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Dear Students,	welcome	to	the	8th	lecture	of	our	course.	Please	remember	from	
the	last	lecture:
Knowledge,	Decision,	Uncertainty,	Bayesian	Statistics,	Probabilistic	Modelling
Remember	that	Bayes	law	shows	the	relation	between	a	conditional	probability	
and	its	reverse	form,	i.e.	the	probability	of	a	hypothesis	given	some	observed	
pieces	of	evidence	and	the	probability	of	that	evidence	given	the	hypothesis.	

Please	always	be	aware	of	the	definition	of	biomedical	informatics	(Medizinische
Informatik):	
Biomedical	Informatics is	the	inter‐disciplinary	field	that	studies	and	pursues	the	
effective	use	of	biomedical	data,	information,	and	knowledge	for	scientific	inquiry,	
problem	solving,	and	decision	making,	motivated	by	efforts	to	improve	human	
health	(and well‐being).
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Note: Heuristics are strategies	that	ignore	information	to	make	decisions	faster
Small	worlds	is	a	situation	in	which	all	relevant	alternatives,	their	consequences,
and	probabilities	are	known,	and	where	the	future	is	certain,	so	that	the	optimal
solution	to	a	problem	can	be	determined
Large	world is	a	situation	in	which	some	relevant	information	is	unknown	or	must	
be
estimated	from	samples,	and	the	future	is	uncertain,	violating	the	conditions	for
rational	decision	theory;
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Case	based	reasoning

Reasoning =	Reason,	is	the	capacity	for	consciously	making	sense	of	things,	for	
establishing	and	verifying	facts,	and	changing	or	justifying	practices,	institutions,	
and	beliefs	based	on	new	or	existing	information.

6WS 2015

A. Holzinger                                                 LV 709.049                                           02.12.2015



In	the	previous	lecture	we	have	got	an	overview	about	some	fundamentals	of	
decision	making	from	the	human	factors	perspective;	now	we	will	have	a	closer	
look	on	technological	solutions.	We	follow	the	definition	of	Shortliffe	(2011)	and	
define	a	medical	DSS	as	any	computer	program	designed	to	support	health	
professionals	in	their	daily	decision	making	processes.	
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Health	care	Information	Networks	(HINs)	help	professionals	and	patients	access	the	right	
information	at	the	right	time	and	invite	a	new	design	and	integration	of	decision	support	
systems	within	these	collaborative	workflow	processes.	The	need	to	share	information	
and	knowledge	is	increasing	(e.g.,	shared	records,	professional		guidelines,	prescriptions,	
care	protocols,	public	health	information,	health	care	networks		etc.)		The	well‐established	
‘Evidence‐Based	Medicine’	(EBM)	and		‘Patient‐centered	medicine’	paradigms	
representing		different	visions	of	medicine	are		suggesting	behaviors,	so	different		that		
they	are	also	raising	dilemmas.	Attempts	made	to	standardize	care	are	potentially	
ignoring	the	heterogeneity	of	the	patients		(Fieschi et	al.,	2003).
Challenges	in	the	development	of	DSS
The	development	of	medical	expert	systems	is	very	difficult– as	medicine	is	an	extremely	
complex	application	domain	– dealing	most	of	the	time	with	weakly	structured	data	and	
probable	information	(Holzinger,	2012).	
Some	challenges	include	(Majumder &	Bhattacharya,	2000):
(a)	defining	general	system	architectures	in	terms	of	generic	tasks	such	as	diagnosis,	
therapy	planning	and	monitoring	to	be	executed	for	(b)	medical	reasoning	in	(a);	(c)	
patient	management	with	(d)	minimum	uncertainty.	Other	challenges	include:	(e)	
knowledge	acquisition	and	encoding,	(f)	human‐computer	interface	and	interaction;	and	
(g)	system	integration	into	existing	clinical	environments,	e.g.	the	enterprise	hospital	
information	system;	to	mention	only	a	few.
In	the	previous	lecture	we	have	got	an	overview	about	some	fundamentals	of	decision	
making	from	the	human	factors	perspective;	now	we	will	have	a	closer	look	on	
technological	solutions.	We	follow	the	definition	of	Shortliffe	(2011)	and	define	a	medical	
DSS	as	any	computer	program	designed	to	support	health	professionals	in	their	daily	
decision	making	processes	(Shortliffe,	2011).
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In	a	classic	cartoon,	a	physician	offers	a	second	opinion	from	his	computer.		The	
patient	looks	horrified:	How	absurd	to	think	that	a	computer	could	have	better	
judgment	than	a	human	doctor!	But	computer	tools	can	already	provide	valuable	
information	to	help	human	doctors	make	better	decisions.		And	there	is	good	
reason	to	wish	such	tools	were	broadly	available.

