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Dear Students, welcome to the 5th lecture of our course. Please remember from
the last lecture the basic architecture of a hospital information system, the
complexity of medical workflows, the challenges of data integration, data fusion,
data curation; the building blocks of hospital information systems, databases, data
warehouses, data marts; the difference between knowledge discovery and
information retrieval; please remember the formal description of a information
retrieval model - the best practice example is the Page-Rank Algorithm, see:
Hastie, T, Tibshirani, R. & Friedman, ]. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Second Edition, New York, Springer.

Or have a look to the reprint paper:

Brin, S. & Page, L. 2012. Reprint of: The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 56, (18), 3825-3833.
http://www.sciencedirect.com/science/article/pii/S1389128612003611
d0i:10.1016/j.comnet.2012.10.007

Please always be aware of the definition of biomedical informatics (Medizinische
Informatik):

Biomedical Informatics is the inter-disciplinary field that studies and pursues the
effective use of biomedical data, information, and knowledge for scientific inquiry,
problem solving, and decision making, motivated by efforts to improve human
health (and well-being).
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Schedule Ty

= 5. Semi structured and weakly structured data (structural homologies)

= f. Multimedia Data Mining and Knowledge Discovery

= 7. Knowledge and Decision: Cognitive Science & Human-Computer Interaction
= 3. Biomedical Decision Making: Reasoning and Decision Support

= 9 Intelligent Information Visualization and Visual Analytics

= 10. Biomedical Information Systems and Medical Knowledge Management

= 11. Biomedical Data: Privacy, Safety and Security

= 12. Methodology for Info Systems: System Design, Usability & Evaluation

Fn.uomnwmm a8 Med Informatics L0S
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Keywords of the 5" Lecture

Ty

Big data pools

Complex networks
Computational graph representation
Electronic patient record (EPR)
Homology modeling
Macroscopic structures
Medical documentation
Metabolic network
Microscopic structures
Network metrics

Structural data dimension
Topological structures
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Advance Organizer (1/3) A-G Ty

= Adjacency matrix = simplest form of computational graph representation, in
which 0 or 1 denotes whether or not there is a directed edge from one node
to another (in graph theory adjacent nodes in a graph are linked by an edge);

= Artifacts = not only a noise disturbance, which is contaminating and
influencing the signal (surrogates) but also data which is wrong, however
interpreted as to be reliable, consequently may lead to a wrong decision;

= Computational graph representation = e.g. by adjacency matrices

= Data fusion = data integration techniques that analyze data from multiple
sources in order to develop insights in ways that are more efficient and
potentially more accurate than if they were developed by analyzing a single
source of data. Signal processing techniques can be used to implement some
types of data fusion (e.g. combined sensor data in Ambient Assisted Living);

= Global Distance Test (GDT) = a measure of similarity between two protein
structures with identical amino acid sequences but different tertiary
structures. It is most commonly used to compare the results of protein
structure prediction to the experimentally determined structure as measured
by X-ray crystallography or protein NMRM;

=  Graph theory = study of mathematical structures to model relations between
objects from a certain collection;

= Graphs = a hypothetical structure consisting of a series of nodes connected by
weighted edges (graphs can be directed/undirected and stoichometric/non-
stoichometric regarding interaction classes);

Fammm ATH Med Infarmatics LOS
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Advance Organizer (2/3) H-P Ty

= Homology = in mathematics (especially algebraic topology and abstract algebra), it is
(opdioc homos = "identical") a certain general procedure to associate a sequence of
Abelian groups (i.e. does not depend on their order) or modules with a given
mathematical object such as a topological space or a group;

=  Homology modeling = comparative modeling of protein, refers to constructing an
atomic-resolution model of the "target" protein from its amino acid sequence and an
experimental three-dimensional structure of a related homologous protein (the
"template"); in Bioinformatics, homology modeling is a technique that can be used in
molecular medicine.

= Insilico = via computer simulation, in contrast to in vivo (within the living) or in vitro
(within the glass);

=  Multi-scale representation = in a graph, nodes do not have to represent biclogical
ohjects on the same scale, one node (e.g. a molecule) may have an edge connecting it
to a node representing a cell or tissue (the edge indicates that the molecule exerts an
effect on the cell/tissue);

= Network = graphs containing cycles or alternative paths;

= Network analysis = a set of technigues used to characterize relationships among
discrete nodes in a graph or a network;

= Network topology = the shape or structure of a network;

= Petri-Net = a special class of graph, consisting of two general classes or node: place
and transition nodes;

= Predictive modeling = a set of techniques in which a mathematical model is created or
chosen to best predict the probability of an outcome (e.g. regression);

= P-System = addresses the slowness of Petri-nets

Fﬁ.l-lnhiuwmm kal Med Infarmatics LOS

In vivo (Latin for "within the living") is experimentation using a whole, living
organism as opposed to a partial or dead organism, or an in vitro ("within the
glass", i.e., in a test tube or petri dish) controlled environment.
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Advance Organizer (3/3) R-V

iy

Radius of a graph = average minimum path length (biological networks are not
arranged in a regular or symmetrical pattern);

Scale-free Topology = ensures that there are very short paths between any given pair
of nodes, allowing rapid communication between otherwise distant parts of the
network (e.g. the Web has such a topology);

Semi-structured data = does not conform with the formal structure of tables/data
models assoc. with relational databases, but at least contains tags/markers to separate
semantic elements and enforce hierarchies of records and fields within the data; aka
schemaless or self-describing structure; the entities belonging to the same class may
have different attributes even though they are grouped together;

Spatial analysis = a set of techniques, applied from statistics, which analyze the
topological, geometric, or geographic properties encoded in a data set;

Structural homology = similar structure but different function;

Supervised learning = machine learning techniques that infer a function or relationship
from a set of training data (e.g. classification and support vector machines);

Time series analysis = set of techniques from both statistics and signal processing for
analyzing sequences of data points, representing values at successive times, to extract
meaningful characteristics from the data;

Time series forecasting = use of a model| to predict future values of a time series based
on known past values of the same or other series (e.g. structural modeling);
decomposition of a series into trend, seasonal, and residual components, which can be
useful for identifying cyclical patterns in the data;

Unstructured data = complete randomness, noise; (wrongly, text is called unstructured,
but there is some structure, too, so text data is a kind of weakly structured data);

Vertex degree = within a topology, the numbers of edges connecting to a node;

memm &ra Med Infarmatics LOS
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Glossary L ad V)

= ANSI = American National Standards Institute

* (D = cardiac development

= (DA = Clinical Document Architecture

= CHD = congenital heart disease

= MM = Correlated motif mining

= DP| = Dossier Patient Integre’ = integrated patient record
= [E=Edge

= EPR = Electronic Patient Record

= G(WE) = Graph

= G| = gastrointestinal

= HER = Electronic Health Record

= HL7 = Health Level 7

=  KEGG = Kyoto Encyclopedia of Genes and Genomes
= NP = nondeterministic polynomial time

=  OWL = Web Ontology Language

= PPl = Protein-Protein Interaction

*=  SGML = Standard Generalized Markup Language

=  TF= Transcription factor

= TG = Target Gene

=V = Vertex
= XML = Extensible Markup Language
F A. Holringer 709.049 T PR

WS 2015



A. Holzinger LV709.049 11.11.2015

Learning Goals ... at the end of the 5th lecture you ... Ty

= ... have an idea of the complexity of data in
biomedical informatics

= . are aware of the various contents of Electronic
Patient Records

= .. have seen some application examples of
network structures from both macro-cosmos
and micro-cosmos and are fascinated about it;

= . have a rough overview about some basics of
how to get point clouds out of data sets

= ... have an understanding of the challenges of
network science

F A. Holringer 709.049 &Th Med Informatics L0S
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Key Problems Ty

= Automated Machine Learning algorithms need
much training data — focus is on adjusting model
parameters without fully understanding the data
that the learning algorithm is modeling [1]

= Curse of dimensionality [2] — need for privacy
and anonymization [3] (see lecture 11)

= Weakly structured data [4]

[1] Smith, M. R., Martinez, T. & Giraud-Carrier, C. 2014. An instance level analysis of data
complexity. Machine learning, 95, (2), 225-256.

[2] Friedman, J. H. 1997. On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data
mining and knowledge discovery, 1, (1), 55-77.

[3] Aggarwal, C. C. On k-anonymity and the curse of dimensionality. Proceedings of the 31st
international conference on Very large data bases VLDB, 2005, 901-909

[4] Holzinger, A., Stocker, C. & Dehmer, M. 2014, Big Complex Biomedical Data: Towards a
Taxonomy of Data. In: CCIS 455. Berlin Heidelberg: Springer pp. 3-18.

F&_ﬂe@nw_@-ﬂiﬂ LA Med Informatics L05 |

It is widely acknowledged in machine learning that the performance of a learning algorithm is
dependent on both its parameters and the training data. Yet, the bulk of algorithmic development
has focused on adjusting model parameters without fully understanding the data that the learning
algorithm is modeling. As such, algorithmic development for classification problems has largely
been measured by classification accuracy, precision, or a similar metric on benchmark data sets. As
most machine learning research is focused on the data set level, one is concerned with maximizing
p(h|t), where h : X — Y is a hypothesis or function mapping input feature vectors X to their
corresponding label vectors Y, and t = {(xi, yi) : xi € X Ayi €Y } is a training set.

One of the methods for privacy preserving data mining is that of anonymization, in which a record
is released only if it is indistinguishable from k other entities in the data. We note that methods
such as k-anonymity are highly dependent upon spatial locality in order to effectively implement
the technique in a statistically robust way. In high dimensional space the data becomes sparse, and
the concept of spatial locality is no longer easy to define from an application point of view.
Aggarwal, C. C. On k-anonymity and the curse of dimensionality. Proceedings of the 31st
international conference on Very large data bases VLDB, 2005.901-909.

