demonstrate the usefulness of this approach:
1) Let Q be a discrete data set with associated probabilities p;:
Eq. 2-5
Q .. P={py, ..., pn}

2) Now we apply Shannon’s equation Eq. 2-4:
Eq.2-6

HQ == ) pilogz(p)
i=1

3) We assume that our source has two values (ball = white, ball = black)

Let us do the famous simple Gedankenexperiment (thought experiment): Imagine a box which can contain two colored
balls: black and white. This is our set of discrete symbols with associated probabilities. If we grab blindly into this box to
get a ball, we are dealing with uncertainty, because we do not know which ball we touch. We can ask: Is the ball black? NO.
THEN it must be white, so we need one question to surely provide the right answer. Because it is a binary decision
(YES/NO) the maximum number of (binary) questions required to reduce the uncertainty is: log,(N), where N is the
number of the possible outcomes. If there are N events with equal probability p then N = 1/p. If you have only 1 black ball,
then log, (1) = 0, which means there is no uncertainty.

Eq.2-7

Qb = {allaZ} with P = {p: 1- p}

4) Now we solve numerically Eq. 2-6:

Eq.2-8

1
H(Qb)—p*10g5+p*10g1_p

Since p ranges from 0 (for impossible events) to 1 (for certain events), the entropy value ranges from infinity (for
impossible events) to 0 (for certain events). So, we can summarize that the entropy is the weighted average of the surprise
for all possible outcomes. For our example with the two balls we can draw the following function:

The entropy value is 1 for p=0,5 and it is both 0 for either p=0 or p=1. This example might seem trivial, but the entropy
principle has been developed a lot since Shannon and there are many different methods, which are very useful for dealing
with data.
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Slide 2-23: A measure for uncertainty (2/3) Ty
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Shannaon, C. E. (1948) A Mathematical Theory of Communication. Bell System Technical
Journol, 27, 379-423.

F A Holzinger 709.043 2474 Med Informatics LOZ

Shannon called it the information entropy (aka Shannon entropy) and defined:
Eq. 2-9

1
logzl—) = —log,p

where p is the probability of the event occurring. If p is not identical for all events then
the entropy H is a weighted average of all probabilities, which Shannon defined as:
Eq. 2-10

N
H= —z pilog2 (p;)
i=1

Basically, the entropy p(x) approaches zero if we have a maximum of structure - and
opposite, the entropy p(x) reaches high values if there is no structure - hence, ideally, if
the entropy is a maximum, we have complete randomness, total uncertainty.

Low Entropy means differences, structure, individuality - high Entropy means no
differences, no structure, no individuality. Consequently, life needs low entropy.

WS 2015

44



A. Holzinger LV 709.049 Med. Informatik

Slide 2-24: Entropy H as a measure for uncertainty (3/3) Ty
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The principle what we can infer from entropy values is:
1) Low entropy values mean high probability, high certainty, hence a high degree of
structurization in the data.
2) High entropy values mean low probability, low certainty (= high uncertainty ;-),
hence a low degree of structurization in the data.
Maximum entropy would mean complete randomness and total uncertainty.
Highly structured data contain low entropy; ideally if everything is in order and there is
no surprise (no uncertainty) the entropy is low:
Eq. 2-11

H = Hpin =0

Eq. 2-12
H = Hpg =log, N.

On the other hand if the data are weakly structured - as for example in biological data -
and there is no ability to guess (all data is equally likely) the entropy is high:
If we follow this approach, “unstructured data” would mean complete randomness. Let

us look on the history of entropy to understand what we can do in future, see Slide 2-25.
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Entropic methods — what for? Ty

= 1) Set of noisy, complex data

= 2) Extract information out of the data

= 3) to support a previous set hypothesis
* Information + Statistics + Inference

= = powerful methods for many sciences

= Application e.g. in biomedical informatics for
analysis of ECG, MRI, CT, PET, sequences and
proteins, DNA, topography, and for modeling
eLc.;

!
Mayer, C., Bachler, M., Hortenhuber, M., Stocker, C., Holzinger, A. & Wassertheurer, 5. 2014.
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.

BMC Bioinformatics, 15, (Suppl 6), 52.
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You might argue what the practical purpose of this approach is - manifold applications!

