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Dear Students,	welcome	to	the	5th	lecture	of	our	course.	Please	remember	from	
the	last	lecture	the	basic	architecture	of	a	hospital	information	system,	the	
complexity	of	medical	workflows,	the	challenges	of	data	integration,	data	fusion,	
data	curation;	the	building	blocks	of	hospital	information	systems,	databases,	data	
warehouses,	data	marts;	the	difference	between	knowledge	discovery	and	
information	retrieval;	please	remember	the	formal	description	of	a	information	
retrieval	model	– the	best	practice	example	is	the	Page‐Rank	Algorithm,	see:
Hastie,	T.,	Tibshirani,	R.	&	Friedman,	J.	2009.	The	Elements	of	Statistical	Learning:	
Data	Mining,	Inference,	and	Prediction.	Second	Edition,	New	York,	Springer.
Or	have	a	look	to	the	reprint	paper:
Brin,	S.	&	Page,	L.	2012.	Reprint	of:	The	anatomy	of	a	large‐scale	hypertextual web	
search	engine.	Computer	Networks,	56,	(18),	3825‐3833.
http://www.sciencedirect.com/science/article/pii/S1389128612003611
doi:10.1016/j.comnet.2012.10.007

Please	always	be	aware	of	the	definition	of	biomedical	informatics	(Medizinische
Informatik):	
Biomedical	Informatics is	the	inter‐disciplinary	field	that	studies	and	pursues	the	
effective	use	of	biomedical	data,	information,	and	knowledge	for	scientific	inquiry,	
problem	solving,	and	decision	making,	motivated	by	efforts	to	improve	human	
health	(and well‐being).
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In	vivo	(Latin	for	"within	the	living")	is	experimentation	using	a	whole,	living	
organism	as	opposed	to	a	partial	or	dead	organism,	or	an	in	vitro	("within	the	
glass",	i.e.,	in	a	test	tube	or	petri	dish)	controlled	environment.

5WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



6WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



7WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



8WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



It	is	widely	acknowledged	in	machine	learning	that	the	performance	of	a	learning	algorithm	is	
dependent	on	both	its	parameters	and	the	training	data.	Yet,	the	bulk	of	algorithmic	development	
has	focused	on	adjusting	model	parameters	without	fully	understanding	the	data	that	the	learning	
algorithm	is	modeling.	As	such,	algorithmic	development	for	classification	problems	has	largely	
been	measured	by	classification	accuracy,	precision,	or	a	similar	metric	on	benchmark	data	sets.	As	
most	machine	learning	research	is	focused	on	the	data	set	level,	one	is	concerned	with	maximizing	
p(h|t),	where	h	:	X	→	Y	is	a	hypothesis	or	function	mapping	input	feature	vectors	X	to	their	
corresponding	label	vectors	Y	,	and	t	=	{(xi,	yi)	:	xi	∈	X	∧	yi ∈	Y	}	is	a	training	set.	

One	of	the	methods	for	privacy	preserving	data	mining	is	that	of	anonymization,	in	which	a	record	
is	released	only	if	it	is	indistinguishable	from	k	other	entities	in	the	data.	We	note	that	methods	
such	as	k‐anonymity	are	highly	dependent	upon	spatial	locality	in	order	to	effectively	implement	
the	technique	in	a	statistically	robust	way.	In	high	dimensional	space	the	data	becomes	sparse,	and	
the	concept	of	spatial	locality	is	no	longer	easy	to	define	from	an	application	point	of	view.
Aggarwal,	C.	C.	On	k‐anonymity	and	the	curse	of	dimensionality.		Proceedings	of	the	31st	
international	conference	on	Very	large	data	bases	VLDB,	2005.	901‐909.

Holzinger,	A.,	Stocker,	C.	&	Dehmer,	M.	2014.	Big	Complex	Biomedical	Data:	Towards	a	Taxonomy	
of	Data.	In:	Obaidat,	M.	S.	&	Filipe,	J.	(eds.)	Communications	in	Computer	and	Information	Science	
CCIS	455.	Berlin	Heidelberg:	Springer	pp.	3‐18.
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P	stands	for	“polynomial	time”.	This	the	subset	of	problems	that	can	be	guaranteed	to	be	solved	in	a	
polynomial	amount	of	time	related	to	their	input	length.	Problems	in	P	commonly	operate	on	single	
inputs,	lists,	or	matrices,	and	can	occasionally	apply	to	graphs.	The	typical	types	of	operations	they	
perform	are	mathematical	operators,	sorting,	finding	minimum	and	maximum	values,	
determinates,	and	many	others.	
NP	stands	for	“nondeterministic	polynomial	time”.	These	problems	are	ones	that	can	be	solved	in	
polynomial	time	using	a	nondeterministic	computer.	This	concept	is	a	little	harder	to	understand,	
so	another	definition	that	is	a	consequence	of	the	first	is	often	used.	NP	problems	are	problems	that	
can	be	checked,	or	“certified”,	in	polynomial	time.	The	output	of	an	NP	solving	program	is	called	a	
certificate,	and	the	polynomial	time	program	that	checks	the	certificate	for	its	validity	is	called	the	
certification	program.
NP‐hard:
A	problem	is	NP‐hard	if	it	as	least	as	hard	as	the	hardest	problems	known	to	be	NP.	This	leads	to	
two	possibilities:	either	the	problem	is	in	NP	and	also	considered	NP‐hard,	or	it	is	more	difficult	
than	any	NP	problem.
NP‐complete:
This	classification	is	the	intersection	of	NP	and	NP‐hard.	If	a	problem	is	in	NP	and	also	NP‐hard,	
then	it	is	considered	NP‐complete.	This	class	of	problems	is	arguably	the	most	interesting	for	its	
consequences	on	many	other	types	of	problems.	

For those	who	want	to	go	deeper	into	complexity	theory,	there	is	excellent	MIT	Open	Courseware	
by	Eric	Demaine,	http://erikdemaine.org/
https://www.youtube.com/watch?v=moPtwq_cVH8
You	can	do	some	own	experimentation	via	http://www.algomation.com
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Key	problems	in	dealing	with	data	in	the	life	sciences	include:
• Complexity	of	our	world
• High‐dimensionality	(curse	of	dimensionality	(Catchpoole et	al.,	
2010))	
• Most	of	the	data	is	weakly‐structured	and	unstructured

A	grand	challenge	in	healthcare	is	the	complexity	of	data,	implicating	two	issues:	
structurization and	standardization.		As	we	have	learned	in	lecture	2,	very	little	of	
the	data	is	structured.	Most	of	our	data	is	weakly	structured	(Holzinger,	2012).	In	
the	language	of	business	there	is	often	the	use	of	the	word	“unstructured”,	but	we	
have	to	use	this	word	with	care;	unstructured	would	mean	– in	a	strict	
mathematical	sense	– that	we	are	talking	about	total	randomness	and	complete	
uncertainty,	which	would	mean	noise,	where	standard	methods	fail	or	lead	to	the	
modeling	of	artifacts,	and	only	statistical	approaches	may	help.	The	correct	term	
would	be	unmodeled data	– or	we	shall	speak	about	unstructured	information.	
Please	mind	the	differences.

To	the	image	above:	Advances	in	genetics	and	genomics	have	accelerated	the	discovery‐based	(=hypotheses	generating)	
research	that	provides	a	powerful	complement	to	the	direct	hypothesis‐driven	molecular,	cellular	and	systems	sciences.	
For	example,	genetic	and	functional	genomic	studies	have	yielded	important	insights	into	neuronal	function	and	disease.	
One	of	the	most	exciting	and	challenging	frontiers	in	neuroscience	involves	harnessing	the	power	of	large‐scale	genetic,	
genomic	and	phenotypic	data	sets,	and	the	development	of	tools	for	data	integration	and	data	mining	(Geschwind &	
Konopka,	2009).
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Do	not	confuse	structure	with	standardization	(see	Slide	2‐9).	Data	can	be	standardized	(e.g.	numerical	entries	in	laboratory	
reports)	and	non‐standardized.	A	typical	example	is	non‐standardized	text	– imprecisely	called	“Free‐Text”	or	“unstructured	
data”	in	an	electronic	patient	record	(Kreuzthaler	et	al.,	2011).	

Standardized	data is	the basis	for	accurate	communication.	In	the	medical	domain,	many	different	people	work	at	different	
times	in	various	locations.	Data	standards can	ensure	that	information	is	interpreted	by	all	users	with	the	same	
understanding.	Moreover,	standardized	data	facilitate	comparability	of	data	and	interoperability	of	systems.	It	supports	the	
reusability	of	the	data,	improves	the	efficiency	of	healthcare	services	and	avoids	errors	by	reducing	duplicated	efforts	in	
data	entry.	