Holzinger, A., Stocker, C. & Dehmer, M. 2014. Big Complex Biomedical Data: Towards a Taxonomy

of Data. In: Obaidat, M. S. & Filipe, ]. (eds.) Communications in Computer and Information Science
CCIS 455. Berlin Heidelberg: Springer pp. 3-18.
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Complexity Problem: Time versus Space
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https://www youtube.com/watch?v=YX40hbAHx3s
F A. Holzinger 709.049 1078

P versus NP and the Computational Complexity Zoo, please have a look at

Med informatics LOS

https://www.projectrhea.org/rhea/index.php/File:Complexitytable.png

P stands for “polynomial time”. This the subset of problems that can be guaranteed to be solved in a
polynomial amount of time related to their input length. Problems in P commonly operate on single
inputs, lists, or matrices, and can occasionally apply to graphs. The typical types of operations they
perform are mathematical operators, sorting, finding minimum and maximum values,

determinates, and many others.

NP stands for “nondeterministic polynomial time”. These problems are ones that can be solved in
polynomial time using a nondeterministic computer. This concept is a little harder to understand,
so another definition that is a consequence of the first is often used. NP problems are problems that
can be checked, or “certified”, in polynomial time. The output of an NP solving program is called a
certificate, and the polynomial time program that checks the certificate for its validity is called the

certification program.
NP-hard:

A problem is NP-hard if it as least as hard as the hardest problems known to be NP. This leads to
two possibilities: either the problem is in NP and also considered NP-hard, or it is more difficult

than any NP problem.
NP-complete:

This classification is the intersection of NP and NP-hard. If a problem is in NP and also NP-hard,
then it is considered NP-complete. This class of problems is arguably the most interesting for its

consequences on many other types of problems.

For those who want to go deeper into complexity theory, there is excellent MIT Open Courseware

by Eric Demaine, http://erikdemaine.org/
https://www.youtube.com/watch?v=moPtwq_cVH8
You can do some own experimentation via http://www.algomation.com
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Slide 5-1: Mathematically seen our world is ... Ty
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Geschwind, D. H. & Konopka, G. 2009, Meuroscience in the era of functional genomics and
systems biology. Nature, 461, (7266), 908-915.

A Holinger 709.049 s Mied informatics L0S

Key problems in dealing with data in the life sciences include:

. Complexity of our world

. High-dimensionality (curse of dimensionality (Catchpoole et al.,
2010))

. Most of the data is weakly-structured and unstructured

A grand challenge in healthcare is the complexity of data, implicating two issues:
structurization and standardization. As we have learned in lecture 2, very little of
the data is structured. Most of our data is weakly structured (Holzinger, 2012). In
the language of business there is often the use of the word “unstructured”, but we
have to use this word with care; unstructured would mean - in a strict
mathematical sense - that we are talking about total randomness and complete
uncertainty, which would mean noise, where standard methods fail or lead to the
modeling of artifacts, and only statistical approaches may help. The correct term
would be unmodeled data - or we shall speak about unstructured information.
Please mind the differences.

To the image above: Advances in genetics and genomics have accelerated the discovery-based (=hypotheses generating)
research that provides a powerful complement to the direct hypothesis-driven molecular, cellular and systems sciences.
For example, genetic and functional genomic studies have yielded important insights into neuronal function and disease.
One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic,
genomic and phenotypic data sets, and the development of tools for data integration and data mining (Geschwind &
Konopka, 2009).
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Slide 5-2: Remember: Standardization/Stru

Holzinger, A. (2011) Weakly
Structured Data in Health-
Informatics: The Challenge for :
Human-Computer Interaction. In: Omics Data Natural
Baghaei, N., Baxter, G., Dow, L. & Language
Kimani, 5. (Eds.) Proceedings of Text
INTERACT 2011 Warkshop:
Promaoting and supporting healthy
living by design. Lisbon, IFIP. 5-7.

Weakly-Structured

Databases
Libraries

Well-Structured

'Ros, ow.|

Stondordized Non-Standardized
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Do not confuse structure with standardization (see Slide 2-9). Data can be standardized (e.g. numerical entries in laboratory
reports) and non-standardized. A typical example is non-standardized text - imprecisely called “Free-Text” or “unstructured
data” in an electronic patient record (Kreuzthaler et al., 2011).

Standardized data is the basis for accurate communication. In the medical domain, many different people work at different
times in various locations. Data standards can ensure that information is interpreted by all users with the same
understanding. Moreover, standardized data facilitate comparability of data and interoperability of systems. It supports the
reusability of the data, improves the efficiency of healthcare services and avoids errors by reducing duplicated efforts in
data entry.

Data standardization refers to

a) the data content;

b) the terminologies that are used to represent the data;

c) how data is exchanged; and

iv) how knowledge, e.g. clinical guidelines, protocols, decision support rules, checklists, standard operating procedures are
represented in the health information system (refer to IOM).

Technical elements for data sharing require standardization of identification, record structure, terminology, messaging,
privacy etc. The most used standardized data set to date is the international Classification of Diseases (ICD), which was first
adopted in 1900 for collecting statistics (Ahmadian et al., 2011), which we will discuss in —»Lecture 3.

Non-standardized data is the majority of data and inhibit data quality, data exchange and interoperability.
Well-structured data is the minority of data and an idealistic case when each data element has an associated defined
structure, relational tables, or the resource description framework RDF, or the Web Ontology Language OWL (see —Lecture
3).

Note: Ill-structured is a term often used for the opposite of well-structured, although this term originally was used in the
context of problem solving (Simon, 1973).

Semi-structured is a form of structured data that does not conform with the strict formal structure of tables and data
models associated with relational databases but contains tags or markers to separate structure and content, i.e. are schema-
less or self-describing; a typical example is a markup-language such as XML (see —Lecture 3 and 4).

Weakly-Structured data is the most of our data in the whole universe, whether it is in macroscopic (astronomy) or
microscopic structures (biology) - see —»Lecture 5.

Non-structured data or unstructured data is an imprecise definition used for information expressed in natural language,
when no specific structure has been defined. This is an issue for debate: Text has also some structure: words, sentences,
paragraphs. If we are very precise, unstructured data would meant that the data is complete randomized - which is usually
called noise and is defined by (Duda, Hart & Stork, 2000) as any property of data which is not due to the underlying model
but instead to randomness (either in the real world, from the sensors or the measurement procedure).

WS 2015

12



A. Holzinger

LV709.049 11.11.2015

Slide 5-3: Example: Well-Structured Data

iy

Jep careax Person registration
..................... s
4 Menu Mew person |
Hahe
’ - -
g ) Pateard PED) P, "

Dw | Ill"ll"l"l“'llllm Opticevs for Bres parscn i
# AT, Admisasn Registration date  03/11/2011 5 Admizmon - Inpatiant
.F:]lmhlll'ﬂl‘r Registration tene 13:38 | ¢ Vit - Outpationt

B e Tde Prince | ¥ | Appomtments
- Maruing Family pame’ Mot ianMiador | £ |Encounters” it
o8 Ghren name Charles | # |Medocs
Lebaratirie Other names Princs of Walat ﬂ ORE (o =
Badesingy .
& Fharmacy Dsta of birth 01/01/1949 = |Diagnostic Results

=1 Prescoptons
o) Motes & Reports

T} Tech Sunport widgwid
EaSvetem admin —= i | Immurization
1= imtrmnet Email Cyeet: Bukmghar S allace § Measurements
Iy meesal Tooiz TowndCity: LODHING 1] |Berth detads
SjLegn Phone 1 =41 00 000000 F1] |08 Record's History
g Esrisil prince . chares Sbudangham oo uk '!‘- Misks POF ocmant
Englsh = Other Hospital hr.
| Change | Regietered by medcal dotar
£ Update Data | & Inpatient adeit | & Outpatient appt. | €3 Print out |
Fiegiter a new pamon
© search patient's data
Archice
X Cancel |
http://care2x.org
A Holinger 709.049 1378 Mied informatics L0S

A look on the typical view of an hospital information system shows us the
organization of well-structured data: Standardized and well-structured data is the
basis for accurate communication. In the medical domain, many different people
work at different times in various locations. Data standards can ensure that
information is interpreted by all users with the same understanding. Moreover,
standardized data facilitate comparability of data and interoperability of systems.
[t supports the reusability of the data, improves the efficiency of healthcare
services and avoids errors by reducing duplicated efforts in data entry. Remember:
Data standardization refers to a) the data content; b) the terminologies that are
used to represent the data; c) how data is exchanged; and d) how knowledge, e.g.
clinical guidelines, protocols, decision support rules, checklists, standard operating
procedures are represented in the health information system.

Note: The opposite, i.e. non-standardized data is the majority of data and inhibit
data quality, data exchange and interoperability.

Remark: Care2x is an Open Source Information System, see: http://care2x.org

See —Lecture 10 for more details.
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Slide 5-4: Example: Semi-structured Data: XML Ty

<7xml version="1.0"7>
<patient>
<patient-id>11111</patient-id>
<Name>Chen</Name>
<Date of Birth>1.1.1900</Date of Birth>
<diagnosis>
<code>123</code>
<diagnosistext>Myocardinfarct</diagnosistext>
</diagnosis>
</patient>

Holzinger, A. (2003) Basiswissen IT/Informatik. Band 2: Informatik. Das Basiswissen fir die
Informationsgesellschaft des 21. Jahrhunderts. Wuerzburg, Vogel Buchveriog.

A Holinger 709.049 L0 Med Informaties LOS

This is a Medical example for semi-structured data in XML (Holzinger, 2003). The
eXtensible Markup Language (XML) is a flexible text format recommended by the
W3C for data exchange and derived from SGML (ISO 8879), (Usdin & Graham,
1998).