Example: Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy
is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple
parameters, the selection of which is controversial and depends on the intended purpose. Mayer et al. (2014)
describe the results of tests conducted to support parameter selection, towards the goal of enabling further
biomarker discovery. They dealt with approximate, sample, fuzzy, and fuzzy measure entropies. All data
were obtained from PhysioNet https://www.physionet.org, a free-access, on-line archive of physiological
signals, and represent various medical conditions. Five tests were defined and conducted to examine the
influence of: varying the threshold value r (as multiples of the sample standard deviation ?, or the entropy-
maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the
thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors'
composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a
Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r.
Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather
an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 ? and should even
exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership
function show different behavior when coupled with different r values, therefore the weighting parameters
have been chosen independently for the different threshold values. The tests concerning rF and rL showed
that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2?. CONCLUSIONS: Some
of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical
conditions are unknown beforehand, compromises had to be made. Optimal parameter combinations are
suggested for the methods considered. Yet, due to the high number of potential parameter combinations,
further investigations of entropy for heart rate variability data will be necessary.

Mayer, C., Bachler, M., Hortenhuber, M., Stocker, C., Holzinger, A. & Wassertheurer, S. 2014. Selection of
entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15,
(Suppl 6), S2.

http://www.ncbinlm.nih.gov/pubmed/25078574
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Slide 2-25: An overview on the History of Entropy Ty
Bernoulli (1713) Maxwell (1859), Boltzmann (1871},
Principle of Insufficient Gibbs {1902) Statistical Modeling
Reason of problems in physics Pearson (1900)
Goodness of Fit
¥ measure
Bayes (1763), Laplace (1770)
How to calculate the state of
a system with a limited
number of expectation values Fisher (1922)
3 / Maximum Likelihood
Jeffreys, Cox (1939-1948) Shannon (1948)
Statistical Inference Information Theory
Bayesian Statistics Entropy Methods Generalized Entropy
See next slide
confer also with: Golan, A. (2008) Information and Entropy Econometric: A Review and
Synthesis. Foundations ond Trends in Econometrics, 2, 1-2, 1-145,
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The origin may be found in the work of Jakob Bernoulli, describing the principle of
insufficient reason: we are ignorant of the ways an event can occur, the event will occur
equally likely in any way. Thomas Bayes (1763) and Pierre-Simon Laplace (1774) carried
on and Harold Jeffreys and David Cox solidified it in the Bayesian Statistics, aka statistical
inference. The second path leading to the classical Maximum Entropy, en-route with the
Shannon Entropy, can be identified with the work of James Clerk Maxwell and Ludwig
Boltzmann, continued by Willard Gibbs and finally Claude Elwood Shannon. This work is
geared toward developing the mathematical tools for statistical modeling of problems in
information. These two independent lines of research are very similar. The objective of
the first line of research is to formulate a theory/methodology that allows understanding
of the general characteristics (distribution) of a system from partial and incomplete
information. In the second route of research, the same objective is expressed as
determining how to assign (initial) numerical values of probabilities when only some
(theoretical) limited global quantities of the investigated system are known. Recognizing
the common basic objectives of these two lines of research aided Jaynes in the
development of his classical work, the Maximum Entropy formalism. This formalism is
based on the first line of research and the mathematics of the second line of research.
The interrelationship between Information Theory, statistics and inference, and the
Maximum Entropy (MaxEnt) principle became clear in 1950ies, and many different
methods arose from these principles (Golan, 2008), see next Slide
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Slide 2-26: Towards a Taxonomy of Entropic Methods Ty
Entropic Methods Generalized
Entropy

laynes (1957)

Maximum Entropy (MaxEn) Renyi (1961)

Renyi-Entropy

Adler et al, (1965) . .
Topology Entropy (TopEn) Mowshowitz (1968)
Graph Entropy (MinEn)

Tsallis (1920)

Posner (1975) Tsallis-Entropy

Minimum Entropy (MinEn)
Pincus (1991)

Approximate Entro ApEn
= PY (ApEn) Rubinstein (1997)

Richman (2000) Cross Entropy (CE)
Sample Entropy (SampEn)

Holzinger, A., Hortenhuber, M., Mayer, C., Bachler, M,, Wassertheurer, 5., Pinho, A. & Koslicki, D. 2014. On
Entropy-Based Data Mining. In: Holzinger, A, & Jurisica, I, (eds.) Lecture Motes in Computer Science, LNCS
8401, Berlin Heidelberg: Springer, pp. 209-226.
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Maximum Entropy (MaxEn), described by (Jaynes, 1957), is used to estimate unknown parameters of a multinomial
discrete choice problem, whereas the Generalized Maximum Entropy (GME) model includes noise terms in the
multinomial information constraints. Each noise term is modeled as the mean of a finite set of a priori known points in the
interval [—1,1] with unknown probabilities where no parametric assumptions about the error distribution are made. A
GME model for the multinomial probabilities and for the distributions, associated with the noise terms is derived by
maximizing the joint entropy of multinomial and noise distributions, under the assumption of independence (Jaynes
1957).