Data	standardization	refers	to	
a)	the	data	content;	
b)	the	terminologies	that	are	used	to	represent	the	data;	
c)	how	data	is	exchanged;	and	
iv)	how	knowledge,	e.g.	clinical	guidelines,	protocols,	decision	support	rules,	checklists,	standard	operating	procedures	are
represented	in	the	health	information	system	(refer	to	IOM).
Technical	elements	for	data	sharing	require	standardization	of	identification,	record	structure,	terminology,	messaging,	
privacy	etc.	The	most	used	standardized	data	set	to	date	is	the	international	Classification	of	Diseases	(ICD),	which	was	first	
adopted	in	1900	for	collecting	statistics	(Ahmadian et	al.,	2011),	which	we	will	discuss	in	→Lecture	3.	
Non‐standardized	data is	the	majority	of	data	and	inhibit	data	quality,	data	exchange	and	interoperability.
Well‐structured	data is	the	minority	of	data	and	an	idealistic	case	when	each	data	element	has	an	associated	defined	
structure,	relational	tables,	or	the	resource	description	framework	RDF,	or	the	Web	Ontology	Language	OWL	(see	→Lecture	
3).	
Note:	Ill‐structured is	a	term	often	used	for	the	opposite	of	well‐structured,	although	this	term	originally	was	used	in	the	
context	of	problem	solving	(Simon,	1973).
Semi‐structured	is	a	form	of	structured	data	that	does	not	conform	with	the	strict	formal	structure	of	tables	and	data	
models	associated	with	relational	databases	but	contains	tags	or	markers	to	separate	structure	and	content,	i.e.	are	schema‐
less	or	self‐describing;	a	typical	example	is	a	markup‐language	such	as	XML	(see	→Lecture	3	and	4).	
Weakly‐Structured	data is	the	most	of	our	data	in	the	whole	universe,	whether	it	is	in	macroscopic	(astronomy)	or	
microscopic	structures	(biology)	– see	→Lecture	5.
Non‐structured	data or	unstructured	data is	an	imprecise	definition	used	for	information expressed	in	natural	language,	
when	no	specific	structure	has	been	defined.	This	is	an	issue	for	debate:	Text	has	also	some	structure:	words,	sentences,	
paragraphs.	If	we	are	very	precise,	unstructured	data	would	meant	that	the	data	is	complete	randomized	– which	is	usually	
called	noise	and	is	defined	by	(Duda,	Hart	&	Stork,	2000)	as	any	property	of	data	which	is	not	due	to	the	underlying	model	
but	instead	to	randomness	(either	in	the	real	world,	from	the	sensors	or	the	measurement	procedure).	
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A	look	on	the	typical	view	of	an	hospital	information	system	shows	us	the	
organization	of	well‐structured	data:	Standardized	and	well‐structured	data	is	the	
basis	for	accurate	communication.	In	the	medical	domain,	many	different	people	
work	at	different	times	in	various	locations.	Data	standards	can	ensure	that	
information	is	interpreted	by	all	users	with	the	same	understanding.	Moreover,	
standardized	data	facilitate	comparability	of	data	and	interoperability	of	systems.	
It	supports	the	reusability	of	the	data,	improves	the	efficiency	of	healthcare	
services	and	avoids	errors	by	reducing	duplicated	efforts	in	data	entry.	Remember:	
Data	standardization	refers	to	a)	the	data	content;	b)	the	terminologies	that	are	
used	to	represent	the	data;	c)	how	data	is	exchanged;	and	d)	how	knowledge,	e.g.	
clinical	guidelines,	protocols,	decision	support	rules,	checklists,	standard	operating	
procedures	are	represented	in	the	health	information	system.
Note:	The	opposite,	i.e.	non‐standardized	data	is	the	majority	of	data	and	inhibit	
data	quality,	data	exchange	and	interoperability.	
Remark:	Care2x	is	an	Open	Source	Information	System,	see:	http://care2x.org
See	→Lecture	10	for	more	details.
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This	is	a	Medical	example	for	semi‐structured	data	in	XML	(Holzinger,	2003).	The	
eXtensible Markup	Language	(XML)	is	a	flexible	text	format	recommended	by	the	
W3C	for	data	exchange	and	derived	from	SGML	(ISO	8879),	(Usdin &	Graham,	
1998).	
XML	is	often	classified	as	semi‐structured,	however	this	is	in	some	way	misleading,	
as	the	data	itself	is	still	structured,	but	in	a	flexible	rather	than	a	static	way	(Forster	
&	Vossen,	2012).	Such	data	does	not	conform	to	the	formal	structure	of	tables	and	
data	models	as	for	example	in	relational	databases,	but	at	least	contains	
tags/markers	to	separate	semantic	elements	and	enforce	hierarchies	of	records	
and	fields	within	these	data.
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This	example	by	(Rassinoux et	al.,	2003)	shows	how	XML	can	be	used	in	the	
hospital	information	system:	The	structure	of	any	new	document	edited	in	the	
Patient	Record	(here:	DPI)	is	based	on	a	template	defined	in	XML	format	(left).	
These	templates	play	the	role	of	DTDs	or	XML	schemas	as	they	precisely	define	the	
structure	and	content	type	of	each	paragraph,	thus	validating	the	document	at	the	
application	level.	Such	a	structure	embeds	a	<HEADER>	and	a	<BODY>.	The	header	
encapsulates	the	properties	that	are	inherent	to	the	new	document	and	that	will	be	
useful	to	further	classify	it,	according	to	various	criteria,	including:	the	patient	
identification,	the	document	type,	the	identifier	of	its	redactors	and	of	the	
hospitalization	stay	or	ambulatory	consultation	to	which	the	document	will	be	
attached	in	the	patient	trajectory,	etc.	The	body	encapsulates	the	content,	and	is	
divided	into	two	parts:	The	<STRUCDOC>	part	describes	the	semantic	entities	that	
compose	the	document.	The	<FULLDOC>	part	embeds	the	document	itself	with	its	
page	layout	information,	which	can	be	stored	either	as	a	draft,	a	temporary	text	or	
as	a	definitive	text.	This	format	guarantees	the	storage	of	dynamic	and	controlled	
fields	for	data	input,	thus	allowing	the	combination	of	free	text	and	structured	data	
entry	in	the	document.	Once	the	document	is	no	longer	editable,	it	is	definitively	
saved	into	the	RTF	format.	A	CDATA	section	is	utilized	for	storing	the	rough	
document	whatever	its	format,	as	it	permits	to	disregard	blocks	of	text	containing	
characters	that	would	otherwise	be	regarded	as	markup	(Rassinoux,	Lovis,	Baud	&	
Geissbuhler,	2003).	
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On	top	in	this	slide	you	can	see	a	sample	XML	describing	genes	from	Drosophila	melanogaster	involved	in	long‐term	
memory.	Nested	within	the	gene	elements,	are	sub‐elements	related	to	the	parent.	The	first	gene	includes	two	nucleic	acid	
sequences,	a	protein	product,	and	a	functional	annotation.	Additional	information	is	provided	by	attributes,	such	as	the	
organism.	This	example	illustrates	the	difficulty	of	modeling	many‐to‐many	relationships,	such	as	the	relationship	between	
genes	and	functions.	Information	about	functions	must	be	repeated	under	each	gene	with	that	function.	If	we	invert	the	
nesting,	then	we	must	repeat	information	about	genes	with	more	than	a	single	function.	Below	the	XML	we	see	the	
information	about	genes	using	both	RDF	and	OWL.	Both	genes	are	instances	of	the	class	Fly	Gene,	which	has	been	defined	as	
the	set	of	all	Genes	for	the	organism	D.	melanogaster.	The	functional	information	is	represented	using	a	hierarchical	
taxonomy,	in	which	Long‐Term	Memory	is	a	subclass	of	Memory	(Louie	et	al.,	2007).
Remark:	Drosophila	melanogaster	is	a	model	organism	and	shares	many	genes	with	humans.	Although	Drosophila	is	an	
insect	whose	genome	has	only	about	14,000	genes	(half	of	humans),	a	remarkable	number	of	these	have	very	close	
counterparts	in	humans;	some	even	occur	in	the	same	order	in	the	fly's	DNA	as	in	our	own.	This,	plus	the	organism's	more	
than	100‐year	history	in	the	lab,	makes	it	one	of	the	most	important	models	for	studying	basic	biology	and	disease	(see	e.g.	
http://www.lbl.gov/Science‐Articles/Archive/sabl/2007/Feb/drosophila.html)
Note:	The	relational	data	model	requires	preciseness:	The	data	must	be	regular,	complete	and	structured.	However,	in	
Biology	the	relationships	are	mostly	un‐precise.	Genomic	medicine	is	extremely	data	intensive	and	there	is	an	increasing	
diversity	in	the	type	of	data:	DNA	sequence,	mutation,	expression	arrays,	haplotype,	proteomic	etc.	In	bioinformatics	many	
heterogeneous	data	sources	are	used	to	model	complex	biological	systems	(Rassinoux,	Lovis,	Baud	&	Geissbuhler,	2003),	
(Achard,	Vaysseix &	Barillot,	2001).	The	challenge	in	genomic	medicine	is	to	integrate	and	analyze	these	diverse	and	huge	
data	sources	to	elucidate	physiology	and	in	particular	disease	physiology.	XML	is	suited	for	describing	semi‐structured	data,	
including	a	kind	of	natural	modeling	of	biological	entities,	because	it	allows	features	as	e.g.	nesting	(see	Slide	5‐6	on	top).	
Still	a	key	limitation	of	XML	is,	that	it	is	difficult	to	model	complex	relationships;	for	example,	there	is	no	obvious	way	to	
represent	many‐to‐many	relationships,	which	are	needed	to	model	complex	pathways.	On	top	in	Figure	5‐9	we	can	see	a	
sample	XML,	describing	genes	involved	in	the	long‐term	memory	of	a	sample	specimen	d.	melanogaster.	Nested	within	the	
gene	elements,	are	sub‐elements	related	to	the	parent.	The	first	gene	includes	two	nucleic	acid	sequences,	a	protein	product,	
and	a	functional	annotation.	Additional	information	is	provided	by	attributes,	such	as	the	organism.	This	example	illustrates
the	difficulty	of	modeling	many‐to‐many	relationships,	such	as	the	relationship	between	genes	and	functions.	Information	
about	functions	must	be	repeated	under	each	gene	with	that	function.	If	we	invert	the	nesting	(i.e.,	nesting	genes	inside	
function	elements),	then	we	must	repeat	information	about	genes	with	more	than	a	single	function.	At	the	bottom	in	Slide	5‐
6	we	see	the	same	information	about	genes,	but	using	RDF	and	OWL.	Both	genes	are	instances	of	the	class	Fly	Gene,	which	
has	been	defined	as	the	set	of	all	Genes	for	the	organism	D.	melanogaster.	The	functional	information	is	represented	using	a	