XML is often classified as semi-structured, however this is in some way misleading,
as the data itself is still structured, but in a flexible rather than a static way (Forster
& Vossen, 2012). Such data does not conform to the formal structure of tables and
data models as for example in relational databases, but at least contains
tags/markers to separate semantic elements and enforce hierarchies of records
and fields within these data.

WS 2015 14



A. Holzinger LV709.049 11.11.2015

Slide 5-5 Example: Generic XML template for a med. report ity
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Rassinoux, A.-M., Lovis, C., Baud, R. & Geissbuhler, A, (2003} XML as standard for communicating in a document-based
electronic patient record: a 3 years experiment. International Journal of Medical Infermatics, 70, 2-3, 109-115.
Ml A Holinger 709,049 16 Med Informatics LOS

This example by (Rassinoux et al., 2003) shows how XML can be used in the
hospital information system: The structure of any new document edited in the
Patient Record (here: DPI) is based on a template defined in XML format (left).
These templates play the role of DTDs or XML schemas as they precisely define the
structure and content type of each paragraph, thus validating the document at the
application level. Such a structure embeds a <HEADER> and a <BODY>. The header
encapsulates the properties that are inherent to the new document and that will be
useful to further classify it, according to various criteria, including: the patient
identification, the document type, the identifier of its redactors and of the
hospitalization stay or ambulatory consultation to which the document will be
attached in the patient trajectory, etc. The body encapsulates the content, and is
divided into two parts: The <STRUCDOC> part describes the semantic entities that
compose the document. The <FULLDOC> part embeds the document itself with its
page layout information, which can be stored either as a draft, a temporary text or
as a definitive text. This format guarantees the storage of dynamic and controlled
fields for data input, thus allowing the combination of free text and structured data
entry in the document. Once the document is no longer editable, it is definitively
saved into the RTF format. A CDATA section is utilized for storing the rough
document whatever its format, as it permits to disregard blocks of text containing
characters that would otherwise be regarded as markup (Rassinoux, Lovis, Baud &
Geissbuhler, 2003).
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Slide 5-6 Comparison of XML - RDF/OWL in Bioinformatics
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Louie, B., Mork, P., Martin-
Sanchez, F., Halevy, A. &
Tarczy-Hornoch, P. 2007.
Data integration and
genomic medicine. Journal
of Biomedical Informatics,
40, (1), 5-16.

Med informatics LOS'

On top in this slide you can see a sample XML describing genes from Drosophila melanogaster involved in long-term
memory. Nested within the gene elements, are sub-elements related to the parent. The first gene includes two nucleic acid
sequences, a protein product, and a functional annotation. Additional information is provided by attributes, such as the
organism. This example illustrates the difficulty of modeling many-to-many relationships, such as the relationship between
genes and functions. Information about functions must be repeated under each gene with that function. If we invert the
nesting, then we must repeat information about genes with more than a single function. Below the XML we see the
information about genes using both RDF and OWL. Both genes are instances of the class Fly Gene, which has been defined as
the set of all Genes for the organism D. melanogaster. The functional information is represented using a hierarchical
taxonomy, in which Long-Term Memory is a subclass of Memory (Louie et al., 2007).

Remark: Drosophila melanogaster is a model organism and shares many genes with humans. Although Drosophila is an
insect whose genome has only about 14,000 genes (half of humans), a remarkable number of these have very close
counterparts in humans; some even occur in the same order in the fly's DNA as in our own. This, plus the organism's more
than 100-year history in the lab, makes it one of the most important models for studying basic biology and disease (see e.g.

http://www.lbl.gov/Science-Articles/Archive/sabl/2007 /Feb/drosophila.html)

Note: The relational data model requires preciseness: The data must be regular, complete and structured. However, in
Biology the relationships are mostly un-precise. Genomic medicine is extremely data intensive and there is an increasing
diversity in the type of data: DNA sequence, mutation, expression arrays, haplotype, proteomic etc. In bioinformatics many
heterogeneous data sources are used to model complex biological systems (Rassinoux, Lovis, Baud & Geissbuhler, 2003),
(Achard, Vaysseix & Barillot, 2001). The challenge in genomic medicine is to integrate and analyze these diverse and huge
data sources to elucidate physiology and in particular disease physiology. XML is suited for describing semi-structured data,
including a kind of natural modeling of biological entities, because it allows features as e.g. nesting (see Slide 5-6 on top).
Still a key limitation of XML is, that it is difficult to model complex relationships; for example, there is no obvious way to
represent many-to-many relationships, which are needed to model complex pathways. On top in Figure 5-9 we can see a
sample XML, describing genes involved in the long-term memory of a sample specimen d. melanogaster. Nested within the
gene elements, are sub-elements related to the parent. The first gene includes two nucleic acid sequences, a protein product,
and a functional annotation. Additional information is provided by attributes, such as the organism. This example illustrates
the difficulty of modeling many-to-many relationships, such as the relationship between genes and functions. Information
about functions must be repeated under each gene with that function. If we invert the nesting (i.e., nesting genes inside
function elements), then we must repeat information about genes with more than a single function. At the bottom in Slide 5-
6 we see the same information about genes, but using RDF and OWL. Both genes are instances of the class Fly Gene, which
has been defined as the set of all Genes for the organism D. melanogaster. The functional information is represented using a
hierarchical taxonomy, in which Long-Term Memory is a subclass of Memory (Louie et al., 2007).
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Slide 5-6 Example: Weakly structured data set - PPI Ty
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The human protein interaction network and its connection to positive selection.
Proteins likely to be under positive selection are colored in shades of red (light red,
low likelihood of positive selection; dark red, high likelihood) (6). Proteins
estimated not to be under positive selection are in yellow, and proteins for which
the likelihood of positive selection was not estimated are in white (6).
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Network Science — Graph Theory ﬂTl:!
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http://www.wired.com/tag/network-science/
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http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200907-24_Science-
Decade/200907-24_Science-CoverImage.gif

An emerging trend in many scientific disciplines is a strong tendency toward being transformed into some form of
information science. One important pathway in this transition has been via the application of network analysis. The basic
methodology in this area is the representation of the structure of an object of investigation by a graph representing a
relational structure. It is because of this general nature that graphs have been used in many diverse branches of science
including bioinformatics, molecular and systems biology, theoretical physics, computer science, chemistry, engineering,
drug discovery, and linguistics, to name just a few. An important feature of the book “Statistical and Machine Learning
Approaches for Network Analysis” is to combine theoretical disciplines such as graph theory, machine learning, and
statistical data analysis and, hence, to arrive at a new field to explore complex networks by using machine learning
techniques in an interdisciplinary manner. The age of network science has definitely arrived. Large-scale generation of
genomic, proteomic, signaling, and metabolomic data is allowing the construction of complex networks that provide a new
framework for understanding the molecular basis of physiological and pathological states. Networks and network-based
methods have been used in biology to characterize genomic and genetic mechanisms as well as protein signaling. Diseases
are looked upon as abnormal perturbations of criticalcellular networks. Onset, progression, and intervention in complex
diseases such as

cancer and diabetes are analyzed today using network theory. Once the system is represented by a network, methods of
network analysis can be applied to extract useful information regarding important system properties and toinvestigate its
structure and function. Various statistical and machine learning methods

have been developed for this purpose and have already been applied to networks.

Dehmer, M. & Basak, S. C. 2012. Statistical and Machine Learning Approaches for Network Analysis, Wiley Online Library.

WS 2015 18



A. Holzinger LV709.049 11.11.2015

Slide 5-7: Complex Biological Systems key concepts Ty

* |n order to understand complex biological systems, the
three following key concepts need to be considered:

= (i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

* (ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

= (iii) modularity, vertices sharing similar functions are
highly connected.

= Network theory can largely be applied for biomedical
informatics, because many tools are already available

F A. Holzinger 709.049 1978 Med Informatics L05

The concept of network structures is fascinating, compelling and powerful and
applicable in nearly any domain at any scale.

Network theory can be traced back to graph theory, developed by Leonhard Euler
in 1736 (see —Slide 5-8). However, stimulated by works e.g. from Barabasi, Albert
& Jeong (1999), research on complex networks has only recently been applied to
biomedical informatics. As an extension of classical graph theory, see for example
(Diestel, 2010), complex network research focuses on the characterization,
analysis, modeling and simulation of complex systems involving many elements
and connections, examples including the internet, gene regulatory networks,
protein-protein networks, social relationships and the Web and many more.
Attention is given not only to try to identify special patterns of connectivity, such as
the shortest average path between pairs of nodes (Newman, 2003), but also to
consider the evolution of connectivity and the growth of networks, an example
from biology being the evolution of protein-protein interaction networks in
different species (—Slide 5-8). In order to understand complex biological systems,
the three following key concepts need to be considered:

(i) emergence, the discovery of links between elements of a system because the
study of individual elements such as genes, proteins and metabolites is insufficient
to explain the behavior of whole systems;

(ii) robustness, biological systems maintain their main functions even under
perturbations imposed by the environment; and

(iii) modularity, vertices sharing similar functions are highly connected. Network
theory can largely be applied for biomedical informatics, because many tools are
already available (Costa, Rodrigues & Cristino, 2008).
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Slide 5-8: Networks on the Example of Bioinformatics Ty
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Figure 1 p.74 - preceding to the yeast protein network

A graph G(V,E) describes a structure which consists of nodes aka vertices V,
connected by a set of pairs of distinct nodes (links), called edges E {a,b} with
a,beV:azb.

Graphs containing cycles and/or alternative paths are referred to as networks. The
vertexes and edges can have a range of properties defined as colors, which also
may have quantitative values, referred to as weights. In this Slide we see the basic
building block symbols of a biological network as used in bioinformatics. The blue
dots are serving as network hubs, the red block is a critical node (on a critical link),
the white balls are bottle necks, the stars second order hubs etc. (Hodgman, French
& Westhead, 2010).