Topological Entropy (TopEn), was introduced by (Adler, Konheim & McAndrew, 1965) with the purpose to introduce the
notion of entropy as an invariant for continuous mappings: Let (X, T) be a topological dynamical system, i.e,, let X be a
nonempty compact Hausdorff space and T: X — X a continuous map; the TopEn is a nonnegative number which measures
the complexity of the system (Adler, Downarowicz & Misiurewicz, 2008).

Graph Entropy was described by (Mowshowitz, 1968) to measure structural information content of graphs, and a
different definition, more focused on problems in information and coding theory, was introduced by (Kérner, 1973).
Graph entropy is often used for the characterization of the the structure of graph-based systems, e.g. in mathematical
biochemistry. In these applications the entropy of a graph is interpreted as its structural information content and serves as
a complexity measure, and such a measure is associated with an equivalence relation defined on a finite graph; by
application of Shannon’s Eq. 2.4 with the probability distribution we get a numerical value that serves as an index of the
structural feature captured by the equivalence relation (Dehmer & Mowshowitz, 2011).

Minimum Entropy (MinEn), described by (Posner, 1975), provides us the least random, and the least uniform probability
distribution of a data set, i.e. the minimum uncertainty, which is the limit of our knowledge and of the structure of the
system. Often, the classical pattern recognition is described as a quest for minimum entropy. Mathematically, it is more
difficult to determine a minimum entropy probability distribution than a maximum entropy probability distribution; while
the latter has a global maximum due to the concavity of the entropy, the former has to be obtained by calculating all local
minima, consequently the minimum entropy probability distribution may not exist in many cases (Yuan & Kesavan, 1998).
Cross Entropy (CE), discussed by (Rubinstein, 1997), was motivated by an adaptive algorithm for estimating
probabilities of rare events in complex stochastic networks, which involves variance minimization. CE can also be used for
combinatorial optimization problems (COP). This is done by translating the “deterministic” optimization problem into a
related “stochastic” optimization problem and then using rare event simulation techniques (De Boer et al., 2005).

Rényi entropy is a generalization of the Shannon entropy (information theory), and Tsallis entropy is a generalization of
the standard Boltzmann-Gibbs entropy (statistical physics).

For us more important are:

Approximate Entropy (ApEn), described by (Pincus, 1991), is useable to quantify regularity in data without any a priori
knowledge about the system, see an example in Slide 2-20.

Sample Entropy (SampEn), was used by (Richman & Moorman, 2000) for a new related measure of time series regularity.
SampEn was designed to reduce the bias of ApEn and is better suited for data sets with known probabilistic content.
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Slide 2-27: Example of the usefulness of ApEn (1/3) Ty
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Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H. & Fred, A. 2012. On
Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of
Big Sensor Data. In: Huang, R., Ghorbani, A., Pasi, G., Yamaguchi, T, Yen, N. & Jin, B. (eds.)
Active Media Technology, Lecture Notes in Computer Science, LNCS 7669, Berlin Heidelberg:
Springer, pp. 646-657, EU Project EMERGE (2007-2010)
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Problem: Monitoring body movements along with vital parameters during sleep provides
important medical information regarding the general health, and can therefore be used
to detect trends (large epidemiology studies) to discover severe illnesses including
hypertension (which is enormously increasing in our society).

This seemingly simple data — only from one night period — demonstrates the complexity
and the boundaries of standard methods (for example Fast Fourier Transformation) to
discover knowledge (for example deviations, similarities etc. ).

Due to the complexity and uncertainty of such data sets, standard methods (such as FFT)
comprise the danger of modeling artifacts. Since the knowledge of interest for medical
purposes is in anomalies (alterations, differences, a-typicalities, irregularities), the
application of entropic methods provides benefits.