hierarchical	taxonomy,	in	which	Long‐Term	Memory	is	a	subclass	of	Memory	(Louie	et	al.,	2007).	
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The	human	protein	interaction	network	and	its	connection	to	positive	selection.	
Proteins	likely	to	be	under	positive	selection	are	colored	in	shades	of	red	(light	red,	
low	likelihood	of	positive	selection;	dark	red,	high	likelihood)	(6).	Proteins	
estimated	not	to	be	under	positive	selection	are	in	yellow,	and	proteins	for	which	
the	likelihood	of	positive	selection	was	not	estimated	are	in	white	(6).
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An	emerging	trend	in	many	scientific	disciplines	is	a	strong	tendency	toward	being	transformed	into	some	form	of	
information	science.	One	important	pathway	in	this	transition	has	been	via	the	application	of	network	analysis.	The	basic	
methodology	in	this	area	is	the	representation	of	the	structure	of	an	object	of	investigation	by	a	graph	representing	a	
relational	structure.	It	is	because	of	this	general	nature	that	graphs	have	been	used	in	many	diverse	branches	of	science	
including	bioinformatics,	molecular	and	systems	biology,	theoretical	physics,	computer	science,	chemistry,	engineering,	
drug	discovery,	and	linguistics,	to	name	just	a	few.	An	important	feature	of	the	book	“Statistical	and	Machine	Learning	
Approaches	for	Network	Analysis”	is	to	combine	theoretical	disciplines	such	as	graph	theory,	machine	learning,	and	
statistical	data	analysis	and,	hence,	to	arrive	at	a	new	field	to	explore	complex	networks	by	using	machine	learning	
techniques	in	an	interdisciplinary	manner.	The	age	of	network	science	has	definitely	arrived.	Large‐scale	generation	of	
genomic,	proteomic,	signaling,	and	metabolomic data	is	allowing	the	construction	of	complex	networks	that	provide	a	new	
framework	for	understanding	the	molecular	basis	of	physiological	and	pathological	states.	Networks	and	network‐based	
methods	have	been	used	in	biology	to	characterize	genomic	and	genetic	mechanisms	as	well	as	protein	signaling.	Diseases	
are	looked	upon	as	abnormal	perturbations	of	criticalcellular networks.	Onset,	progression,	and	intervention	in	complex	
diseases	such	as
cancer	and	diabetes	are	analyzed	today	using	network	theory.	Once	the	system	is	represented	by	a	network,	methods	of	
network	analysis	can	be	applied	to	extract	useful	information	regarding	important	system	properties	and	toinvestigate its	
structure	and	function.	Various	statistical	and	machine	learning	methods
have	been	developed	for	this	purpose	and	have	already	been	applied	to	networks.	
Dehmer,	M.	&	Basak,	S.	C.	2012.	Statistical	and	Machine	Learning	Approaches	for	Network	Analysis,	Wiley	Online	Library.
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The	concept	of	network	structures	is	fascinating,	compelling	and	powerful	and	
applicable	in	nearly	any	domain	at	any	scale.		
Network	theory	can	be	traced	back	to	graph	theory,	developed	by	Leonhard	Euler	
in	1736	(see	→Slide	5‐8).	However,	stimulated	by	works	e.g.	from	Barabási,	Albert	
&	Jeong (1999),	research	on	complex	networks	has	only	recently	been	applied	to	
biomedical	informatics.	As	an	extension	of	classical	graph	theory,	see	for	example	
(Diestel,	2010),	complex	network	research	focuses	on	the	characterization,	
analysis,	modeling	and	simulation	of	complex	systems	involving	many	elements	
and	connections,	examples	including	the	internet,	gene	regulatory	networks,	
protein‐protein	networks,	social	relationships	and	the	Web	and	many	more.	
Attention	is	given	not	only	to	try	to	identify	special	patterns	of	connectivity,	such	as	
the	shortest	average	path	between	pairs	of	nodes	(Newman,	2003),	but	also	to	
consider	the	evolution	of	connectivity	and	the	growth	of	networks,	an	example	
from	biology	being	the	evolution	of	protein‐protein	interaction	networks	in	
different	species	(→Slide	5‐8).	In	order	to	understand	complex	biological	systems,	
the	three	following	key	concepts	need	to	be	considered:
(i)	emergence,	the	discovery	of	links	between	elements	of	a	system	because	the	
study	of	individual	elements	such	as	genes,	proteins	and	metabolites	is	insufficient	
to	explain	the	behavior	of	whole	systems;	
(ii)	robustness,	biological	systems	maintain	their	main	functions	even	under	
perturbations	imposed	by	the	environment;	and	
(iii)	modularity,	vertices	sharing	similar	functions	are	highly	connected.	Network	
theory	can	largely	be	applied	for	biomedical	informatics,	because	many	tools	are	
already	available	(Costa,	Rodrigues	&	Cristino,	2008).
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Figure	1	p.74		‐ preceding	to	the	yeast	protein network	
A	graph	G(V,E)	describes	a	structure	which	consists	of	nodes	aka	vertices	V,	
connected	by	a	set	of	pairs	of	distinct	nodes	(links),	called	edges	E	{a,b}	with	
a,b∈V;a≠b.	
Graphs	containing	cycles	and/or	alternative	paths	are	referred	to	as	networks.	The	
vertexes	and	edges	can	have	a	range	of	properties	defined	as	colors,	which	also	
may	have	quantitative	values,	referred	to	as	weights.	In	this	Slide	we	see	the	basic	
building	block	symbols	of	a	biological	network	as	used	in	bioinformatics.		The	blue	
dots	are	serving	as	network	hubs,	the	red	block	is	a	critical	node	(on	a	critical	link),	
the	white	balls	are	bottle	necks,	the	stars	second	order	hubs	etc.	(Hodgman,	French	
&	Westhead,	2010).
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In	order	to	represent	network	data	in	computers	it	is	not	comfortable	to	use	sets;	
more	practical	are	matrices.	The	simplest	form	of	a	graph	representation	is	the	so	
called	adjacency	matrix.	In	this	Slide	we	see	an	undirected	(left)	and	a	directed	
graph	and	their	respective	adjacency	matrices.	If	the	graph	is	undirected,	the	
adjacency	matrix	is	symmetric,	i.e.,	the	elements	aij =	aji for	any	i and	j.
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This	Tool	is	a	nice	example	on	the	usefulness	of	adjacency	matrices:	The	InfoVis
Toolkit	is	an	interactive	graphics	toolkit	developed	by	Jean‐Daniel	Fekete at	INRIA	
(The	French	National	Institute	for	Computer	Science	and	Control).	The	toolkit	
implements	nine	types	of	visualization:	Scatter	Plots,	Time	Series,	Parallel	
Coordinates	and	Matrices	for	tables;	Node‐Link	diagrams,	Icicle	trees	and	Tree	
maps	for	trees;	Adjacency	Matrices	and	Node‐Link	diagrams	for	graphs.	Node‐Link	
visualizations	provides	several	variants	(8	for	graphs	and	4	for	trees).	There	are	
also	a	number	of	interactive	controls	and	information	displays,	including	dynamic	
query	sliders,	fisheye	lenses,	and	excentric labels.	Information	about	the	InfoVis
toolkit	can	be	found	at	http://ivtk.sourceforge.net	
The	InfoVis Toolkit	provides	interactive	components	such	as	range	sliders	and	
tailored	control	panels	required	to	configure	the	visualizations.	These	components	
are	integrated	into	a	coherent	framework	that	simplifies	the	management	of	rich	
data	structures	and	the	design	and	extension	of	visualizations.	Supported	data	
structures	include	tables,	trees	and	graphs.	All	visualizations	can	use	fisheye	lenses	
and	dynamic	labeling	(Fekete,	2004).
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Illustration	of	the	meaning	of	commonly	used	terms.	The	process	of	digital	image
formation	in	microscopy	is	described	in	other	books.	Image	processing	takes	an	
image	as	input
and	produces	a	modified	version	of	it	(in	the	case	shown,	the	object	contours	are	
enhanced	using
an	operation	known	as	edge	detection,	described	in	more	detail	elsewhere	in	this	
booklet).	Image
analysis	concerns	the	extraction	of	object	features	from	an	image.	In	some	sense,	
computer	graphics	is	the	inverse	of	image	analysis:	it	produces	an	image	from	
given	primitives,	which	could	be
numbers	(the	case	shown),	or	parameterized	shapes,	or	mathematical	functions.	
Computer	vision
aims	at	producing	a	high‐level	interpretation	of	what	is	contained	in	an	image.	This	
is	also	known
as	image	understanding.	Finally,	the	aim	of	visualization	is	to	transform	higher‐
dimensional	image	data	into	a	more	primitive	representation	to	facilitate	exploring	
the	dat
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The	truly	multi‐disciplinary	network	science	has	led	to	a	wide	variety	of	quantitative	
measurements	of	their	topological	characteristics	(Costa	et	al.,	2007).	The	identification	between	a	
graph	and	an	adjacency	matrix	makes	all	the	powerful	methods	of	linear	algebra,	graph	theory	and	
statistical	mechanics	available	to	us	for	investigating	specific	network	characteristics	:
Order	(a	in	Figure	Slide	5‐11)	=	total	number	of	nodes	n
Size	=	total	number	of	links:
∑_i▒∑_j▒a_ij
Clustering	Coefficient	(b	in	Slide	5‐11)	=	the	degree	of	concentration	of	the	connections	of	the	
node’s	neighbors	in	a	graph	and	gives	a	measure	of	local	inhomogeneity	of	the	link	density,	i.e.	the	
level	of	connectedness	of	the	graph.	It	is	calculated	as	the	ratio	between	the	actual	number	ti of	
links	connecting	the	neighborhood	(the	nodes	immediately	connected	to	a	chosen	node)	of	a	node	
and	the	maximum	possible	number	of	links	in	that	neighborhood:
C_i=(2t_i)/(k(k_i‐1))
For	the	whole	network,	the	clustering	coefficient	is	the	arithmetic	mean:
C=1/n	∑_i▒C_i
Path	length	(c	in	Slide	5‐11)	=	is	the	arithmetical	mean	of	all	the	distances;	The	characteristic	path	
length	of	node	i provides	information	about	how	close	node	i is	connected	to	all	other	nodes	in	the	
network	and	is	given	by	the	distance	d(i,j)	between	node	i and	all	other	nodes	j	in	the	network.	
The	Path	length	l	provides	important	information	about	the	level	of	global	communication	
efficiency	of	a	network:
l=1/(n(n‐1))	∑_(i≠j)▒d_ij
Note:	Numerical	methods,	e.g.	the	Dijkstra's algorithm	(1959)	are	used	to	calculate	all	the	possible	
paths	between	any	two	nodes	in	a	network.	

24WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



Centrality	(d	in	Slide	5‐12)	=	the	level	of	“betweenness‐ centrality”	of	a	node	i;	it	
indicates	how	many	of	the	shortest	paths	between	the	nodes	of	the	network	pass	
through	node	i.	A	high	“betweenness‐centrality”	indicates	that	this	node	is	
important	in	interconnecting	the	nodes	of	the	network,	marking	a	potential	hub	
role	(refer	to	→Slide	5‐8)	of	this	node	in	the	overall	network.	
Nodal	degree	(e	in	Slide	5‐12)	=	number	of	links	connecting	i to	its	neighbors.	The	
degree	of	node	i is	defined	as	its	total	number	of	connections.	
k_i=∑_i▒a_ij
The	degree	probability	distribution	P(k)	describes	the	p(x)	that	a	node	is	
connected	to	k	other	nodes	in	the	network.
Modularity	(f	in	Slide	5‐12)	=	describes	the	possible	formation	of	communities	in	
the	network,	indicating	how	strong	groups	of	nodes	form	relative	isolated	sub‐
networks	within	the	full	network	(refer	also	to	→Slide	5‐8))	.
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Regular	network	(a	in	Slide	5‐13)	has	a	local	character,	characterized	by	a	high	clustering‐
coefficient	(c	in	Slide	5‐13)	and	a	high	path	length	(L,	Slide	5‐13).	It	takes	a	large	number	of	steps	to	
travel	from	a	specific	node	to	a	node	on	the	other	end	of	the	graph.	A	special	case	of	a	regular	
network	is	the:
Random	network,	where	all	connections	are	distributed	randomly	across	the	network;	the	result	is	
a	graph	with	a	random	organization	(outer	right	in	Slide	5‐13).	In	contrast	to	the	local	character	of	
the	regular	network,	a	random	network	has	a	more	global	character,	with	a	low	C	and	a	much	
shorter	path	length	L	than	the	regular	network.		A	particular	case	is	the:
Small‐world	network	(center	of	Slide	5‐13)	which	are	very	robust	and	combine	a	high	level	of	local	
and	global	efficiency.	Watts	&	Strogatz (1998)	showed	that	with	a	low	probability	p	of	randomly	
reconnecting	a	connection	in	the	regular	network,	a	so‐called	small‐world	organization	arises.	It	
has	both	a	high	C	and	a	low	L,	combining	a	high	level	of	local	clustering	with	still	a	short	average	
travel	distance.	Many	networks	in	nature	are	small‐world	(e.g.	internet,	protein‐networks,	social	
networks,	functional	and	structural	brain	network	etc.),	combining	a	high	level	of	segregation	with	
a	high	level	of	global	information	integration.	In	addition,	such	networks	can	have	a	heavy	tailed	
connectivity	distribution,	in	contrast	to	random	networks	in	which	the	nodes	roughly	all	have	the	
same	number	of	connections.
Scale‐free	networks	(B	in	Slide	5‐13)	are	characterized	by	a	degree	probability	distribution	that	
follows	a	power‐law	function,	indicating	that	on	average	a	node	has	only	a	few	connections,	but	
with	the	exception	of	a	small	number	of	nodes	that	are	heavily	connected.	These	nodes	are	often	
referred	to	as	hub	nodes	(see	→Slide	5‐8)	and	they	play	a	central	role	in	the	level	of	efficiency	of	the	
network,	as	they	are	responsible	for	keeping	the	overall	travel	distance	in	the	network	to	a	
minimum.	As	these	hub	nodes	play	a	key	role	in	the	organization	of	the	network,	scale‐free	
networks	tend	to	be	vulnerable	to	specialized	attack	on	the	hub	nodes.	
Modular	networks	(c	in	Slide	5‐13)	show	the	formation	of	so‐called	communities,	consisting	of	a	
subset	of	nodes	that	are	mostly	connected	to	their	direct	neighbors	in	their	community	and	to	a	
lesser	extend	to	the	other	nodes	in	the	network.	Such	networks	are	characterized	by	a	high	level	of	
modularity	of	the	nodes.
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There	are	many	ways	to	construct	a	proximity	graph	representation	from	a	set	of	data	points	that	
are	embedded	in	R^d.
Let	us	consider	a	set	of	data	points		{x_1,...,x_n}	∈	R^d .
To	each	data	point	we	associate	a	vertex	of	a	proximity	graph	G	to	define	a	set	of	vertices	V	=	
{v1,v2,...,vn}.	Determining	the	edge	set	E	of	the	proximity	graph	G	requires	defining	the	neighbors	
of	each	vertex	vi	according	to	its	embedding	xi.	
Consequently,	a	proximity	graph	is	a	graph	in	which	two	vertices	are	connected	by	an	edge	iff	the	
data	points	associated	to	the	vertices	satisfy	particular	geometric	requirements.	Such	particular	
geometric	requirements	are	usually	based	on	a	metric	measuring	the	distance	between	two	data	
points.	A	usual	choice	of	metric	is	the	Euclidean	metric.	Look	at	the	slide:
a)	is	our	initial	set	of	points	in	the	plane	R^2
b)	ε‐ball	graph	vi	∼	vj if	xj ∈	B(vi;	ε)
c)	k‐nearest‐neighbor	graph	(k‐NNG):	vi	∼	vj if	the	distance	between	xi	and	xj is	among	the	k‐th
smallest	distances	from	xi	to	other	data	points.	The	k‐NNG	is	a	directed	graph	since	one	can	have	xi	
among	the	k‐nearest	neighbors	of	xj but	not	vice	versa.
d)	Euclidean	Minimum	Spanning	Tree	(EMST)	graph	is	a	connected	tree	sub‐graph	that	contains	all	
the	vertices	and	has	a	minimum	sum	of	edge	weights.	The	weight	of	the	edge	between	two	vertices	
is	the	Euclidean	distance	between	the	corresponding	data	points.
e)	Symmetric	k‐nearest‐neighbor	graph	(Sk‐NNG):	vi	∼	vj if	xi	is	among	the	k‐nearest	neighbors	of	
y	or	vice	versa.
f)	Mutual	k‐nearest‐neighbor	graph	(Mk‐NNG):	vi	∼	vj if	xi	is	among	the	k‐nearest	neighbors	of	y	
and	vice	versa.	All	vertices	in	a	mutual	k‐NN	graph	have	a	degree	upper‐bounded	by	k,	which	is	not	
usually	the	case	with	standard	k‐NN	graphs.
g)	Relative	Neighborhood	Graph	(RNG):	vi	∼	vj iff	there	is	no	vertex	in
B(vi	;	D(vi,vj))	∩B(vj ;	D(vi,vj))	.
h)	Gabriel	Graph	(GG)
i)	The	β‐Skeleton	Graph	(β‐SG):	
For	details	please	refer	to	(Lézoray &	Grady,	2012),	or	to	a	classical	graph	theory	book,	e.g.	(Harary,	
1969),	(Bondy &	Murty,	1976),	(Golumbic,	2004),	(Diestel,	2010)
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Slide	5‐16:	Graphs	from	Images
In	this	slide	we	see	the	examples	of	
a)	a	real	image	with	the	quadtree tessellation,	
b)	the	region	adjacency	graph	associated	to	the	quadtree partition,	
c)	Irregular	tessellation	using	image‐dependent	superpixel Watershed	
Segmentation		(Vincent	&	Soille,	1991)
d)	irregular	tessellation	using	image‐dependent	SLIC	superpixels (Lucchi et	al.,	
2010)
SLIC	=	Simple	Linear	Iterative	Clustering)
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A	straightforward	implementation	of	the	original	Vincent‐Soille algorithm	is	
difficult	if	plateaus	occur.	Therefore,	an	alternative	approach	was	proposed	by	
(Meijster &	Roerdink,	1995),	in	which	the	image	is	first	transformed	to	a	directed	
valued	graph	with	distinct	neighbor	values,	called	the	components	graph	of	f.	On	
this	graph	the	watershed	transform	can	be	computed	by	a	simplied version	of	the	
Vincent‐Soille algorithm,	where	fifo queues	are	no	longer	necessary,	since	there	
are	no	plateaus	in	the	graph	(Roerdink &	Meijster,	2000).

30WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



The	original	natural	digital	image	is	first	transformed	into	grey‐scale,	then	the	
Watershed	algorithm	is	applied	and	then	the	centroid	function	calculated,	the	
results	are	representative	point	sets	in	the	plane.
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The	Delaunay	Triangulation	(DT):	vi	∼	vj iff	there	is	a	closed	ball	B(•	;	r)	with
vi	and	vj on	its	boundary	and	no	other	vertex	vk contained	in	it.	The	dual	to	the	DT	
is	the	Voronoi	irregular	tessellation	where	each	Voronoi	cell	is	defined	by	the	set	{x	
∈	Rn |	D(x,vk)	≤	D(x,vj)	for	all	vj =	vk}.	In	such	a	graph,	∀	vi,deg (vi)=3.			
(Lézoray &	Grady,	2012)
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This	animation	shows	the	construction	of	a	Delaunay	graph:	First	the	red	points	on	
the	plane	are	drawn,	then	we	insert	the	blue	edges	and	the	blue	vertices	on	the	
Voronoi	graph,	finally	he	red	edges	drawn	build	the	Delaunay	graph	(Kropatsch,	
Burge	&	Glantz,	2001).	