WS 2015 20



A. Holzinger

LV709.049

11.11.2015

Slide 5-9: Computational Graph Representation
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In order to represent network data in computers it is not comfortable to use sets;
more practical are matrices. The simplest form of a graph representation is the so
called adjacency matrix. In this Slide we see an undirected (left) and a directed
graph and their respective adjacency matrices. If the graph is undirected, the
adjacency matrix is symmetric, i.e., the elements aij = aji for any i and j.
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lean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit

Fekete, ).-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. IEEE, 167-174.
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This Tool is a nice example on the usefulness of adjacency matrices: The InfoVis
Toolkit is an interactive graphics toolkit developed by Jean-Daniel Fekete at INRIA
(The French National Institute for Computer Science and Control). The toolkit
implements nine types of visualization: Scatter Plots, Time Series, Parallel
Coordinates and Matrices for tables; Node-Link diagrams, Icicle trees and Tree
maps for trees; Adjacency Matrices and Node-Link diagrams for graphs. Node-Link
visualizations provides several variants (8 for graphs and 4 for trees). There are
also a number of interactive controls and information displays, including dynamic
query sliders, fisheye lenses, and excentric labels. Information about the InfoVis
toolkit can be found at http://ivtk.sourceforge.net

The InfoVis Toolkit provides interactive components such as range sliders and
tailored control panels required to configure the visualizations. These components
are integrated into a coherent framework that simplifies the management of rich
data structures and the design and extension of visualizations. Supported data
structures include tables, trees and graphs. All visualizations can use fisheye lenses
and dynamic labeling (Fekete, 2004).
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Excursus: Do not mix up Image Processing with Visualization (see L 09)

Image Formation Image Processing
object in —+ image oul image in —& image oul

Image Analysis

image in =+ features oul

Computer Graphics
numbers in — |m.1gc ont

Sy Ares  Puria ¥ T
R T PR
L U - J
1 i 1. H 3
] 24, LM | [ ] ¥
i 1340 TN 5 i - —
oSl imed 4 -!'\l}
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. L il -
Computer Vision Visualization Meijering, Erik &
image in —= interpretation out image in == representation out Cappellen, Gert (2006)

Biological Image Analysis
Primer, available via
http://www.imagescience,
org/meijering/publication
51009/ Erasmus
Liniversity Medical Center

=

[llustration of the meaning of commonly used terms. The process of digital image
formation in microscopy is described in other books. Image processing takes an
image as input

and produces a modified version of it (in the case shown, the object contours are
enhanced using

an operation known as edge detection, described in more detail elsewhere in this
booklet). Image

analysis concerns the extraction of object features from an image. In some sense,
computer graphics is the inverse of image analysis: it produces an image from
given primitives, which could be

numbers (the case shown), or parameterized shapes, or mathematical functions.
Computer vision

aims at producing a high-level interpretation of what is contained in an image. This
is also known

as image understanding. Finally, the aim of visualization is to transform higher-
dimensional image data into a more primitive representation to facilitate exploring
the dat
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Slide 5-11: Some Network Metrics (1/2) Ty
Order = total number of nodes n; Size = total number of links (a): i @
e e e
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Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:
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Costa, L. F., Rodrigues, F. A, Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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The truly multi-disciplinary network science has led to a wide variety of quantitative
measurements of their topological characteristics (Costa et al., 2007). The identification between a
graph and an adjacency matrix makes all the powerful methods of linear algebra, graph theory and
statistical mechanics available to us for investigating specific network characteristics :

Order (a in Figure Slide 5-11) = total number of nodes n

Size = total number of links:

2 iy jHa )

Clustering Coefficient (b in Slide 5-11) = the degree of concentration of the connections of the
node’s neighbors in a graph and gives a measure of local inhomogeneity of the link density, i.e. the
level of connectedness of the graph. It is calculated as the ratio between the actual number ti of
links connecting the neighborhood (the nodes immediately connected to a chosen node) of a node
and the maximum possible number of links in that neighborhood:

C_i=(2t_i)/(k(k_i-1))

For the whole network, the clustering coefficient is the arithmetic mean:

C=1/nY i#C_i

Path length (c in Slide 5-11) = is the arithmetical mean of all the distances; The characteristic path
length of node i provides information about how close node i is connected to all other nodes in the
network and is given by the distance d(i,j) between node i and all other nodes j in the network.
The Path length | provides important information about the level of global communication
efficiency of a network:

1=1/(n(n-1)) ¥_(i#j)#d_jj

Note: Numerical methods, e.g. the Dijkstra's algorithm (1959) are used to calculate all the possible
paths between any two nodes in a network.
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Slide 5-12: Some Network Metrics (2/2) Ty
* Centrality (d) = the level of “betweenness- centrality” of a node | (“hub-node
in Slide 28); d
W=
j"r‘{-a
=2

* Nodal degree (e) = number of links connecting i to its neighbors: k; = ¥, @;j

®
f /
®
I.'
Modularity (f) = describes the possible .'_/.
® ® formation of communities in the network, i ®
@ @ indicating how strong groups of nodes ® @ @
® form relative isolated sub-networks within
= @ the full network (refer also to Slide 5-8).
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Centrality (d in Slide 5-12) = the level of “betweenness- centrality” of a node i; it
indicates how many of the shortest paths between the nodes of the network pass
through node i. A high “betweenness-centrality” indicates that this node is
important in interconnecting the nodes of the network, marking a potential hub
role (refer to —»Slide 5-8) of this node in the overall network.

Nodal degree (e in Slide 5-12) = number of links connecting i to its neighbors. The
degree of node i is defined as its total number of connections.

k_i=)_i#a_ij

The degree probability distribution P(k) describes the p(x) that a node is
connected to k other nodes in the network.

Modularity (f in Slide 5-12) = describes the possible formation of communities in
the network, indicating how strong groups of nodes form relative isolated sub-
networks within the full network (refer also to —Slide 5-8)) .
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Slide 5-13: Network Topologies ﬂT':!
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Regular network (a in Slide 5-13) has a local character, characterized by a high clustering-
coefficient (c in Slide 5-13) and a high path length (L, Slide 5-13). It takes a large number of steps to
travel from a specific node to a node on the other end of the graph. A special case of a regular
networKk is the:

Random network, where all connections are distributed randomly across the network; the result is
a graph with a random organization (outer right in Slide 5-13). In contrast to the local character of
the regular network, a random network has a more global character, with a low C and a much
shorter path length L than the regular network. A particular case is the:

Small-world network (center of Slide 5-13) which are very robust and combine a high level of local
and global efficiency. Watts & Strogatz (1998) showed that with a low probability p of randomly
reconnecting a connection in the regular network, a so-called small-world organization arises. It
has both a high C and a low L, combining a high level of local clustering with still a short average
travel distance. Many networks in nature are small-world (e.g. internet, protein-networks, social
networks, functional and structural brain network etc.), combining a high level of segregation with
a high level of global information integration. In addition, such networks can have a heavy tailed
connectivity distribution, in contrast to random networks in which the nodes roughly all have the
same number of connections.

Scale-free networks (B in Slide 5-13) are characterized by a degree probability distribution that
follows a power-law function, indicating that on average a node has only a few connections, but
with the exception of a small number of nodes that are heavily connected. These nodes are often
referred to as hub nodes (see —Slide 5-8) and they play a central role in the level of efficiency of the
network, as they are responsible for keeping the overall travel distance in the network to a
minimum. As these hub nodes play a key role in the organization of the network, scale-free
networks tend to be vulnerable to specialized attack on the hub nodes.

Modular networks (c in Slide 5-13) show the formation of so-called communities, consisting of a
subset of nodes that are mostly connected to their direct neighbors in their community and to a
lesser extend to the other nodes in the network. Such networks are characterized by a high level of
modularity of the nodes.
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Slide 5-14: Small-World Networks Ty
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Slide 5-15 Graphs from Point Cloud Data Sets Ty
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Lezoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing

and analysis. In; Lézoray, 0. & Grady, L. {eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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There are many ways to construct a proximity graph representation from a set of data points that
are embedded in R"d.

Let us consider a set of data points {x_1,..,.x_n} € R"d .

To each data point we associate a vertex of a proximity graph G to define a set of vertices V =
{v1,v2,..,vn}. Determining the edge set E of the proximity graph G requires defining the neighbors
of each vertex vi according to its embedding xi.

Consequently, a proximity graph is a graph in which two vertices are connected by an edge iff the
data points associated to the vertices satisfy particular geometric requirements. Such particular
geometric requirements are usually based on a metric measuring the distance between two data
points. A usual choice of metric is the Euclidean metric. Look at the slide:

a) is our initial set of points in the plane R"2

b) e-ball graph vi ~ vj if xj € B(vi; €)

c) k-nearest-neighbor graph (k-NNG): vi ~ vj if the distance between xi and xj is among the k-th
smallest distances from xi to other data points. The k-NNG is a directed graph since one can have xi
among the k-nearest neighbors of xj but not vice versa.

d) Euclidean Minimum Spanning Tree (EMST) graph is a connected tree sub-graph that contains all
the vertices and has a minimum sum of edge weights. The weight of the edge between two vertices
is the Euclidean distance between the corresponding data points.

e) Symmetric k-nearest-neighbor graph (Sk-NNG): vi ~ vj if xi is among the k-nearest neighbors of
y or vice versa.

f) Mutual k-nearest-neighbor graph (Mk-NNG): vi ~ vj if xi is among the k-nearest neighbors of y
and vice versa. All vertices in a mutual k-NN graph have a degree upper-bounded by k, which is not
usually the case with standard k-NN graphs.

g) Relative Neighborhood Graph (RNG): vi ~ vj iff there is no vertex in

B(vi; D(vi,vj)) NB(vj; D(vi,vj)) .

h) Gabriel Graph (GG)

i) The B-Skeleton Graph (B-SG):

For details please refer to (Lézoray & Grady, 2012), or to a classical graph theory book, e.g. (Harary,
1969), (Bondy & Murty, 1976), (Golumbic, 2004), (Diestel, 2010)
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Slide 5-16 Graphs from Images Ty

c) Watershed Algorithm d) SLIC superpixels

Lezoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In; Lézoray, 0. & Grady, L. {eds.) Image Processing and Analysing With Grophs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.