Photograph taken during the EU Project EMERGE and used with permission.
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Slide 2-28: Example of the usefulness of ApEn (2/3) Ty

Let: (xp) = {x1,x3, ..., Xy}
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G (i) = _ ™ (r) = — Z InCF (i)
J N—-m+1 N—m + 1 — :

Pincus, 5. M. (1991} Approximate Entropy as a measure of system complexity. Proceedings
of the National Academy of Sciences of the United States of America, 88, 6, 2297-2301.
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1) We have a given data set (x,) where capital N is the number of data points:
Eq.2-13
Let (x,) = {xq,%5, ..., xn}

2) Now we form m-dimensional vectors
Eq. 2-14
Xi = (X, X(i41)s e X(i4m=1))
3) We measure the distance between every component, i.e. the maximum absolute difference between their scalar
components
Eq.2-15
1%, %l = max (-1 = *gae-n])
4) We look - so to say - in which dimension is the biggest difference; as a result we get the Approximate Entropy (if there
is no difference we have zero relative entropy):
Eq. 2-16
ApEn(m,r) = lim[¢™(r) — ¢+ ()]
N-oo
where m is the run length and r is the tolerance window r (let us assume that m is equal to ), ApEn (m,r) could also be

written as H(m,7)
5) ¢™(r) is computed by

Eq.2-17
1 N-m+1
m — mey
A OR s SN LAO)
with
Eq.2-18
NT'(D)
me:;\y —
¢ = N-m+1

6) C™ measures within the tolerance r the regularity of patterns similar to a given one of window length m

7) Finally we increase the dimension to m + 1 and repeat the steps before and get as a result the approximate entropy
ApEn(m,r)

ApEn(m, r, N) is approximately the negative natural logarithm of the conditional probability (CP) that a dataset of length
N, having repeated itself within a tolerance r for m points, will also repeat itself for m + 1 points. An important point to
keep in mind about the parameter r is that it is commonly expressed as a fraction of the Standard deviation (SD) of the
data and in this way makes ApEn a scale-invariant measure. A low value arises from a high probability of repeated
template sequences in the data (Hornero et al., 2006).
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Example: ApEn (2) Ty

time t
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In this slide we can see the plot of the normalized approximate entropy for each of the
episodes and the median across all the episodes. From this figure we can see that the
entropy is a minimum where we have no alterations and entropy is increasing when
having irregularities.

If we have no differences we get zero entropy
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Slide 2-29: ApEn Ty

HH [Vmin]

o 1) “&n W m0 wm T o m &0 ) ) 000 120
Tims

Holzinger, A., Hértenhuber, M., Mayer, C., Bachler, M., Wassertheurer, 5., Pinho, A. & Koslicki, D.
2014. On Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, I. (eds.) Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics, Lecture Notes in Computer Science, LNCS
8401, Berlin Heidelberg: Springer, pp. 209-226.
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A final example should make the advantage of such an entropy method totally clear: In
the right diagram it is hard to discover irregularities for a medical professional -
especially over a longer period, but an anomaly can easily be detected by displaying the
measured relative ApEn.

What can we learn from this experiment? Approximate entropy is relatively unaffected
by noise; it can be applied to complex time series with good reproduction; it is finite for
stochastic, noisy, composite processes; the values correspond directly to irregularities;
and it is applicable to many other areas - for example for the classification of large sets of
texts — the ability to guess algorithmically the subject of a text collection without having
to read it would permit automated classification.
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Example: Skew and Slant correction in Handwriting

vertical line
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Holzinger, A., Stocker, C., Peischl, B. & Simonic, K.-M. 2012, On Using Entropy for Enhancing
Handwriting Preprocessing. Entropy, 14, (11), 2324-2350.
5374 Med informatics LOZ
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Calculation of Entropy Ty

Alporithm 2 Calculate the entropy H, (X for the projection profiles p, (o) for a mnge of angles o

Require: K = number of dati points in X

Require: YRe M. 1 <k < At puie = X[kl AND g = X{ELy
Require: [, i, e €N AND — 35 € iy < gy < 35
1: Tunction CALCULATEHYLX, R 6, 0 e Wik U 1
% range e i,
A H new vector of sife rang Denode the index range From o 10 .,
4 for o = e —F 0 e G0
% X, — ROTATEDATAPOINTS( X, K o)
NI Rlgorithm i Korstmy the dats poanss tn 4 for 1 degree
# [T ol [ Waninl /¢ Require & = sesher of dais poim in X
') pry = CALCULATECURRENTPY (N I, Banis Hiax . 1)
i+ Tuneilen saTsieERaraPoisTuy, Kool
] ol =10 3 X e vl of sie A
L for j =1 =/ do Bor b m | s I o
[] L LY R0 Nk - am[m
Ji Hylo] + Hilol + peli] = logs pel) 5 (i w XL - wiRal b 4 ¥[8 s
1 end for . X i
sl Far
12 H lal 4 1- H i & returm X
i end Tor b S it
14 return ff