http://oldwww.prip.tuwien.ac.at/research/research‐areas/structure‐and‐
topology/graphs‐in‐image‐analysis/graphs‐in‐image‐analysis/use‐of‐graphs‐in‐
image‐analysis/voronoi‐graph‐and‐delaunay‐graph
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In	this	Slide	we	see	the	evaluated	information‐theoretic	network	measures	on	
publication	networks.	Here	from	the	excellence	network	of	RWTH	Aachen	
University.	Those	measures	can	be	understood	as	graph	complexity	measures	
which	evaluate	the	structural	complexity	based	on	the	corresponding	concept.	A	
possible	useful	interpretation	of	these	measures	helps	to	understand	the	
differences	in	subgraphs of	a	cluster.	For	example	one	could	apply	community	
detection	algorithms	and	compare	entropy	measures	of	such	detected	
communities.	Relating	these	data	to	social	measures	(e.g.	balanced	score	card	data)	
of	sub‐communities	could	be	used	as	indicators	of	collaboration	success	or	lack	
thereof.		The	node	size	shows	the	node	degree	whereas	the	node	color	shows	the	
betweenness centrality,	darker	color	means	higher	centrality	(Holzinger	et	al.,	
2013a).	
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A	further	example	shall	demonstrate	the	usefulness	of	graph	theory	and	network	analysis:	This	
graph	shows	the	medical	knowledge	space	of	a		standard	quick	reference	guide	for	emergency	
doctors	and	paramedics	in	the	German	speaking	area.	It	has	been	subsequently	developed,	tested	
in	the	medical	real	world	and	constantly	improved	for	20	years	by	Dr.	med.	Ralf	Müller,	emergency	
doctor	at	Graz‐LKH	University	Hospital	and	is	practically	in	the	pocket	of	every	emergency	and	
family	doctor	and	paramedics	in	the	German	speaking	area	(Holzinger	et	al.,	2013b).	
Up	to	know	we	know	that	Graphs	and	Graph‐Theory	are	powerful	tools	to	map	
data	structures	and	to	find	novel	connections	between	single	data	objects	
(Strogatz,	2001),	(Dorogovtsev &	Mendes,	2003).	The	inferred	graphs	can	be	
further	analyzed	by	using	graph‐theoretical	and	statistical	and	machine	learning	
techniques	(Dehmer,	Emmert‐Streib &	Mehler,	2011).	A	mapping	of	the	already	
existing	and	in	the	medical	practice	approved	“knowledge	space”	as	a	conceptual	
graph	and	the	subsequent	visual	and	graph‐theoretical	analysis	may	provide	novel	
insights	on	hidden	patterns	in	the	data.	Another	benefit	of	the	graph‐based	data	
structure	is	in	the	applicability	of	methods	from	network	topology	and	network	
analysis	and	data	mining,	e.g.	small‐world	phenomenon	(Barabasi &	Albert,	1999),	
(Kleinberg,	2000),	and	cluster	analysis		(Koontz,	Narendra &	Fukunaga,	1976),	
(Wittkop et	al.,	2011).	
The	graph‐theoretic	data	of	the	graph	seen	in	this	Slide	include:
Number	of	nodes	=	641,	number	of	edges	=	1250,	red	are	agents,	black	are	
conditions,	blue	are	pharmacological	groups,	grey	are	other	documents.	The	
average	degree	of	this	graph	=	3.888,	the	average	path	length	=	4.683,	the	network	
diameter	=	9.
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The	nodes	of	the	sample	graph	represent:	drugs,	clinical	guidelines,	patient	
conditions	(indication,	contraindication),	pharmacological	groups,	tables	and	
calculations	of	medical	scores,	algorithms	and	other	medical	documents;	and	the	
edges	represent	3	crucial	types	of	relations	inducing	medical	relevance	between	
two	active	substances,	i.e.:	pharmacological	groups,	indications	and	contra‐
indications.	The	following	example	will	demonstrate	the	usefulness	of	this	
approach.	
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This	example	shows	us	how	convenient	we	can	find	which	path	between	two	nodes	
is	the	shortest	as	well	as	the	navigation	way	between	these	nodes.	Computing	
shortest	paths	is	a	fundamental	and	ubiquitous	problem	in	network	analysis.	We	
can,	e.g.	apply	the	Dijkstra‐algorithm,	solves	the	shortest	path	problem	for	a	graph	
with	non‐negative	edge	path	costs,	producing	a	shortest	path	tree.	This	algorithm	
is	often	used	in	routing	and	as	a	subroutine	in	other	graph	algorithms:	For	a	given	
node,	the	algorithm	finds	the	path	with	lowest	cost	(i.e.	the	shortest	path)	between	
that	node	and	every	other	node(Henzinger et	al.,	1997).	
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Here	we	see	the	relationship	between	Adrenaline	(center	black	node)	and	
Dobutamine (top	left	black	node),	Blue:	Pharmacological	Group,	Dark	red:	
Contraindication;	Light	red:	Condition,	the	Green	nodes	(from	dark	to	light)	are:
1.	Application	(one	ore	more	indications	+		corresponding	dosages)
2.	Single	indication	with	additional	details	(e.	g.	“VF	after	3rd	Shock”)
3.	Condition	(e.g.	VF,	Ventricular	Fibrillation)
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Our	brain	forms	one	integrative	complex	network,	linking	all	brain	regions	and	
sub‐networks	together	(Van	Den	Heuvel &	Hulshoff Pol,	2010).	Examining	the	
organization	of	this	network	provides	insights	in	how	our	brain	works.	Graph	
theory	provides	a	framework	in	which	the	topology	of	complex	networks	can	be	
examined;	thus	can	reveal	novelties	about	both	the	local	and	global	organization	of	
functional	brain	networks.	In	the	slide	we	can	see	how	the	modeling	of	the	
functional	brain	by	a	graph	works:	edges	are	the	connections	between	regions	that	
are	functionally	linked.	First,	the	collection	of	nodes	is	defined	(A),	second	the	
existence	of	functional	connections	between	the	nodes	in	the	network	needs	to	be	
defined,	resulting	in	a	connectivity	matrix	(B).	Finally,	the	existence	of	a	connection	
between	two	points	can	be	defined	as	whether	their	level	of	functional	
connectivity	exceeds	a	certain	predefined	threshold	(C)	(Van	Den	Heuvel &	
Hulshoff Pol,	2010).	
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Development	of	the	human	heart	starts	2	weeks	after	fertilization,	with	the	formation	of	
the	cardiac	crescent	and	the	subsequent	formation	and	looping	of	the	primitive	heart	tube.
Insight	into	the	biology	of	molecular	networks	is	an	important	field,	as	anomalies	in	these	
systems	underlie	a	wide	spectrum	of	polygenetic	human	disorders,	ranging	from	
schizophrenia	to	congenital	heart	disease	(CHD).	Understanding	the	functional	
architecture	of	networks	that	organize	the	development	of	organs,	see	e.g.	(Chien,	Domian
&	Parker,	2008),	lays	the	foundation	of	novel	approaches	in	regenerative	medicine,	since	
manipulation	of	such	systems	is	necessary	for	success	of	tissue	engineering	technologies	
and	stem	cell	therapy.	
Lage et	al.	(2010)	developed	a	framework	for	gaining	new	insights	into	the	systems	
biology	of	the	protein	networks	driving	organ	development	and	related	polygenic	human	
disease	phenotypes,	exemplified	with	heart	development	and	CHD.	In	the	Slide	we	see	
examples	of	four	functional	networks	driving	the	development	of	different	anatomical	
structures	in	the	human	heart.	These	four	networks	are	constructed	by	analyzing	the	
interaction	patterns	of	four	different	sets	of	cardiac	development	(CD):	proteins	
corresponding	to	the	morphological	groups	‘atrial	septal defects,’	‘abnormal	
atrioventricular valve	morphology,’	‘abnormal	myocardial	trabeculae morphology,’	and	
‘abnormal	outflow	tract	development’.	CD	proteins	from	the	relevant	groups	are	shown	in	
orange	and	their	interaction	partners	are	shown	in	gray.	Functional	modules	annotated	by	
literature	curation are	indicated	with	a	colored	background.	Centrally	in	the	Figure	is	a	
haematoxylin‐eosin	stained	frontal	section	of	the	heart	from	a	37‐day	human	embryo,	
where	tissues	affected	by	the	four	networks	are	marked;	AS	(developing	atrial	septum),	
EC	(endocardial cushions,	which	are	anatomical	precursors	to	the	atrioventricular valves),	
VT	(developing	ventricular	trabeculae),	and	OFT	(developing	outflow	tract).	
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In	this	Slide	we	see	an	overview	of	the	modular	organization	of	heart	development:	
(A)	Protein	interaction	networks		are	plotted	at	the	resolution	of	functional	
modules.	Each	module	is	color	coded	according	to	functional	assignment	as	
determined	by	literature	curation.	The	amount	of	proteins	in	each	module	is	
proportional	to	the	area	of	its	corresponding	node.	Edges	indicate	direct	(lines)	or	
indirect	(dotted	lines)	interactions	between	proteins	from	the	relevant	modules.	
(B)	Recycling	of	functional	modules	during	heart	development.	The	bars	represent	
functional	modules	and	recycling	is	indicated	by	arrows.	The	bars	follow	the	color	
code	of	(A)	and	the	height	of	the	bars	represent	the	number	of	proteins	in	each	
module,	as	shown	left	on	the	y	axis	(Lage et	al.,	2010).
Note:	Phenotype	=	an	organism's	observable	characteristics	(traits),	e.g.	
morphology,	biochemical/physiological	properties,	behaviour,	etc.	Phenotypes	
result	from	the	expression	of	an	organism's	genes	as	well	as	the	influence	of	
environmental	factors	and	the	interactions	between	them.	Genotype	=	inherited	
instructions	within	its	genetic	code.	
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Diseases	(e.g.	obesity,	diabetes,	atherosclerosis	etc.)	result	from	multiple	genetic	and	environmental	factors,	
and	importantly,	interactions	between	genetic	and	environmental	factors.	This	Slide	shows	the	vast	networks	
of	molecular	interactions.	It	can	be	seen	that	the	gastrointestinal	(GI)	tract,	vasculature,	immune	system,	heart	
and	brain	are	all	potentially	involved	in	either	the	onset	of	diseases	such	as	atherosclerosis	or	in	comorbidities	
such	as	myocardial	infarction	and	stroke	brought	on	by	such	diseases.	Further,	the	risks	of	comorbidities	for	
diseases	such	as	atherosclerosis	are	increased	by	other	diseases,	such	as	hypertension,	which	may,	in	turn,	
involve	other	organs,	such	as	kidney.	The	role	that	each	organ	and	tissue	type	plays	in	a	given	disease	is	
largely	determined	by	genetic	background	and	environment,	where	different	perturbations	to	the	genetic	
background	(perturbations	corresponding	to	DNA	variations	that	affect	gene	function,	which,	in	turn,	leads	to	
disease)	and/or	environment	(changes	in	diet,	levels	of	stress,	level	of	activity,	and	so	on)	define	the	subtypes	
of	disease	manifested	in	any	given	individual.	Although	the	physiology	of	diseases	such	as	atherosclerosis	is	
beginning	to	be	better	understood,	what	have	not	been	fully	exploited	to	data	are	the	vast	networks	of	
molecular	interactions	within	the	cells.	
We	see	clearly	in	the	Slide	that	there	is	a	diversity	of	molecular	networks	functioning	in	any	given	tissue,	
including	genomics	networks,	networks	of	coding	and	noncoding	RNA,	protein	interaction	networks,	protein	
state	networks,	signaling	networks,	and	networks	of	metabolites.	Further,	these	networks	are	not	acting	in	
isolation	within	each	cell,	but	instead	interact	with	one	another	to	form	complex,	giant	molecular	networks	
within	and	between	cells	that	drive	all	activity	in	the	different	tissues,	as	well	as	signaling	between	tissues.	
Variations	in	DNA	and	environment	lead	to	changes	in	these	molecular	networks,	which,	in	turn,	induce	
complicated	physiological	processes	that	can	manifest	as	disease.	Despite	this	vast	complexity,	the	classic	
approach	to	elucidating	genes	that	drive	disease	has	focused	on	single	genes	or	single	linearly	ordered	
pathways	of	genes	thought	to	be	associated	with	disease.	This	narrow	approach	is	a	natural	consequence	of	
the	limited	set	of	tools	that	were	available	for	querying	biological	systems;	such	tools	were	not	capable	of	
enabling	a	more	holistic	approach,	resulting	in	the	adoption	of	a	reductionist	approach	to	teasing	apart	
pathways	associated	with	complex	disease	phenotypes.	Although	the	emerging	view	that	complex	biological	
systems	are	best	modeled	as	highly	modular,	fluid	systems	exhibiting	a	plasticity	that	allows	them	to	adapt	to	
a	vast	array	of	conditions,	the	history	of	science	demonstrates	that	this	view,	although	long	the	ideal,	was	
never	within	reach,	given	the	unavailability	of	tools	adequate	to	carrying	out	this	type	of	research.	The	
explosion	of	large‐scale,	high‐throughput	technologies	in	the	biological	sciences	over	the	past	15	to	20	years	
has	motivated	a	rapid	paradigm	shift	away	from	reductionism	in	favor	of	a	systems‐level	view	of	biology	
(Schadt &	Lum,	2006).
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The	three	main	types	of	biological	networks:	(a)	a	transcriptional	regulatory	
network	has	two	components:	transcription	factor	(TF)	and	target
genes	(TG),	where	TF	regulates	the	transcription	of	TGs;	(b)	protein‐protein	
interaction	networks:	two	proteins	are	connected	if	there	is	a	docking	between
them;	(c)	a	metabolic	network	is	constructed	considering	the	reactants,	chemical	
reactions	and	enzymes.

43WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



The	extreme	complexity	of	the	E.	coli	transcriptional	regulatory	network.	In	this	graphical	representation,	nodes	are	genes,	
and	edges	represent	regulatory	interactions.	The	network	was	reconstructed	using	data	from	the	RegulonDB (Salgado	et	al.	
2006).	This	figure	highlights	the	extreme	complexity	in	regulatory	networks.	To	obtain	a	deeper	understanding	of	
regulatory	complexity,	scientists	must	first	discover	biologically	relevant	organizational	principles	to	unravel	the	hidden	
architecture	governing	these	networks	(see	Nature	Education:	http://www.nature.com/scitable/content/the‐extreme‐
complexity‐of‐the‐e‐coli‐14457504)

The	complexity	of	organisms	arises	rather	as	a	consequence	of	elaborated	regulations	of	gene	expression	than	from	
differences	in	genetic	content	in	terms	of	the	number	of	genes.	The	transcription	network	is	a	critical	system	that	regulates
gene	expression	in	a	cell.	Transcription	factors	(TFs)	respond	to	changes	in	the	cellular	environment,	regulating	the	
transcription	of	target	genes	(TGs)	and	connecting	functional	protein	interactions	to	the	genetic	information	encoded	in	
inherited	genomic	DNA	in	order	to	control	the	timing	and	sites	of	gene	expression	during	biological	development.	The	
interactions	between	TFs	and	TGs	can	be	represented	as	a	directed	graph:	The	two	types	of	nodes	(TF	and	TG)	are	
connected	by	arcs	(see	→Slide	5‐31,	arrows)	when	regulatory	interaction	occurs	between	regulators	and	targets.	
Transcriptional	regulatory	networks	display	interesting	properties	that	can	be	interpreted	in	a	biological	context	to	better	
understand	the	complex	behavior	of	gene	regulatory	networks.	At	a	local	network	level,	these	networks	are	organized	in	
substructures	such	as	motifs	and	modules.	Motifs	represent	the	simplest	units	of	a	network	architecture	required	to	create	
specific	patterns	of	inter‐regulation	between	TFs	and	TGs.	Three	most	common	types	of	motifs	can	be	found	in	gene	
regulatory	networks:	
(1)	single	input,	
(2)	multiple	input	and
(3)	feed‐forward	loop	
Target	genes	belonging	to	the	same	single	and	multiple	input	motifs	tend	to	be	co‐expressed,	and	the	level	of	co‐expression	
is	higher	when	multiple	transcription	factors	are	involved.
Modularity	in	the	regulatory	networks	arises	from	groups	of	highly	connected	motifs	that	are	hierarchically	organized,	in	
which	modules	are	divided	into	smaller	ones.	The	evolution	of	gene	regulatory	networks	mainly	occurs	through	extensive	
duplication	of	transcription	factors	and	target	genes	with	inheritance	of	regulatory	interactions	from	ancestral	genes	while	
the	evolution	of	motifs	does	not	show	common	ancestry	but	is	a	result	of	convergent	evolution	(Costa,	Rodrigues	&	Cristino,	
2008)	.	
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The	interactions	between	proteins	are	essential	to	keep	the	molecular	systems	of	living	
cells	working	properly.	Protein‐protein	interaction	(PPI)	is	important	for	various	
biological	processes	such	as	cell‐cell	communication,	the	perception	of	environmental	
changes,	protein	transport	and	modification.	Complex	network	theory	is	suitable	to	study	
protein‐protein	interaction	maps	because	of	its	universality	and	integration	in	
representing	complex	systems.	In	complex	network	analysis	each	protein	is	represented	
as	a	node	and	the	physical	interactions	between	proteins	are	indicated	by	the	edges	in	the	
network	.
Many	complex	networks	are	naturally	divided	into	communities	or	modules,	where	links	
within	modules	are	much	denser	than	those	across	modules	(e.g.	human	individuals	
belonging	to	the	same	ethnic	groups	interact	more	than	those	from	different	ethnic	
groups).	Cellular	functions	are	also	organized	in	a	highly	modular	manner,	where	each	
module	is	a	discrete	object	composed	of	a	group	of	tightly	linked	components	and	
performs	a	relatively	independent	task.	It	is	interesting	to	ask	whether	this	modularity	in	
cellular	function	arises	from	modularity	in	molecular	interaction	networks	such	as	the	
transcriptional	regulatory	network	and	PPI	network.	
The	Slide	shows	a	hypothetical	protein	complex	(A).	Binary	protein‐protein	interactions	
(PPI)	are	depicted	by	direct	contacts	between	proteins.	Although	five	proteins	(A,	B,	C,	D,	
and	E)	are	identified	through	the	use	of	a	bait	protein	(red),	only	A	and	D	directly	bind	to	
the	bait.	(B)	shows	the	true	PPI	network	topology	of	the	protein	complex	is	shown	in.	(C)	
depicts	the	PPI	network	topology	of	the	protein	complex	inferred	by	the	‘‘matrix’’	model,	
where	all	proteins	in	a	complex	are	assumed	to	interact	with	each	other.	Finally	(D)	
demonstrates	the	PPI	network	topology	of	the	protein	complex	inferred	by	the	‘‘spoke’’	
model,	where	all	proteins	in	a	complex	are	assumed	to	interact	with	the	bait;	but	no	other	
interactions	are	allowed	(Wang	&	Zhang,	2007).
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Correlated	motif	mining	(CMM)	is	the	challenge	to	find	overrepresented	pairs	of	patterns	(motifs),	in	
sequences	of	interacting	proteins.	Algorithmic	solutions	for	CMM	thereby	provide	a	computational	method	for	
predicting	binding	sites	for	protein	interaction.	The	task	is	basically	to	represent	motifs	X	and	Y	(Figure	119)	
to	truly	represent	an	overrepresented	consensus	pattern	in	the	sequences	of	the	proteins	in	VX,	respectively	
VY,	in	order	to	increase	the	likelihood	that	they	correspond	or	overlap	with	a	so	called	binding	site—a	site	on	
the	surface	of	the	molecule	that	makes	interactions	between	proteins	from	VX	and	VY	possible	through	a	
molecular	lock‐and‐key	mechanism.
We	call	{X,Y}	a	(k_x k_y k_xy )‐motif	pair	of	a	PPI	network	
G=(V,E,λ)	if	|V_x |=	k_x,|V_y |=k_y and	|V_x∩V_y |	=	k_xy
It	is	called	complete	if	all	vertices	from	V_x are	connected	with	all	vertices	from	V_y (Boyen et	al.,	2011).