Slide 5-16: Graphs from Images

In this slide we see the examples of

a) a real image with the quadtree tessellation,

b) the region adjacency graph associated to the quadtree partition,

c) Irregular tessellation using image-dependent superpixel Watershed
Segmentation (Vincent & Soille, 1991)

d) irregular tessellation using image-dependent SLIC superpixels (Lucchi et al.,
2010)

SLIC = Simple Linear Iterative Clustering)
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Slide 5-18 Example Watershed Algorithm Ty

Algorithm 4.2 Watershed transform w.r.t. topographical distance hased on image integration
via the Dijkstra-Moore shortest pat hs algorithm
1: procedure Shortest PathWatersbosd:

2 INPUT: bower complete digital groy seale image & = (V. E, im) with cost function cost
A OUTPeT: labelled image lab on V
I: #define WSIHED 0 = label of the watershod pixels«)
L o Uses distance imnge disf. On ootput, dist it |ir], for all v & ¥V, )
i
T for all v & V do (= Imitinkioe =)
5 n'.-u’:r:- 0 ; dist]e] «— ac
o end for
10 for all local mmbms m, do
1 for all « « m, do
12 labdir] = i 3 disk]ur] e imls (= initinlize distance with values of mindmes)
11 end for
14: end for
15 while V' # @ do
(14 ue— Get Ain Dust{ V) (= ind uw & V with smallest distance value dist]u] =)

1= Ve=V\{u}
(1] for all v £ V' with (u,v) € E do

(1] T linf|u] + oontu, o] < disflv] then

3 dist|e] «— disf|u]| + cost{u, v)

21 labjv| = lalu

2 olse il laMe] & wsiED and distul & cost|u, o] = distle] and loble] # lablu) then
pon | Feads| s WEHED

4 ond i

25 end for

26 end while
Meijster, A. & Roerdink, 1. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 19595. Springer, 790-795.
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A straightforward implementation of the original Vincent-Soille algorithm is
difficult if plateaus occur. Therefore, an alternative approach was proposed by
(Meijster & Roerdink, 1995), in which the image is first transformed to a directed
valued graph with distinct neighbor values, called the components graph of f. On
this graph the watershed transform can be computed by a simplied version of the
Vincent-Soille algorithm, where fifo queues are no longer necessary, since there
are no plateaus in the graph (Roerdink & Meijster, 2000).
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Slide 5-19 Graphs from Images: Watershed + Centroid Ty

1
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The original natural digital image is first transformed into grey-scale, then the
Watershed algorithm is applied and then the centroid function calculated, the
results are representative point sets in the plane.
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Slide 5-20 Graphs from Images: Voronoi <> Delaunay iy

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, . F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Motes in Artificial Intelligence, LMAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991, Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3], 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. ). 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242,

i Med informatics 105"
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The Delaunay Triangulation (DT): vi ~ vj iff there is a closed ball B(e ; r) with
vi and vj on its boundary and no other vertex vk contained in it. The dual to the DT
is the Voronoi irregular tessellation where each Voronoi cell is defined by the set {x

€ Rn | D(x,vk) < D(x,vj) for all vj = vk}. In such a graph, V vi,deg (vi)=3.
(Lézoray & Grady, 2012)
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Slide 5-21 Points -> Voronoi -> Delaunay ﬂ'lr‘g

Kropatsch, W., Burge, M. & Glantz, R. 2001. Graphs in Image Analysis. In: Kropatsch, W, &
Bischaof, H. (eds.) Digital Image Analysis. Springer New York, pp. 179-197.
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This animation shows the construction of a Delaunay graph: First the red points on
the plane are drawn, then we insert the blue edges and the blue vertices on the
Voronoi graph, finally he red edges drawn build the Delaunay graph (Kropatsch,
Burge & Glantz, 2001).

http://oldwww.prip.tuwien.ac.at/research/research-areas/structure-and-

topology/graphs-in-image-analysis/graphs-in-image-analysis/use-of-graphs-in-
image-analysis/voronoi-graph-and-delaunay-graph
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In this Slide we see the evaluated information-theoretic network measures on
publication networks. Here from the excellence network of RWTH Aachen
University. Those measures can be understood as graph complexity measures
which evaluate the structural complexity based on the corresponding concept. A
possible useful interpretation of these measures helps to understand the
differences in subgraphs of a cluster. For example one could apply community
detection algorithms and compare entropy measures of such detected

communities. Relating these data to social measures (e.g. balanced score card data)

of sub-communities could be used as indicators of collaboration success or lack
thereof. The node size shows the node degree whereas the node color shows the
betweenness centrality, darker color means higher centrality (Holzinger et al.,
2013a).
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Slide 5-23: Example for a Medical Knowledge Space Ty
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A further example shall demonstrate the usefulness of graph theory and network analysis: This
graph shows the medical knowledge space of a standard quick reference guide for emergency
doctors and paramedics in the German speaking area. It has been subsequently developed, tested
in the medical real world and constantly improved for 20 years by Dr. med. Ralf Miiller, emergency
doctor at Graz-LKH University Hospital and is practically in the pocket of every emergency and
family doctor and paramedics in the German speaking area (Holzinger et al., 2013b).

Up to know we know that Graphs and Graph-Theory are powerful tools to map
data structures and to find novel connections between single data objects
(Strogatz, 2001), (Dorogovtsev & Mendes, 2003). The inferred graphs can be
further analyzed by using graph-theoretical and statistical and machine learning
techniques (Dehmer, Emmert-Streib & Mehler, 2011). A mapping of the already
existing and in the medical practice approved “knowledge space” as a conceptual
graph and the subsequent visual and graph-theoretical analysis may provide novel
insights on hidden patterns in the data. Another benefit of the graph-based data
structure is in the applicability of methods from network topology and network
analysis and data mining, e.g. small-world phenomenon (Barabasi & Albert, 1999),
(Kleinberg, 2000), and cluster analysis (Koontz, Narendra & Fukunaga, 1976),
(Wittkop et al,, 2011).

The graph-theoretic data of the graph seen in this Slide include:

Number of nodes = 641, number of edges = 1250, red are agents, black are
conditions, blue are pharmacological groups, grey are other documents. The
average degree of this graph = 3.888, the average path length = 4.683, the network
diameter = 9.
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The nodes of the sample graph represent: drugs, clinical guidelines, patient
conditions (indication, contraindication), pharmacological groups, tables and
calculations of medical scores, algorithms and other medical documents; and the
edges represent 3 crucial types of relations inducing medical relevance between
two active substances, i.e.: pharmacological groups, indications and contra-
indications. The following example will demonstrate the usefulness of this
approach.

WS 2015



A. Holzinger LV709.049 11.11.2015

Slide 5-25: Example for the shortest path Ty
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This example shows us how convenient we can find which path between two nodes
is the shortest as well as the navigation way between these nodes. Computing
shortest paths is a fundamental and ubiquitous problem in network analysis. We
can, e.g. apply the Dijkstra-algorithm, solves the shortest path problem for a graph
with non-negative edge path costs, producing a shortest path tree. This algorithm
is often used in routing and as a subroutine in other graph algorithms: For a given
node, the algorithm finds the path with lowest cost (i.e. the shortest path) between
that node and every other node(Henzinger et al., 1997).
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Here we see the relationship between Adrenaline (center black node) and
Dobutamine (top left black node), Blue: Pharmacological Group, Dark red:
Contraindication; Light red: Condition, the Green nodes (from dark to light) are:
1. Application (one ore more indications + corresponding dosages)

2. Single indication with additional details (e. g. “VF after 3rd Shock”)

3. Condition (e.g. VF, Ventricular Fibrillation)
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Slide 5-27: Example: The brain is a complex network Ty

Van Den Heuvel, M. P. &
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Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
phormacology, 20, 8, 519-534.
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Our brain forms one integrative complex network, linking all brain regions and
sub-networks together (Van Den Heuvel & Hulshoff Pol, 2010). Examining the
organization of this network provides insights in how our brain works. Graph
theory provides a framework in which the topology of complex networks can be
examined; thus can reveal novelties about both the local and global organization of
functional brain networks. In the slide we can see how the modeling of the
functional brain by a graph works: edges are the connections between regions that
are functionally linked. First, the collection of nodes is defined (A), second the
existence of functional connections between the nodes in the network needs to be
defined, resulting in a connectivity matrix (B). Finally, the existence of a connection
between two points can be defined as whether their level of functional
connectivity exceeds a certain predefined threshold (C) (Van Den Heuvel &
Hulshoff Pol, 2010).
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Development of the human heart starts 2 weeks after fertilization, with the formation of
the cardiac crescent and the subsequent formation and looping of the primitive heart tube.
Insight into the biology of molecular networks is an important field, as anomalies in these
systems underlie a wide spectrum of polygenetic human disorders, ranging from
schizophrenia to congenital heart disease (CHD). Understanding the functional
architecture of networks that organize the development of organs, see e.g. (Chien, Domian
& Parker, 2008), lays the foundation of novel approaches in regenerative medicine, since
manipulation of such systems is necessary for success of tissue engineering technologies
and stem cell therapy.