15 end Tunction

Holzinger, A., Stocker, C., Peischl, B. & Simonic, K.-M. 2012. On Using Entropy for Enhancing
Handwriting Preprocessing. Entropy, 14, (11), 2324-2350.
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Algorithm 1: With rotateDataPoints” defined we can calculate the projection profile p y;j
(o) for a range of different

angles and with those we can compute the entropy H y,a (X ) for each angle. Holzinger et
al. (2012) implemented this algorithm as it is described in Algorithm 2.

For more information please refer to the paper. This just shall demonstrate the strengths
and weaknesses of using entropy for skew- and slant-correction — which is important in
handwriting recognition. However, the entropy based skew correction does not
outperform older methods like skew correction based on the least squares method: the
noise in the drawing distorts the real minima of the entropy distribution. In many cases
where the global minimum was the wrong choice, there was a local minimum close to the
real error angle. Even though both approaches yield satisfying result for words longer
than five letters, we suggest

further investigation into the entropy-based skew correction method, with noise
reduction in mind. On the other hand, it shows that entropy is in fact useful when
performing slant correction, as it does outperform the window-based approach! The
conclusion is, that the window-based

method is too much dependent on a number of factors. Its performance is influenced a
lot by the outcome of zone detection and by the writing style of the writer. It is also
influenced a lot by window selection.

Holzinger, A., Stocker, C., Peischl, B. & Simonic, K.-M. 2012. On Using Entropy for
Enhancing Handwriting Preprocessing. Entropy, 14, (11), 2324-2350
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Conclusion Ty
H..
[ |

... IS robust against noise;

... can be applied to complex time series with
good replication;

... 1S finite for stochastic, noisy, composite
processes;

... the values correspond directly to
irregularities — good for detecting anomalies
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What can we learn from this experiment? Approximate entropy is relatively unaffected
by noise; it can be applied to complex time series with good reproducibility; it is finite for
stochastic, noisy, composite processes; the values correspond directly to irregularities;

and it is applicable to many other areas - for example for the classification of large sets of

texts — the ability to guess algorithmically the subject of a text collection without having
to read it would permit automated classification.
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My DEDICATION is to make data valuable ... Thank you!
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Sample Questions (1) Ty

= Why is modeling of artifacts a huge problem?

= What do we need to transfer information into Knowledge?
= What type of data does the PDB basically store?

= What is the “curse of dimensionality”?

= What type of separable data is blood sedimentation rate?

* |sthe mathematical operation “multiplication” allowed with ordinal
data?

* What characterizes standardized data?
= Why are structural homologies interesting?

* How did Bemmel & van Musen describe the clinical view on data,
information and knowledge?

= Where are the differences between patient data and medical
knowledge from a clinical viewpoint?

= Which weaknesses of the DIKW Model do you recognize?
= How do we get theories?

= What is the main limitation of transferring data from the computational
space into the perceptual space from the viewpoint of the human
information processing model?

Fn.nwmm 57/74 Med informatics L02
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Sample Questions (2) Ty

Why is the knowledge about human information processing necessary
for medical informatics?

What is the difference between the perceptual space and the
computational space in terms of data, information and knowledge?

What does information interaction mean?

How does knowledge-assisted visualization work in principle?
Why is non-structured data an rather incorrect term?

Give an example of the data structure tree in biomedical informatics!
Why is data quality important? What are the related issues?
How do you ensure data accessibility?

What is the main idea of Shannon’s Entropy?

Why is Entropy interesting for medical informatics?

What are typical entropic methods?

What is the main purpose of Approximate Entropy?

What is the big advantage of entropic methods?

What are the differences of ApEn and SampEn?

Which possibilities do you have with Graph Entropy Measures?