In	genetics,	a	sequence	motif	is	a	nucleotide	or	amino‐acid	sequence	pattern	that	is	widespread	and	has,	or	is	
conjectured	to	have,	a	biological	significance.	For	proteins,	a	sequence	motif	is	distinguished	from	a	structural	
motif,	a	motif	formed	by	the	three	dimensional	arrangement	of	amino	acids,	which	may	not	be	adjacent.	In	a	
chain‐like	biological	molecule,	such	as	a	protein	or	nucleic	acid,	a	structural	motif	is	a	supersecondary
structure,	which	appears	also	in	a	variety	of	other	molecules.	Motifs	do	not	allow	us	to	predict	the	biological	
functions	because	they	are	found	in	proteins	and	enzymes	with	dissimilar	functions.	Network	motifs	are	
connectivity‐patterns	(sub‐graphs)	that	occur	much	more	often	than	they	do	in	random	networks.	Most	
networks	studied	in	biology,	ecology	and	other	fields	have	been	found	to	show	a	small	set	of	network	motifs;	
surprisingly,	in	most	cases	the	networks	seem	to	be	largely	composed	of	these	network	motifs,	occurring	
again	and	again.	
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The	general	steepest	ascent	algorithm	with	abstract	neighbor	function	applied	to	
CMM	(SA‐CMM).

Since	the	decision	problem	associated	with	CMM	is	in	NP	,	we	can	efficiently	check	
if	a	motif	pair	has	higher	support	than	another	which	makes	it	possible	to	tackle	
CMM	as	a	search	problem	in	the	space	of	all	possible	(l,d)‐motif	pairs.	If	we	add	the	
assumption	that	similar	motifs	can	be	expected	to	get	similar	support,	it	has	the	
typical	form	of	a	combinatorial	optimization	problem.	In	combinatorial	
optimization,	the	objective	is	to	find	a	point	in	a	discrete	search	space	which	
maximizes	a	user‐provided	function	f.	A	number	of	heuristic	algorithms	called	
metaheuristics are	known	to	yield	stable	results,	e.g.	the	steepest	ascent	algorithm	
(Aarts &	Lenstra,	1997),	illustrated	as	pseudocode in	the	Slide.
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Metabolism	is	primarily	determined	by	genes,	environment	and	nutrition.	It	
consists	of	chemical	reactions	catalyzed	by	enzymes	to	produce	essential	
components	such	as	amino	acids,	sugars	and	lipids,	and	also	the	energy	necessary	
to	synthesize	and	use	them	in	constructing	cellular	components.	Since	the	
chemical	reactions	are	organized	into	metabolic	pathways,	in	which	one	chemical	
is	transformed	into	another	by	enzymes	and	co‐factors,	such	a	structure	can	be	
naturally	modeled	as	a	complex	network.	In	this	way,	metabolic	networks	are	
directed	and	weighted	graphs,	whose	vertices	can	be	metabolites,	reactions	and	
enzymes,	and	two	types	of	edges	that	represent	mass	flow	and	catalytic	reactions.	
One	widely	considered	catalogue	of	metabolic	pathways	available	on‐line	is	the	
Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG).	In	the	Slide	we	see	a	simple	
metabolic	network	involving	five	metabolites	M1‐M5	and	three	enzymes	E1‐E3,	of	
which	the	latter	catalyzes	an	irreversible	reaction	(Hodgman,	French	&	Westhead,	
2010).	
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Such	metabolic	structures	can	be	very	large,	as	can	be	seen	in	this	Slide.	The	
enzyme‐coding	genes	under	TrmB (this	is	the	thermococcus regulator	of	maltose	
binding)	acts	as	a	repressor	for	genes	encoding	glycolytic	enzymes	and	as	activator	
for	genes	encoding	gluconeogenic enzymes	control	included	in	the	metabolic	
pathways	shown	in	the	Slide	(13	are	unique	to	archaea and	35	are	conserved	
across	species	from	all	three	domains	of	life.	Integrated	analysis	of	the	metabolic	
and	gene	regulatory	network	architecture	reveals	various	interesting	scenarios	
(Schmid et	al.,	2009).	
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Electronic	patient	records	(EPR	remain	an	unexplored,	but	rich	data	source	for	
discovering	e.g.	correlations	between	diseases.	(Roque et	al.,	2011)	describe	a	
general	approach	for	gathering	phenotypic	descriptions	of	patients	from	medical	
records	in	a	systematic	and	non‐cohort	dependent	manner:	By	extracting	
phenotype	information	from	the	“free‐text”	(=	unstructured	information)	in	such	
records	they	demonstrated	that	they	can	extend	the	information	contained	in	the	
structured	record	data,	and	use	it	for	producing	fine‐grained	patient	stratification	
and	disease	co‐occurrence	statistics.	Their	approach	uses	a	dictionary	based	on	the	
International	Classification	of	Disease	(ICD‐10)	ontology	and	is	therefore	in	
principle	language	independent.	As	a	use	case	they	show	how	records	from	a	
Danish	psychiatric	hospital	lead	to	the	identification	of	disease	correlations,	which	
subsequently	can	be	mapped	to	systems	biology	frameworks.
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Disease‐disease	correlations.	Heatmap of	the	most	significant	100	ICD10	codes,	
based	on	ranking	the	list	of	802	candidate	pairs	by	their	comorbidity	scores.	
Chapter	colors	are	highlighted	next	to	the	ICD10	codes.	Diseases	that	occur	often	
together	have	red	color	in	the	heatmap,	while	those	with	lower	than	expected	co‐
occurrence	are	colored	blue.	The	color	label	shows	the	log2	change	of	comorbidity	
between	two	diseases
when	compared	to	the	expected	level.
doi:10.1371/journal.pcbi.1002141.g002

Roque et	al.	(2011)	have	used	text	mining	to	automatically	extract	clinically	
relevant	terms	from	5543	psychiatric	patient	records	and	mapped	these	to	disease	
codes	in	the	ICD10.	They	clustered	patients	together	based	on	the	similarity	of	
their	profiles.	The	result	is	a	patient	stratification,	based	on	more	complete	profiles	
than	the	primary	diagnosis,	which	is	typically	used.	Figure	124	illustrates	the	
general	approach	to	capture	correlations	between	different	disorders.	Several	
clusters	of	ICD10	codes	relating	to	the	same	anatomical	area	or	type	of	disorder	
can	be	identified	along	the	diagonal	of	the	heatmap,	ranging	from	trivial	
correlations	(e.g.,	different	arthritis	disorders),	to	correlations	of	cause	and	effect	
codes	(e.g.,	stroke	and	mental/behavioural disorders),	to	social	and	habitual	
correlations	(e.g.	drug	abuse,	liver	diseases	and	HIV).
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Homology	(plural:	homologies)	origins	from	Greek	ὁμολογέω (homologeo)	and	means	“to	
conform”	(in	German:	übereinstimmen)	and	has	its	origins	in	Biology	and	Anthropology,	where	the	
word	is	used	for	a	correspondence	of	structures	in	two	life	forms	with	a	common	evolutionary	
origin	(Darwin,	1859).
In	chemistry	it	is	used	for	the	relationship	between	the	elements	in	the	same	group	of	the	periodic	
table,	or	between	organic	compounds	in	a	homologous	series.	
In	mathematics	homology	is	a	formalism	for	talking	in	a	quantitative	and	unambiguous	manner	
about	how	a	space	is	connected	(Edelsbrunner &	Harer,	2010).	
Basically,	homology	is	a	concept	that	is	used	in	many	branches	of	algebra	and	topology.	Historically,	
the	term	was	first	used	in	a	topological	sense	by	Henry	Poincaré.
In	Bioinformatics,	homology	modelling is	a	mature	technique	that	can	be	used	to	address	many	
problems	in	molecular	medicine.	Homology	modelling is	one	of	the	most	efficient	methods	to	
predict	protein	structures.	With	the	increase	in	the	number	of	medically	relevant	protein	
sequences,	resulting	from	automated	sequencing	in	the	laboratory,	and	in	the	fraction	of	all	known	
structural	folds,	homology	modelling will	be	even	more	important	to	personalized	and	molecular	
medicine	in	the	future.	Homology	modelling is	a	knowledge‐based	prediction	of	protein	structures.	
In	homology	modelling a	protein	sequence	with	an	unknown	structure	(the	target)	is	aligned	with	
one	or	more	protein	sequences	with	known	structures	(the	templates).	
The	method	of	homology	modelling is	based	on	the	principle	that	homologue	proteins	have	similar	
structures.	The	prerequisite	for	successful	homology	modelling is	a	detectable	similarity	between	
the	target	sequence	and	the	template	sequences	(more	than	30%)	allowing	the	construction	of	a	
correct	alignment.	Homology	modelling is	a	knowledge‐based	structure	prediction	relying	on	
observed	features	in	known	homologous	protein	structures.	By	exploiting	this	information	from	
template	structures	the	structural	model	of	the	target	protein	can	be	constructed	(Wiltgen &	Tilz,	
2009).	
Two	well‐known	homology	modelling programs,	which	are	free	for	academic	research,	are	
MODELLER	(http://salilab.org/modeller)	and	
SWISSMODEL	(http://swissmodel.expasy.org).
The	slide	shows	the	comparison	of	two	proteins:	The	sequences	of	both	proteins	are	95%	(53	of	56)	identical	(only	residues	
20,	30	and	45	differ),	yet	the	structures	are	totally	different.	
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All the	areas	we	have	touched	in	this	lecture	are	extremely	important	towards	the	
concept	of	personalized	medicine	and	molecular	medicine	and	will	keep	us	busy	
within	the	next	decades.
Data	mining	is	maybe	the	most	central	and	most	important	computational	subject	
in	this	respect.
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All	these	approaches	are	producing	gigantic	amounts of	highly	complex	data	sets!

See	the	recent	article in	Science	– doubling	of	data	in	proteomics	every	18	months
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55

My DEDICATION is to make data valuable … Thank you!
The Klein-Bottle is the symbol for geometry and topology.