About	half	of	the	time,	doctors	fall	short	of	providing	quality	medical	care	as	
defined	by	national	guidelines,	according	to	a	2003	paper	in	the	New	England	
Journal	of	Medicine.	In	addition,	patients	leave	their	doctors’	visits	with	an	average	
of	1.6	unanswered	questions.	“That’s	too	many,”	says	Blackford	Middleton,	MD,	
assistant	professor	of	medicine	at	the	Harvard	Medical	School	and	corporate	
director	of	clinical	and	informatics	research	and	development	at	Partners	
Healthcare	System	in	Boston.	And	because	medical	professionals	have	incomplete	
knowledge	or	incomplete	information	about	a	patient,	“we	order	too	many	tests,	
patients	are	called	back,	and	sometimes	bad	things	happen,”	Middleton	says.	“It’s	
embarrassing.	That’s	why	I	get	up	every	day	and	run	to	work.”
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In	the	previous	lecture	we	have	got	an	overview	about	some	fundamentals	of	decision	
making	from	the	human	factors	perspective;	now	we	will	have	a	closer	look	on	
technological	solutions.	We	follow	the	definition	of	Shortliffe	(2011)	and	define	a	medical	
DSS	as	any	computer	program	designed	to	support	health	professionals	in	their	daily	
decision	making	processes.	Dealing	with	data	in	the	health	care	process	is	often	
accompanied	by	making	decisions.	According	to	(Bemmel	&	Musen,	1997)	we	may	
determine	two	types	of	decision:
Type	1:	Decisions	related	to	the	diagnosis,	i.e.	computers	are	used	to	assist	in	diagnosing	a	
disease	on	the	basis	of	the	individual	patient	data.	Questions	include:
a. What	is	the	probability	that	this	patient	has	a	myocardial	infarction	on	the	
basis	of	given	data	(patient	history,	ECG)?
b. What	is	the	probability	that	this	patient	has	acute	appendices,	given	the	
signs	and	symptoms	concerning	abdominal	pain?
Type	2:	Decisions	related	to	therapy,	i.e.	computers	are	used	to	select	the	best	therapy	on	
the	basis	of	clinical	evidence,	e.g.:
c. What	is	the	best	therapy	for	patients	of	age	x	and	risks	y,	if	an	obstruction	
of	more	than	z	%	is	seen	in	the	left	coronary	artery?	
d. What	amount	of	insulin	should	be	prescribed	for	a	patient	during	the	next	
5	days,	given	the	blood	sugar	levels	and	the	amount	of	insulin	taken	during	the	recent	
weeks?
For	both	types	we	need	medical	knowledge.	On	the	basis	of	the	available	knowledge	we	
can	develop	decision	models	on	the	basis	of	the	available	patient	data.	
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p.239	Fig	15.5	DS	models	in	health	care	can	be	grouped	into different	categories

In	Figure	8‐1	we	see	that	decision	models	can	be	grouped	into	two	main	categories:

1)	Quantitative:	based	on	formal	statistical	methods	to	test	the	probability	of	the	
occurrence	of	an	event,	e.g.		to	test	that	the	probability	for	“healthy”	is	higher	than	that	for	
a	certain	disease	as	we	have	seen	in	differential	diagnostics.

2)	Qualitative:	relying	on	symbolic	methods,	rather	than	following	a	strictly	formal	
mathematical	basis.	Such	models	are	inspired	by	insights	on	human	reasoning,	thus	often	
called	heuristics,	and	perform	deductions	on	symbolic	models	using	logical	operations	to	
conclude	a	diagnosis	based	on	a	case	model.	According	to	VAN	BEMMEL	we	should	avoid	
the	word	heuristics	and	use	the	term	symbolic,	because	such	methods	may	be	composed	
of	elementary	two‐class,	single‐feature	decision	units	from	the	first	category.	In	this	slide	
we	see	that	decision	models	can	be	grouped	into	two	main	categories:
1)	Quantitative:	based	on	formal	statistical	methods	to	test	the	probability	of	the	
occurrence	of	an	event,	e.g.		to	test	that	the	probability	for	“healthy”	is	higher	than	that	for	
a	certain	disease	as	we	have	seen	in	differential	diagnostics.
2)	Qualitative:	relying	on	symbolic	methods,	rather	than	following	a	strictly	formal	
mathematical	basis.	Such	models	are	inspired	by	insights	on	human	reasoning,	thus	often	
called	heuristics,	and	perform	deductions	on	symbolic	models	using	logical	operations	to	
conclude	a	diagnosis	based	on	a	case	model.	According	to	Van	Bemmel	we	should	avoid	
the	word	heuristics	and	use	the	term	symbolic,	because	such	methods	may	be	composed	
of	elementary	two‐class,	single‐feature	decision	units	from	the	first	category,	e.g.	E	=	“x>L”	
.
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In	the	early	1950ies	decision	trees	and	truth	tables	were	used,	followed	by	systems	
based	on	statistical	methods,	finally	followed	by	expert	systems.	The	history	of	DSS	
is	very	closely	related	to	artificial	intelligence	(AI),	the	roots	can	be	traced	back	to	
attempts	to	automate	chess	play.	
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http://www.youtube.com/watch?v=IKahVCzKR8Y