Fn.nnummm 58,74 Med informatics L02
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Back-up Slide: Poincare Plot for gait analysis Ty
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Khandoker, A., Palaniswami, M. & Begg, R. (2008) A comparative study on approximate entropy
measure and poincare plot indexes of minimum foot clearance variability in the elderly during
walking. Journal of NeuroEngineering and Rehabilitation, 5, 1, 4.
FA.H:I:'MH 709.049 i 5974 Med Informatics LOZ

MFC = Minimum Foot Clearance

Stride = step

You can see brilliantly what you can measure with entropy - you can determine
anomalies, i.e. the balance problems of elderly gait

MFC Poincaré plots. Top panels show MFC time series from a healthy elderly subject (A)
and its corresponding Poincaré plot (B). Bottom panels show MFC time series from an
elderly subject with balance problem (C) and its corresponding Poincaré plot (D).

Significant relationships of mean MFC with Poincaré plot indexes (SD1, SD2) and ApEn (r
=0.70,p<0.05;r=0.86,p <0.01; r=0.74, p < 0.05) were found in the falls-risk elderly
group. On the other hand, such relationships were absent in the healthy elderly group. In
contrast, the ApEn values of MFC data series were significantly (p < 0.05) correlated with
Poincaré plot indexes of MFC in the healthy elderly group, whereas correlations were
absent in the falls-risk group. The ApEn values in the falls-risk group (mean ApEn = 0.18
+ 0.03) was significantly (p < 0.05) higher than that in the healthy group (mean ApEn =
0.13 + 0.13). The higher ApEn values in the falls-risk group might indicate increased
irregularities and randomness in their gait patterns and an indication of loss of gait
control mechanism. ApEn values of randomly shuffled MFC data of falls risk subjects did
not show any significant relationship with mean MFC.
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Sample Exam Questions — Yes/No Answers pflTU
*
01 | An array is a composite data type on physical level. DYes | 2total
0O Ne

02 | InaVon-Neumann machine “List” is a widely used data structure | O Yes | 2 total
for applications which do not need random access. O No

03 | The edges in a graph can be multidimensional objects, e.g.vectors | O Yes | 2 total
containing the results of multiple Gen-expression measures. O No

04 | Eachitern of data is composed of variables, and if such adataitem | O Yes | 2 total
is defined by more than one variable it is called a multivariable O No
data item

05 | A dendrogram is a tree diagram frequently used to illustrate the 0 Yes | 2total
arrangement of the clusters produced by hierarchical clustering. O No

06 | Nominal and ordinal data are parametric, and do assume a DYes | 2total
particular distribution. O No

07 | Abstraction is characterized by a cyclical process of generating OYes | Ztotal
possible explanations and testing those explanations. O Na

08 | A metric space has an associated metrie, which enables us to O Yes | 2toal
measure distances between points in that space and, in turn, ONo
implicitly define their neighborhoods.

09 | Induction consists of deriving a likely general conclusion from aset | O Yes | 2 total
of particular statements. DNo

10 | In the model of Boisot & Canals (2004), the perceptual filter O Yes | 2 total
orientates the senses (e.g. visual sense) to certain types of OHNo
stimuli within a certain physical range.

Sum of Question Block A {max. 20 points)

F A Holzinger 709.043 B0/74 Med Informatics L2
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Back-up Slide: SampEn (1/2)

Lake, D. E., Richman, . 5., Griffin, M.
P. & Moorman, . R. (2002) Sample
entropy analysis of neonatal heart
rate variability. American Journal of
Physiology-Regulatory Integrative
and Comparative Physiology, 283, 3,
R789-R797.

Fn,ummmm
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Backup: SampEn (2/2) Surrogate data heart rate variability ity
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Lake et al. (2002)
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|
|

Surrogate data records. A and B show the major components. A: the mean process, which
has set point and spike modes. B: the baseline process,

here meaning the heart rate variability, modeled as Gaussian random numbers. C: their
sum, a surrogate data record. D-F: a more realistic surrogate with the same frequency
content as the observed data. D: a clinically observed data record of 4,096 R-R intervals.
The lefthand ordinate is labeled in ms and the righthand ordinate in SD. E: a 4,096-point
isospectral surrogate dataset formed using the inverse Fourier transform of the
periodogram of the data in D. F: the surrogate data after addition of a clinically observed
deceleration lasting 50 points and scaled so that the variance of the record is increased
from 1 to 2.
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Backup Slide: Comparison ApEn - SampEn Rty