Lage et al. (2010) developed a framework for gaining new insights into the systems
biology of the protein networks driving organ development and related polygenic human
disease phenotypes, exemplified with heart development and CHD. In the Slide we see
examples of four functional networks driving the development of different anatomical
structures in the human heart. These four networks are constructed by analyzing the
interaction patterns of four different sets of cardiac development (CD): proteins
corresponding to the morphological groups ‘atrial septal defects,” ‘abnormal
atrioventricular valve morphology,’ ‘abnormal myocardial trabeculae morphology,” and
‘abnormal outflow tract development’. CD proteins from the relevant groups are shown in
orange and their interaction partners are shown in gray. Functional modules annotated by
literature curation are indicated with a colored background. Centrally in the Figure is a
haematoxylin-eosin stained frontal section of the heart from a 37-day human embryo,
where tissues affected by the four networks are marked; AS (developing atrial septum),
EC (endocardial cushions, which are anatomical precursors to the atrioventricular valves),
VT (developing ventricular trabeculae), and OFT (developing outflow tract).
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In this Slide we see an overview of the modular organization of heart development:
(A) Protein interaction networks are plotted at the resolution of functional
modules. Each module is color coded according to functional assignment as
determined by literature curation. The amount of proteins in each module is
proportional to the area of its corresponding node. Edges indicate direct (lines) or
indirect (dotted lines) interactions between proteins from the relevant modules.
(B) Recycling of functional modules during heart development. The bars represent
functional modules and recycling is indicated by arrows. The bars follow the color
code of (A) and the height of the bars represent the number of proteins in each
module, as shown left on the y axis (Lage et al., 2010).

Note: Phenotype = an organism's observable characteristics (traits), e.g.
morphology, biochemical/physiological properties, behaviour, etc. Phenotypes
result from the expression of an organism's genes as well as the influence of
environmental factors and the interactions between them. Genotype = inherited
instructions within its genetic code.

WS 2015 41



A. Holzinger LV709.049 11.11.2015

Slide 5-30: Identifying Networks in Disease Research Ty

sy, G
gl ~
ST S
s lpge ZZL-.:,}}'
g 0, Al
1- :‘:.' '.‘-'.‘*_. E
A = A et
N w
ey = :
$u-1
KIDNEY 1

transcriptional network t
ENVIRONMENT

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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Diseases (e.g. obesity, diabetes, atherosclerosis etc.) result from multiple genetic and environmental factors,
and importantly, interactions between genetic and environmental factors. This Slide shows the vast networks
of molecular interactions. It can be seen that the gastrointestinal (GI) tract, vasculature, immune system, heart
and brain are all potentially involved in either the onset of diseases such as atherosclerosis or in comorbidities
such as myocardial infarction and stroke brought on by such diseases. Further, the risks of comorbidities for
diseases such as atherosclerosis are increased by other diseases, such as hypertension, which may, in turn,
involve other organs, such as kidney. The role that each organ and tissue type plays in a given disease is
largely determined by genetic background and environment, where different perturbations to the genetic
background (perturbations corresponding to DNA variations that affect gene function, which, in turn, leads to
disease) and/or environment (changes in diet, levels of stress, level of activity, and so on) define the subtypes
of disease manifested in any given individual. Although the physiology of diseases such as atherosclerosis is
beginning to be better understood, what have not been fully exploited to data are the vast networks of
molecular interactions within the cells.

We see clearly in the Slide that there is a diversity of molecular networks functioning in any given tissue,
including genomics networks, networks of coding and noncoding RNA, protein interaction networks, protein
state networks, signaling networks, and networks of metabolites. Further, these networks are not acting in
isolation within each cell, but instead interact with one another to form complex, giant molecular networks
within and between cells that drive all activity in the different tissues, as well as signaling between tissues.
Variations in DNA and environment lead to changes in these molecular networks, which, in turn, induce
complicated physiological processes that can manifest as disease. Despite this vast complexity, the classic
approach to elucidating genes that drive disease has focused on single genes or single linearly ordered
pathways of genes thought to be associated with disease. This narrow approach is a natural consequence of
the limited set of tools that were available for querying biological systems; such tools were not capable of
enabling a more holistic approach, resulting in the adoption of a reductionist approach to teasing apart
pathways associated with complex disease phenotypes. Although the emerging view that complex biological
systems are best modeled as highly modular, fluid systems exhibiting a plasticity that allows them to adapt to
a vast array of conditions, the history of science demonstrates that this view, although long the ideal, was
never within reach, given the unavailability of tools adequate to carrying out this type of research. The
explosion of large-scale, high-throughput technologies in the biological sciences over the past 15 to 20 years
has motivated a rapid paradigm shift away from reductionism in favor of a systems-level view of biology
(Schadt & Lum, 2006).
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The three main types of biological networks: (a) a transcriptional regulatory
network has two components: transcription factor (TF) and target

genes (TG), where TF regulates the transcription of TGs; (b) protein-protein
interaction networks: two proteins are connected if there is a docking between
them; (c) a metabolic network is constructed considering the reactants, chemical
reactions and enzymes.
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The extreme complexity of the E. coli transcriptional regulatory network. In this graphical representation, nodes are genes,
and edges represent regulatory interactions. The network was reconstructed using data from the RegulonDB (Salgado et al.
2006). This figure highlights the extreme complexity in regulatory networks. To obtain a deeper understanding of
regulatory complexity, scientists must first discover biologically relevant organizational principles to unravel the hidden
architecture governing these networks (see Nature Education: http://www.nature.com/scitable/content/the-extreme-
complexity-of-the-e-coli-14457504)

The complexity of organisms arises rather as a consequence of elaborated regulations of gene expression than from
differences in genetic content in terms of the number of genes. The transcription network is a critical system that regulates
gene expression in a cell. Transcription factors (TFs) respond to changes in the cellular environment, regulating the
transcription of target genes (TGs) and connecting functional protein interactions to the genetic information encoded in
inherited genomic DNA in order to control the timing and sites of gene expression during biological development. The
interactions between TFs and TGs can be represented as a directed graph: The two types of nodes (TF and TG) are
connected by arcs (see —Slide 5-31, arrows) when regulatory interaction occurs between regulators and targets.
Transcriptional regulatory networks display interesting properties that can be interpreted in a biological context to better
understand the complex behavior of gene regulatory networks. At a local network level, these networks are organized in
substructures such as motifs and modules. Motifs represent the simplest units of a network architecture required to create
specific patterns of inter-regulation between TFs and TGs. Three most common types of motifs can be found in gene
regulatory networks:

(1) single input,

(2) multiple input and

(3) feed-forward loop

Target genes belonging to the same single and multiple input motifs tend to be co-expressed, and the level of co-expression
is higher when multiple transcription factors are involved.

Modularity in the regulatory networks arises from groups of highly connected motifs that are hierarchically organized, in
which modules are divided into smaller ones. The evolution of gene regulatory networks mainly occurs through extensive
duplication of transcription factors and target genes with inheritance of regulatory interactions from ancestral genes while
the evolution of motifs does not show common ancestry but is a result of convergent evolution (Costa, Rodrigues & Cristino,
2008).
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Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks. PLloS Computational Biology, 3, 6, 1011-1021.
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The interactions between proteins are essential to keep the molecular systems of living
cells working properly. Protein-protein interaction (PPI) is important for various
biological processes such as cell-cell communication, the perception of environmental
changes, protein transport and modification. Complex network theory is suitable to study
protein-protein interaction maps because of its universality and integration in
representing complex systems. In complex network analysis each protein is represented
as a node and the physical interactions between proteins are indicated by the edges in the
network .

Many complex networks are naturally divided into communities or modules, where links
within modules are much denser than those across modules (e.g. human individuals
belonging to the same ethnic groups interact more than those from different ethnic
groups). Cellular functions are also organized in a highly modular manner, where each
module is a discrete object composed of a group of tightly linked components and
performs a relatively independent task. It is interesting to ask whether this modularity in
cellular function arises from modularity in molecular interaction networks such as the
transcriptional regulatory network and PPI network.

The Slide shows a hypothetical protein complex (A). Binary protein-protein interactions
(PPI) are depicted by direct contacts between proteins. Although five proteins (A, B, C, D,
and E) are identified through the use of a bait protein (red), only A and D directly bind to
the bait. (B) shows the true PPI network topology of the protein complex is shown in. (C)
depicts the PPI network topology of the protein complex inferred by the “matrix” model,
where all proteins in a complex are assumed to interact with each other. Finally (D)
demonstrates the PPI network topology of the protein complex inferred by the “spoke”
model, where all proteins in a complex are assumed to interact with the bait; but no other
interactions are allowed (Wang & Zhang, 2007).

WS 2015 45



A. Holzinger LV709.049 11.11.2015

Slide 5-34 Correlated Motif Mining (CMM) Ty

Boyen, P, Van Dyck, D., Neven, F,, van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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Correlated motif mining (CMM) is the challenge to find overrepresented pairs of patterns (motifs), in
sequences of interacting proteins. Algorithmic solutions for CMM thereby provide a computational method for
predicting binding sites for protein interaction. The task is basically to represent motifs X and Y (Figure 119)
to truly represent an overrepresented consensus pattern in the sequences of the proteins in VX, respectively
VY, in order to increase the likelihood that they correspond or overlap with a so called binding site—a site on
the surface of the molecule that makes interactions between proteins from VX and VY possible through a
molecular lock-and-key mechanism.

We call {X,Y} a (kx k_y k_xy)-motif pair of a PPI network

G=(V.EA) if |[Vx |=kx,|V_y |=k_y and |V_xNV_y | =k xy

It is called complete if all vertices from V_x are connected with all vertices from V_y (Boyen et al., 2011).

In genetics, a sequence motif is a nucleotide or amino-acid sequence pattern that is widespread and has, or is
conjectured to have, a biological significance. For proteins, a sequence motif is distinguished from a structural
motif, a motif formed by the three dimensional arrangement of amino acids, which may not be adjacent. In a
chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a supersecondary
structure, which appears also in a variety of other molecules. Motifs do not allow us to predict the biological
functions because they are found in proteins and enzymes with dissimilar functions. Network motifs are
connectivity-patterns (sub-graphs) that occur much more often than they do in random networks. Most
networks studied in biology, ecology and other fields have been found to show a small set of network motifs;
surprisingly, in most cases the networks seem to be largely composed of these network motifs, occurring
again and again.
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The general steepest ascent algorithm with abstract neighbor function applied to
CMM (SA-CMM).