Topological data analysis (TDA) is a fast growing branch of applied 
mathematics and of enormous importance for data mining and knowledge 
discovery,
particularly from large, high-dimensional, incomplete and noisy dirty data.
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http://psychology.wikia.com/wiki/Information_retrieval
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Network	motifs	in	integrated	molecular	networks
represent	functional	relationships	between	distinct	data	types.	They
aggregate	to	form	dense	topological	structures	corresponding	to
functional	modules	which	cannot	be	detected	by	traditional	graph
clustering	algorithms.
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http://www.nature.com/nri/journal/v3/n10/fig_tab/nri1200_F2.html
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http://www.maa.org/cvm/1998/01/tprppoh/article/Pictures/KleinBottle.gif
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Nesting	=	recursion, subroutines,	information	hiding,	
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On	top	in	Figure	39	we	see	a	sample	XML	describing	genes	involved	in	long‐term	
memory	of	a	sample	specimen	Drosophila	melanogaster	.	Nested	within	the	gene	
elements,	are	sub‐elements	related	to	the	parent.	The	first	gene	includes	two	
nucleic	acid	sequences,	a	protein	product,	and	a	functional	annotation.	Additional	
information	is	provided	by	attributes,	such	as	the	organism.	This	example	
illustrates	the	difficulty	of	modeling	many‐to‐many	relationships,	such	as	the	
relationship	between	genes	and	functions.	Information	about	functions	must	be	
repeated	under	each	gene	with	that	function.	If	we	invert	the	nesting	(i.e.,	nesting	
genes	inside	function	elements),	then	we	must	repeat	information	about	genes	
with	more	than	a	single	function.	At	the	bottom	in	Figure	39	we	see	the	same	
information	about	genes,	but	using	RDF	and	OWL.	Both	genes	are	instances	of	the	
class	Fly	Gene,	which	has	been	defined	as	the	set	of	all	Genes	for	the	organism	D.	
melanogaster.	The	functional	information	is	represented	using	a	hierarchical	
taxonomy,	in	which	Long‐Term	Memory	is	a	subclass	of	Memory	(Louie	et	al.,	
2007).	
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This	is	star	cluster	structure	M30	Let	us	look	into	the	macroscopic	area	first	and	let	
us	look	for	some	similarities	…
This	is	star	globular	star	cluster	M30	(NGC	7099),	including	some	100.000	stars	a	
diameter	of	about	100	light‐years,	approx.	40,000	light‐years	away	from	earth	–
look	at	the	structure	– look	at	the	similarity	– and	consider	the	time,	if	our	eyes	see	
this	structure	they	might	be	vanished	(Darwin	Channel)
Macroscopic	structure
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From	this	large	macroscopic structures	to	tiny	microscopic	structure
Here	a	X‐ray	crystallography,	which is	a	standard	method	to	analyse the	
arrangement	of	objects	(atoms,	molecules)	within	a	crystal	structure.	This	data	
contains	the	mean	positions	of	the	entities	within	the	substance,	their	chemical	
relationship,	and	various	others	…	and	the	data	is	stored,	for	example	– if	having	a	
protein		structure	– in	a	Protein	Data	Base	(PDB).	This	database	contains	vast	
amounts	of	data.	If	a	medical	professional	looks	at	the	data,	he	or	she	sees	only	
lengthy	tables	of	numbers	…
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Structures!	This	is	now	our	keyword.	When	we	talk	about	structures,	we	will	see	
some	really	interesting	aspects	of	structures.	A	good	example	for	a	data	intensive	
and	highly	complex	microscopic	structure	is	a	yeast	protein	network.	
Note:	Yeasts	(Hefe)	are	eukaryotic	micro‐organisms	(fungi)	with	1,500	known	
species	currently,	estimated	to	be	only	1%	of	all	yeast	species.	Yeasts	are	
unicellular,	typically	measuring	4	µm	in	diameter.	
In	this	picture	you	can	see	the	first	protein	interaction	network	(published	by	
Jeong et.	al,	2001).	The	nodes	are	the	proteins.	The	links	are	the	physical	
interactions	(bindings).	The	red	nodes	are	lethal	to	the	organism,	the	green	ones	
are	non‐lethal	and	the	yellow	ones	are	not	yet	known	(still	unknown).
You	may	ask	whether	this	structure	is	useful?	Well,	what	we	get	out	by	this	yeast	is	
something	which	some	of	us	may	really	like:	Prost!
The	problem	with	such	structures		is	that	they	are	very	big	and	that	there	are	so	
many!	Knowledge	Management	can	help	to	discover	such	unknown	structures	
amongst	the	enormous	set	of	uncharacterized	data.	We	will	come	back	to	such	
structural	homologism later.	Now	let	us	make	a	closer	look	on	what	Knowledge	
Management	can	do	for	us.

67WS 2015

A. Holzinger                                                        LV709.049                                                 11.11.2015



When	thinking	about	data,	we	should	always	keep	two	fundamental	physical	
aspects	in	mind:	time	related	aspects	(e.g.	entropy	of	data)	and	space	related	
aspects	(e.g.	topology	of	data).	

http://www.youtube.com/watch?v=oBkOYQ02chs
TedxWarwick 2010	Roger	Penrose	in	Space‐Time	Geometry.
http://www.youtube.com/watch?v=aSz5BjExs9o
Visualizing	Eleven	Dimensions
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Clouds	of	data.	Very	often,	data	is	represented	as	an	unordered	sequence	of
points	in	a	Euclidean	n‐dimensional	space	En.	Data	coming	from	an	array	of	sensor
readings	in	an	engineering	testbed,	from	questionnaire	responses	in	a	psychology
experiment,	or	from	population	sizes	in	a	complex	ecosystem	all	reside	in	a	space
of	potentially	high	dimension.	The	global	‘shape’	of	the	data	may	often	provide
important	information	about	the	underlying	phenomena	which	the	data	
represents.
One	type	of	data	set	for	which	global	features	are	present	and	significant	is	the
so‐called	point	cloud	data	coming	from	physical	objects	in	3‐d.	Touch	probes,
point	lasers,	or	line	lasers	sweep	a	suspended	body	and	sample	the	surface,	
record‐
ing coordinates	of	anchor	points	on	the	surface	of	the	body.	The	cloud	of	such
points	can	be	quickly	obtained	and	used	in	a	computer	representation	of	the	ob‐
ject.	A	temporal	version	of	this	situation	is	to	be	found	in	motion‐capture	data,
where	geometric	points	are	recorded	as	time	series.	In	both	of	these	settings,	it	is
important	to	identify	and	recognize	global	features:	where	is	the	index	finger,	the
keyhole,	the	fracture?
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a =	order
b	=	clustering	coefficient
c	=	path	length
d	=	centrality
e	=	nodal	degree
F	=	modularity
Network	metrics
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http://www.google.com/patents/US6384826
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Representative	examples	of	disease	complexes	are	displayed.	Diseases	are	
associated	with	tissues	by	using	our	disease–tissue	matrix,	and	expression	data	are	
from
the	GNF	dataset.	The	expression	levels	of	complexes	are	shown	as	z	scores.	If	a	
disease	is	associated	with	more	than	3	tissues,	only	the	3	most	associated	tissues	
are	shown	for
clarity.	In	a	given	complex,	proteins	relevant	to	the	disease	in	question	are	yellow.	
The	figure	shows	the	general	tendency	of	overexpression	of	the	complexes	in	the	
tissues
in	which	they	are	involved	in	pathology	compared	with	their	expression	level	in	
other	tissues.	All	members	of	the	complexes	can	be	seen	in
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Three‐dimensional	structure	of	ventricular	muscle	basket	weave,	coronary	arterial	
tree,	and	pacemaker
and	conduction	system.	One	of	the	central	challenges	of	cell‐based	therapy	for	
regenerating	specific	heart
components	is	guiding	transplanted	cells	into	a	functional	syncytium	with	the	
existing	three‐dimensional
architecture.	Transplanted	cells	must	make	functional	connections	with	
neighboring	specialized	heart	cells	to
result	in	a	net	gain	of	global	function.	Transplanted	myogenic	progenitors,	for	
example,	must	align	with	and
integrate	into	the	existing	ventricular	muscle	basket	weave	to	allow	synchronous	
contraction	and	relaxation	of
graft	and	host	myocardium.	Integration	of	pacemaker	and	conduction	system	
progenitors	into	the	appropriate
tissue	type	is	necessary	to	generate	a	biological	pacemaker	and	avoid	cardiac	
arrhythmia.	For	example,	having	a
transplanted	heart	muscle	progenitor	integrate	into	the	conduction	system	might	
have	arrythmogenic consequences,
as	would	the	introduction	of	cells	with	independent	pacemaker	potential	in	the	
heart.	Similarly,	cell‐based
therapies	to	promote	coronary	collateral	formation	or	neo‐arteriogenesis require	
functional	integration	of	transplanted
cells	with	the	host	coronary	arterial	tree.
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Three‐dimensional	structure	of	ventricular	muscle	basket	weave,	coronary	arterial	
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and	conduction	system.	One	of	the	central	challenges	of	cell‐based	therapy	for	
regenerating	specific	heart
components	is	guiding	transplanted	cells	into	a	functional	syncytium	with	the	
existing	three‐dimensional
architecture.	Transplanted	cells	must	make	functional	connections	with	
neighboring	specialized	heart	cells	to
result	in	a	net	gain	of	global	function.	Transplanted	myogenic	progenitors,	for	
example,	must	align	with	and
integrate	into	the	existing	ventricular	muscle	basket	weave	to	allow	synchronous	
contraction	and	relaxation	of
graft	and	host	myocardium.	Integration	of	pacemaker	and	conduction	system	
progenitors	into	the	appropriate
tissue	type	is	necessary	to	generate	a	biological	pacemaker	and	avoid	cardiac	
arrhythmia.	For	example,	having	a
transplanted	heart	muscle	progenitor	integrate	into	the	conduction	system	might	
have	arrythmogenic consequences,
as	would	the	introduction	of	cells	with	independent	pacemaker	potential	in	the	
heart.	Similarly,	cell‐based
therapies	to	promote	coronary	collateral	formation	or	neo‐arteriogenesis require	
functional	integration	of	transplanted
cells	with	the	host	coronary	arterial	tree.
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