ApEn SermrpEn
Given a signal x{af=x{1), %2} ... $(N)L where N s the toial Giiven a signal x(nj=x(11, x(2) (M0, whene N 15 1he woeal
number of data poumits, ApEn algonthm can be summarized 28 [ pumber of data points, SampEn algerithm con be simmarnized

folbows | 1] s [ollows [3]
1y  Form m-vectors, Xil ) wo XeNem+ 1) delined by: 11 Form wm=vectors, XiT 1o XiNan« 1 delmed by
Xy = [xothoxli+ 1 X(F+m =13 imlLN=m+1iD) X =L, o + 1. X +m=0] I=LN=m+1 (6)
% sfrnie - ] { il o el ¥ - - P 1
2y Define the distance o Xroa Nid! between vectors Xriy 2y Defime the distance oy [ X070, X0 /1] between vectors

and X)) as the moximum absolule difference between " 4 b v o -
thir Tespective scalar components iy and Xy as the maximum absolute difference
- : i = hetween their respective scalar components
d[XUN XN = max [foli + k) =x( f+ E‘:l} 4] J -
bl m=1 dl XX UN = max [|xti+ Ky =20+ 0] (7D
X k=il m-]
1y Define Gor each 1. for =1, N-m+1, l&t . . :
L : y = 1y Define lor each i, for =1, N-m. let
CM = PN =m0
! | B ==
where I (i) = no.of d{X0 X D] <0 N- =
4y Similarly, define for each b, for i=1, N-m, et

| = py, aff |||'_,r_,|'.1"{r"|..k'l: fAlsr. iz j (&)

"
4} Take the nawral bogarithm of each £ (i) . and average

m - " r ’ o . - I
it over i as defimed in step 1) AT N=i=] e of iy (XX Srd = § (0
Al 1 Ty m -~ - I' b -
iy s— Z I 6D} 14 5) Defime 8 ir)= zﬂ' ir) LY
N—m+l al Noe—m
5} Increase the dimension to m+] and repeat steps 1) to 4) . ‘\Z ;
63 Calculate ApEn value for a fimite data bength of ¥ At Vo = 417 (i)
IpEmim, e, N = ™" [1F) - lf-"" Iil i 5 6) SampEn wvalue for u finite dats length of N can be
. i e
Kinnian, C. et al. (2005). Comparison of the Use of . ,
Approximate Entropy and Sample Entropy: Applications to SampEntr,r, Ny=—ln| A" (7} 8% (7)) 02
Neural Respiratory Signal, Engineering in Medicine and
Biology IEEE-EMBS 2005, 4212-4215.
A. Holtinger 709,049 B34 Mied Informatics LO2
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Backup Slide: Graph Entropy Measures Ty

* The most important question: Which kind of structural
information does the entropy measure detect?

= the topological complexity of a molecular graph is
characterized by its number of vertices and edges, branching,
cyclicity etc.

» L]

B T Y R T I TR TR T Tt e T TR R TR R T T R T T
I -

Dehmer, M. & Mowshowitz, A. (2011) A history of graph entropy measures. Information

Sciences, 181, 1, 57-78.

mem 5474 Med Informatics L02
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Backup: English/German Subject Codes OEFOS 2012 Ty

L1 Bioinformatics Bioinformatik

0P Biostatistics Biostatistik

;304%5 Medical Biotechnology Medizinische Biotechnologie
=118 Computer-aided diagnosis Computerunterstiitzte Diagnose
and therapy und Therapie

Genetic engineering, - Gentechnik, -technologie
technology

Medical computer Medizinische

sciences Computerwissenschaften
LSS Medical cybernetics Medizinische Kybernetik
%_3059[]4 Medical documentation Medizinische Dokumentation
EGEEIER Medical informatics Medizinische Informatik

=011y Medical statistics Medizinische Statistik
http:/fwww.statistik.at

A Holzinger 709,049 B5/T4 Med informatics LO2
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Backup: English/German Subject Codes OEFOS 2012 Ty

1102001
102032
1102033
102013
102014
102015
102028
102019
102020
102021

Artificial Intelligence
Computational Intelligence
Data Mining
Human-Computer Interaction
Information design
Information systems
Knowledge engineering
Machine Learning

Medical Informatics

L L7228 Pervasive Computing
ELrLirP R Software development

LU PLiyk A Web engineering

http:/fwww.statistik.at

Kinstliche Intelligenz
Computational Intelligence
Data Mining
Human-Computer Interaction
Informationsdesign
Informationssysteme
Knowledge Engineering
Maschinelles Lernen
Medizinische Informatik
Pervasive Computing
Softwarenetwicklung