Since the decision problem associated with CMM is in NP, we can efficiently check
if a motif pair has higher support than another which makes it possible to tackle
CMM as a search problem in the space of all possible (1,d)-motif pairs. If we add the
assumption that similar motifs can be expected to get similar support, it has the
typical form of a combinatorial optimization problem. In combinatorial
optimization, the objective is to find a point in a discrete search space which
maximizes a user-provided function f. A number of heuristic algorithms called
metaheuristics are known to yield stable results, e.g. the steepest ascent algorithm
(Aarts & Lenstra, 1997), illustrated as pseudocode in the Slide.
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Slide 5-36: Metabolic Network
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Metabolism is primarily determined by genes, environment and nutrition. It
consists of chemical reactions catalyzed by enzymes to produce essential
components such as amino acids, sugars and lipids, and also the energy necessary
to synthesize and use them in constructing cellular components. Since the
chemical reactions are organized into metabolic pathways, in which one chemical
is transformed into another by enzymes and co-factors, such a structure can be
naturally modeled as a complex network. In this way, metabolic networks are
directed and weighted graphs, whose vertices can be metabolites, reactions and
enzymes, and two types of edges that represent mass flow and catalytic reactions.
One widely considered catalogue of metabolic pathways available on-line is the
Kyoto Encyclopedia of Genes and Genomes (KEGG). In the Slide we see a simple
metabolic network involving five metabolites M1-M5 and three enzymes E1-E3, of
which the latter catalyzes an irreversible reaction (Hodgman, French & Westhead,

2010).
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Slide 5-37 Metabolic networks are usually big ... big data ... HlTU
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Such metabolic structures can be very large, as can be seen in this Slide. The
enzyme-coding genes under TrmB (this is the thermococcus regulator of maltose
binding) acts as a repressor for genes encoding glycolytic enzymes and as activator
for genes encoding gluconeogenic enzymes control included in the metabolic
pathways shown in the Slide (13 are unique to archaea and 35 are conserved
across species from all three domains of life. Integrated analysis of the metabolic
and gene regulatory network architecture reveals various interesting scenarios
(Schmid et al., 2009).
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Slide 5-38 Using EPRs to Discover Disease Correlations Ty

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover g < LR
correlations between " g - a8
diseases.

Roque, F. 5., lensen, P.

B., Schmock, H., r - ‘%J'- 5
Dalgaard, M., . : S - - = [

Andreatta, M., Hansen,
T., Seeby, K., Bredkjzr,
5., Juul, A., Werge, T.,
lensen, L. 1. & Brunak,
5. (2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts. Plos
Computational Biology,
7, 8, el002141.

F& Holzinger 709.049

Med Informatics LO5

Electronic patient records (EPR remain an unexplored, but rich data source for
discovering e.g. correlations between diseases. (Roque et al., 2011) describe a
general approach for gathering phenotypic descriptions of patients from medical
records in a systematic and non-cohort dependent manner: By extracting
phenotype information from the “free-text” (= unstructured information) in such
records they demonstrated that they can extend the information contained in the
structured record data, and use it for producing fine-grained patient stratification

and disease co-occurrence statistics. Their approach uses a dictionary based on the

International Classification of Disease (ICD-10) ontology and is therefore in
principle language independent. As a use case they show how records from a

Danish psychiatric hospital lead to the identification of disease correlations, which

subsequently can be mapped to systems biology frameworks.
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Slide 5-39: Heatmap of disease-disease correlations (ICD)  wlaTU
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Disease-disease correlations. Heatmap of the most significant 100 ICD10 codes,
based on ranking the list of 802 candidate pairs by their comorbidity scores.
Chapter colors are highlighted next to the ICD10 codes. Diseases that occur often
together have red color in the heatmap, while those with lower than expected co-
occurrence are colored blue. The color label shows the log2 change of comorbidity
between two diseases

when compared to the expected level.

doi:10.1371/journal.pcbi.1002141.g002

Roque et al. (2011) have used text mining to automatically extract clinically
relevant terms from 5543 psychiatric patient records and mapped these to disease
codes in the ICD10. They clustered patients together based on the similarity of
their profiles. The result is a patient stratification, based on more complete profiles
than the primary diagnosis, which is typically used. Figure 124 illustrates the
general approach to capture correlations between different disorders. Several
clusters of ICD10 codes relating to the same anatomical area or type of disorder
can be identified along the diagonal of the heatmap, ranging from trivial
correlations (e.g., different arthritis disorders), to correlations of cause and effect
codes (e.g., stroke and mental/behavioural disorders), to social and habitual
correlations (e.g. drug abuse, liver diseases and HIV).
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Slide 5-40: Example: opoloyéw (homologeo) Ty

10499

He, Y., Chen, Y.,
Alexander, B,
Bryan, P, N, &
Orban, J. (2008)
MNMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
Mational Academy
of Sciences, 105,
38, 14412,
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TO408 TTYKL | LNLKQAKEEA|KELVDAGTAEKY |KLIANAKTVEGVWTLKDE IKTFTVTE
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Homology (plural: homologies) origins from Greek opoAoyéw (homologeo) and means “to
conform” (in German: iibereinstimmen) and has its origins in Biology and Anthropology, where the
word is used for a correspondence of structures in two life forms with a common evolutionary
origin (Darwin, 1859).

In chemistry it is used for the relationship between the elements in the same group of the periodic
table, or between organic compounds in a homologous series.

In mathematics homology is a formalism for talking in a quantitative and unambiguous manner
about how a space is connected (Edelsbrunner & Harer, 2010).

Basically, homology is a concept that is used in many branches of algebra and topology. Historically,
the term was first used in a topological sense by Henry Poincaré.

In Bioinformatics, homology modelling is a mature technique that can be used to address many
problems in molecular medicine. Homology modelling is one of the most efficient methods to
predict protein structures. With the increase in the number of medically relevant protein
sequences, resulting from automated sequencing in the laboratory, and in the fraction of all known
structural folds, homology modelling will be even more important to personalized and molecular
medicine in the future. Homology modelling is a knowledge-based prediction of protein structures.
In homology modelling a protein sequence with an unknown structure (the target) is aligned with
one or more protein sequences with known structures (the templates).

The method of homology modelling is based on the principle that homologue proteins have similar
structures. The prerequisite for successful homology modelling is a detectable similarity between
the target sequence and the template sequences (more than 30%) allowing the construction of a
correct alignment. Homology modelling is a knowledge-based structure prediction relying on
observed features in known homologous protein structures. By exploiting this information from
template structures the structural model of the target protein can be constructed (Wiltgen & Tilz,
2009).

Two well-known homology modelling programs, which are free for academic research, are

MODELLER (http://salilab.org/modeller) and

SWISSMODEL (http://swissmodel.expasy.org).

The slide shows the comparison of two proteins: The sequences of both proteins are 95% (53 of 56) identical (only residues
20, 30 and 45 differ), yet the structures are totally different.
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Slide 5-41 Conclusion Ty

= Homology modeling is a knowledge-based
prediction of protein structures.

= In homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.

= Homology modeling will be extremely
important to personalized and molecular
medicine in the future.

F A. Holzinger 709.049 sa7s Med informaties L05

All the areas we have touched in this lecture are extremely important towards the
concept of personalized medicine and molecular medicine and will keep us busy
within the next decades.

Data mining is maybe the most central and most important computational subject
in this respect.
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Slide 5-42: Future Outlook ﬂ'[‘;!

Personalized
Medicine
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All these approaches are producing gigantic amounts of highly complex data sets!

See the recent article in Science - doubling of data in proteomics every 18 months
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My DEDICATION is to make data valuable ... Thank you!
The Klein-Bottle is the symbol for geometry and topology.

Topological data analysis (TDA) is a fast growing branch of applied
mathematics and of enormous importance for data mining and knowledge

discovery,
particularly from large, high-dimensional, incomplete and noisy dirty data.
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Sample Questions Ty

Which are the four main “big data” pools in the health care domain and what
problems involved?

What is the main problem in medical documentation?
What is the advantage of an integrated Patient record?

What are the advantages/disadvantages of XML/OWL for data in
bioinformatics?

What are the three key concepts in order to understand complex biological
systems?

What are the main symbols describing a network as used in Bioinformatics?
How can networks represented computationally effectively?

What are the main network metrics?

What are the main network topologies used in Biomedical informatics?
What is the Small-World Theory?

Why is the study of networks relevant for medical professionals?
Which are the three main types of biomedical networks?

What is a Motif?

What benefits can we gain from Correlated Motif Mining (CMM)?
What is more efficient if a matrix contains many sparse elements?
Why are structural homologies interesting for biomedical informatics?

memm BGTE Med Informatics L0S
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Some Useful Links

Ty

http://www.cdisc.org
http://www.w3.org/Math/
http://www.sgpp.org/structures.shtml

http://salilab.org/modeller
http://swissmodel.expasy.org

http://www.expasy.org/tools

http://www.geneticseducation.nhs.uk

F&_&a@pﬂﬂﬂs s7me

http://psychology.wikia.com/wiki/Information_retrieval
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Network motifs in integrated molecular networks

represent functional relationships between distinct data types. They
aggregate to form dense topological structures corresponding to
functional modules which cannot be detected by traditional graph

clustering algorithms.
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Example from Immunology: Structural Homology Ty

T vimwy o &-CY1

Rl | hevaren

Calandra, T. & Roger, T. 2003. Macrophage migration inhibitory factor: a regulator of innate
immunity. Nat Rev Immunol, 3, 791-800.

Fn.uomnwmm suTH Med Informatics L0S

http://www.nature.com/nri/journal /v3/n10/fig_tab/nri1200_F2.html
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Klein Bottle Ty

http://www.maa.org/cvm/1998/01/tprppoh/article/Pictures/KleinBottle.gif

Fn.uomnwmm B0ITE Med Informatics LOS

http://www.maa.org/cvm/1998/01 /tprppoh/article/Pictures/KleinBottle.gif
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Medical Documentation — Patient Record
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Medical Documentation - Electronic Patient Record Ty
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Challenge is in Genomic medicine ... Ty
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= .. tointegrate and analyze these diverse and

voluminous data sources to elucidate both normal
and disease physiology.

= XML is suited for describing semi-structured data
including a natural modeling of biological entities,
because it allows features as e.g. nesting ...

Fn.uomnwmm BITE Med Informatics LOS

Nesting = recursion, subroutines, information hiding,
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Example: Comparison of XML and OWL data in bioinformatics gty
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On top in Figure 39 we see a sample XML describing genes involved in long-term
memory of a sample specimen Drosophila melanogaster . Nested within the gene
elements, are sub-elements related to the parent. The first gene includes two
nucleic acid sequences, a protein product, and a functional annotation. Additional
information is provided by attributes, such as the organism. This example
illustrates the difficulty of modeling many-to-many relationships, such as the
relationship between genes and functions. Information about functions must be
repeated under each gene with that function. If we invert the nesting (i.e., nesting
genes inside function elements), then we must repeat information about genes
with more than a single function. At the bottom in Figure 39 we see the same
information about genes, but using RDF and OWL. Both genes are instances of the
class Fly Gene, which has been defined as the set of all Genes for the organism D.
melanogaster. The functional information is represented using a hierarchical
taxonomy, in which Long-Term Memory is a subclass of Memory (Louie et al.,
2007).
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On time and space of data ... Ty

F A. Holringer 709,049 BETE Med Informatics LOS

This is star cluster structure M30 Let us look into the macroscopic area first and let
us look for some similarities ...

This is star globular star cluster M30 (NGC 7099), including some 100.000 stars a
diameter of about 100 light-years, approx. 40,000 light-years away from earth -
look at the structure - look at the similarity - and consider the time, if our eyes see
this structure they might be vanished (Darwin Channel)

Macroscopic structure
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... t0 microscopic atomistic structures
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Wiltgen, M. & Holzinger, A, (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech

Med informatics LOS”

From this large macroscopic structures to tiny microscopic structure

Here a X-ray crystallography, which is a standard method to analyse the

arrangement of objects (atoms, molecules) within a crystal structure. This data
contains the mean positions of the entities within the substance, their chemical
relationship, and various others ... and the data is stored, for example - if having a
protein structure - in a Protein Data Base (PDB). This database contains vast
amounts of data. If a medical professional looks at the data, he or she sees only

lengthy tables of numbers ...
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First yeast protein-pfotein interagtion network (2001) Ty
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Structures! This is now our keyword. When we talk about structures, we will see
some really interesting aspects of structures. A good example for a data intensive
and highly complex microscopic structure is a yeast protein network.

Note: Yeasts (Hefe) are eukaryotic micro-organisms (fungi) with 1,500 known
species currently, estimated to be only 1% of all yeast species. Yeasts are
unicellular, typically measuring 4 um in diameter.

In this picture you can see the first protein interaction network (published by
Jeong et. al, 2001). The nodes are the proteins. The links are the physical
interactions (bindings). The red nodes are lethal to the organism, the green ones
are non-lethal and the yellow ones are not yet known (still unknown).

You may ask whether this structure is useful? Well, what we get out by this yeast is
something which some of us may really like: Prost!

The problem with such structures is that they are very big and that there are so
many! Knowledge Management can help to discover such unknown structures
amongst the enormous set of uncharacterized data. We will come back to such
structural homologism later. Now let us make a closer look on what Knowledge
Management can do for us.
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The Nature of Space and Time Ty,

STEPHEN HAWKING
AMND
ROGER PENROSE
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When thinking about data, we should always keep two fundamental physical
aspects in mind: time related aspects (e.g. entropy of data) and space related
aspects (e.g. topology of data).

http://www.youtube.com/watch?v=0Bk0OYQ02chs
TedxWarwick 2010 Roger Penrose in Space-Time Geometry.
http://www.youtube.com/watch?v=aSz5BjExs90
Visualizing Eleven Dimensions
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Clouds of data — unordered sequence of points in n-dim Ty

Let us collect n-dimensional i observations: x; = [X;1, ..., Xin]

L] i
. - I .
L] z._z *
L .-J
[] L] L] L
. . *
[ ] 4 .l 5 ™
L] y, w f [ ]
[ ] L] . . - L]
L] L2
L ] L . -
i 5 1
Point cloud in R* topological space metric space

Zomorodian, A. ). 2005. Topology for computing, Cambridge {MA), Cambridge University Press.

A Holinger 709.049 i Med Informaties LOS

Clouds of data. Very often, data is represented as an unordered sequence of
points in a Euclidean n-dimensional space En. Data coming from an array of sensor
readings in an engineering testbed, from questionnaire responses in a psychology
experiment, or from population sizes in a complex ecosystem all reside in a space
of potentially high dimension. The global ‘shape’ of the data may often provide
important information about the underlying phenomena which the data
represents.

One type of data set for which global features are present and significant is the
so-called point cloud data coming from physical objects in 3-d. Touch probes,
point lasers, or line lasers sweep a suspended body and sample the surface,
record-

ing coordinates of anchor points on the surface of the body. The cloud of such
points can be quickly obtained and used in a computer representation of the ob-
ject. A temporal version of this situation is to be found in motion-capture data,
where geometric points are recorded as time series. In both of these settings, it is
important to identify and recognize global features: where is the index finger, the
keyhole, the fracture?
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Example: To predict the folding of a protein Ty
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1000 ns 2000 ns 2500 ns Folded

Source: Theoretical and computational Biophysics Group: http://www.ks,uiuc.edu/
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Backup Slide: Overview Some Network Metrics Ty
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a = order

b = clustering coefficient
c = path length

d = centrality

e =nodal degree

F = modularity

Network metrics
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Slide 5-19: Watershed Principle v\m

= Catchment basins:

= treating an image as a height field or landscape,
regions where the rain would flow into the same
lake

fa) (k) ()

= Start flooding from local minima, and label ridges
wherever differently evolving components meet

F A, Holzinger 709,049 7278 Med Informatics LOS
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http://www.google.com/patents/US6384826
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Slide 5-15 Graphs from Images: Voronoi <> Delauney

Ty
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Representative examples of disease complexes are displayed. Diseases are

associated with tissues by using our disease-tissue matrix, and expression data are

from

the GNF dataset. The expression levels of complexes are shown as z scores. If a
disease is associated with more than 3 tissues, only the 3 most associated tissues
are shown for

clarity. In a given complex, proteins relevant to the disease in question are yellow.

The figure shows the general tendency of overexpression of the complexes in the
tissues

in which they are involved in pathology compared with their expression level in
other tissues. All members of the complexes can be seen in
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Example: Cell based therapy (1) (Heart transplantation) Ty

Ventricular muscle Coronary Pacemaker and distal
Baskel-weave architecture arterial tree conduction system

Cardiac muscle fibar waave Vascular smooth muscle cells Conducticn system muscle cells

Chien, K. R., Domian, |. ). & Parker, K. K. (2008) Cardiogenesis and the complex biology of
regenerative cardiovascular medicine. Science, 322, 5907, 1494,

Fi_ Holringer 709,049 TETE Med Informatics LO5

Three-dimensional structure of ventricular muscle basket weave, coronary arterial
tree, and pacemaker

and conduction system. One of the central challenges of cell-based therapy for
regenerating specific heart

components is guiding transplanted cells into a functional syncytium with the
existing three-dimensional

architecture. Transplanted cells must make functional connections with
neighboring specialized heart cells to

result in a net gain of global function. Transplanted myogenic progenitors, for
example, must align with and

integrate into the existing ventricular muscle basket weave to allow synchronous
contraction and relaxation of

graft and host myocardium. Integration of pacemaker and conduction system
progenitors into the appropriate

tissue type is necessary to generate a biological pacemaker and avoid cardiac
arrhythmia. For example, having a

transplanted heart muscle progenitor integrate into the conduction system might
have arrythmogenic consequences,

as would the introduction of cells with independent pacemaker potential in the
heart. Similarly, cell-based

therapies to promote coronary collateral formation or neo-arteriogenesis require
functional integration of transplanted

cells with the host coronary arterial tree.
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Example: Cell based therapy (2) (Heart transplantation) Ty
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Three-dimensional structure of ventricular muscle basket weave, coronary arterial
tree, and pacemaker

and conduction system. One of the central challenges of cell-based therapy for
regenerating specific heart

components is guiding transplanted cells into a functional syncytium with the
existing three-dimensional

architecture. Transplanted cells must make functional connections with
neighboring specialized heart cells to

result in a net gain of global function. Transplanted myogenic progenitors, for
example, must align with and

integrate into the existing ventricular muscle basket weave to allow synchronous
contraction and relaxation of

graft and host myocardium. Integration of pacemaker and conduction system
progenitors into the appropriate

tissue type is necessary to generate a biological pacemaker and avoid cardiac
arrhythmia. For example, having a

transplanted heart muscle progenitor integrate into the conduction system might
have arrythmogenic consequences,

as would the introduction of cells with independent pacemaker potential in the
heart. Similarly, cell-based

therapies to promote coronary collateral formation or neo-arteriogenesis require
functional integration of transplanted

cells with the host coronary arterial tree.
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Example: Network Generated by Gene Duplication Ty
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Different colors
represent
different
modules
identified by
Guimera and
Amaral’s
algorithm [28)].
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