Web Engineering

A. Helzinger 709,049 BE/T4

Med informatics LO2
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Backup Slide: Statistical Analysis Software (SAS) Ty
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http://fwww.sas.com
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' A. Holzinger 709.049 §7/74 Med informatics L02

http://support.sas.com/documentation/cdl/en/etsug/60372/HTML/default/viewer.ht
m#etsug_entropy_sect018.htm

Where many other languages refer to tables, rows, and columns/fields, SAS uses the
terms data sets, observations, and variables. There are only two kinds of variables in SAS:
numeric and character (string). By default all numeric variables are stored as (8 byte)
real. It is possible to reduce precision in external storage only. Date and datetime
variables are numeric variables that inherit the C tradition and are stored as either the
number of days (for date variables) or seconds (for datetime variables).

http://www.sas.com/technologies/analytics/statistics /stat/index.html
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Backup Slide: Example Tool for large data sets - Hadoop Ty

-@haﬁfﬂmﬁl

Welcome to Apache™ Hadoop™!
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Taylor, R. C. (2010} An overview of the Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics. BMC Bioinformatics, 11, 1-6.

Fn,mmwmm B8/T4 Med Informatics L02

Hadoop and the MapReduce programming paradigm already have a substantial base in
the bioinformatics community - in particular in the field of high-throughput next-
generation sequencing analysis.

This is due to the cost-effectiveness of Hadoop-based analysis on commodity Linux
clusters, and in the cloud via data upload to cloud vendors who have implemented
Hadoop/HBase; and due to the effectiveness and ease-of-use of the MapReduce method
in parallelization of many data analysis algorithms.
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Backup Slide: Methods for Mining .
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Fn,unmuumm: 69/74 Med Informatics L02

The challenge we face is that an estimated average of 5% of data are structured, the rest
is either semi-structured, weakly structured and most of our data is unstructured.

Maybe the most important field for the future is data mining - especially novel
techniques of data mining, including both time and space (e.g. graph-based, entropy-
based, topological-based data mining approaches).

Read more here:

Holzinger, A. 2014. Extravaganza Tutorial on Hot Ideas for Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics. In: Slezak, D., Tan, A.-H., Peters, ]. F.
& Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture Notes in Artificial
Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 502-515.
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=764238&pCu
rrPk=79139
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Backup Slide: Excursion: How to get theories? Ty

theories and models

abstracting concretsalion
reality () o | reality (t,)
positivism : constructionism :
{theory, model; ¢ reality {theory, model;  reality
reality (t,) = reality (t,) reality (t,) = reality (t,)

Rauterberg, M. (2006) HCI as an engineering discipline: to be or not to be.
African Journal of Information and Communication Technology, 2, 4, 163-184.

F A. Holzinger 709.049 70/74 Med informatics L02
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Backup Slide: The DIKW Model (1/4)

Ty
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F A Holzinger 709.043 7174

Cleveland H. "Information as Resource”, The Futurist, December 1982 p 34-39.

Med Informatics LOZ

http://minnesotafuturist.pbworks.com/w/page/21441129/DIKW

A funny description of data information knowledge.

WS 2015

71



A. Holzinger LV 709.049 Med. Informatik

Backup Slide: The DIKW Model (2/4) Ty

Rowley, ). (2007) The wisdom hierarchy: representations of the DIKW hierarchy,
Journal of Information Science, 33, 2, 163-180.
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A very placative image. Nice to look at - but the usefulness is questionable.
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Journal of Information Science, 33, 2, 163-180.
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Med informatics LO2

All this models are very questionable. Please remember that we follow in our lecture the

notion of Boisot & Canals.
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Source: Public Domain http://en.wikipedia.org/wiki/DIKW

For critic on this model see for example: Fricke, M. (2009) The knowledge pyramid: a
critique of the DIKW hierarchy. lournal of Information Science, 35, 2, 131-142.
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The interesting issue of this graphic is that it includes a time-axis, which is important for
decision making and predictive analytics.

“Past behaviour is a good predictor for future behaviour”

Although this is a oversimplification, scientists who study human behavior agree that
past behavior may be a useful marker for future behavior, however, only under certain
specific conditions. Read more:

Ajzen, 1. 1991. The theory of planned behavior. Organizational behavior and human
decision processes, 50, (2), 179-211.
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