In	the	early	1950ies	decision	trees	and	truth	tables	were	used,	followed	by	systems	
based	on	statistical	methods,	finally	followed	by	expert	systems.	The	history	of	DSS	
is	very	closely	related	to	artificial	intelligence	(AI),	the	roots	can	be	traced	back	to	
attempts	to	automate	chess	play.	A	famous	sample	was	a	fake:	the	Mechanical	Turk	
(See	slide,	below,	left).	Built	in	1770	by	Wolfgang	von	Kempelen (1734–1804),	the	
device	appeared	to	be	able	to	play	against	a	human,	as	well	as	perform	the	knight's	
tour,	which	require	moving	a	knight	to	visit	every	square	of	a	chessboard	only	
once.	The	“real”	start	of	AI	research	was	in	1955,	when	John	McCarthy	coined	the	
term	AI	and	defined	it	as	the	science	and	engineering	of	making	intelligent	
machines.	Edward	Feigenbaum	was	one	of	first	to	construct	an	artificial	expert	and	
while	looking	for	an	appropriate	field	of	expertise,	he	met	Joshua	Lederberg,	the	
Nobel	laureate	biochemist,	who	suggested	that	organic	chemists	need	assistance	in	
determining	the	molecular	structure	of	chemical	compounds	(Rheingold,	1985).	
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In	1965	Feigenbaum,	Lederberg	&	Buchanan	began	work	on	DENDRAL	(see	top	
root	in	the	slide),	a	procedure	for	non‐redundantly	enumerating	topologically	
distinct	arrangements	of	any	given	set	of	atoms,	consistent	with	the	rules	of	
chemical	valence	(Lindsay	et	al.,	1993).	Conventional	systems	had	failed	to	support	
organic	chemists	in	forecasting	molecular	structures.	Human	chemists	know	that	
the	possible	structure	of	any	chemical	compound	depends	on	a	number	of	rules	
about	how	different	atoms	can	be	bound	to	one	another;	and	many	facts	about	
different	atoms	in	known	compounds.	By	discovering	a	previously	unknown	
compound,	they	can	gather	evidence	about	the	compound	by	analyzing	it	with	a	
mass	spectroscope,	which	provides	a	lot	of	data,	but	no	clues	to	what	it	all	means.	
Look	at	the	slide	(Shortliffe	&	Buchanan,	1984):	DENDRAL	was	followed	by	MYCIN;	
and	actually	MYCIN	was	the	inspiration	for	many	other	systems.
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DENDRAL	was	well	known	to	computational	chemists	who	have	incorporated	
many	parts	of	it	in	their	own	software.	Although	it	does	no	longer	exist	today,	it	had	
a	major	impact	on	a	newly	developed	field:	
Knowledge	engineering	(KE),	which	is	both	science	and	engineering	of	Knowledge‐
based	systems	(KBS)	and	applies	methods	from	artificial	intelligence,	data	mining,	
expert	systems,	decision	support	systems	and	mathematical	logic,	as	well	as	
cognitive	science.	A	great	amount	of	work	is	spent	in	observing	human	experts	and	
the	design	of	models	of	their	expertise.	
One	of	the	first	spinoffs	from	DENDRAL	was	Meta‐DENDRAL,	an	expert	system	for	
people	whose	expertise	lies	in	building	expert	systems.	By	separating	the	inference	
engine	from	the	body	of	factual	knowledge,	Buchanan	was	able	to	produce	a	tool	
for	expert‐systems	builders.	In	this	slide	we	see	the	first	architecture	of	the	basic	
principle	of	any	expert	systems,	consisting	of	a	knowledge	base,	an	inference	
engine	and	a	dedicated	user‐interface	to	support	the	human‐computer	interaction	
process	(Shortliffe	&	Davis,	1975).
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MYCIN	was	programmed	in	Lisp	and	used	judgmental	rules	with	associated	
elements	of	uncertainty.	It	was	designed	to	identify	bacteria	causing	severe	
infections	(bacteraemia,	meningitis),	and	to	recommend	antibiotics,	with	the	
dosage	adjusted	for	the	patient's	body	weight.	Edward	Shortliffe,	both	a	physician	
and	computer	scientist	was	confronted	with	problems	associated	with	diagnosing	
a	certain	class	of	brain	infections	that	was	an	appropriate	area	for	expert	system	
research	and	an	area	of	particularly	importance,	because	the	first	24	hours	are	
most	critical	for	the	patients.	In	the	slide	we	see	the	idea	of	the	separation	of	static	
knowledge	(the	rules	and	facts)	and	dynamic	knowledge	(the	entries	made	by	the	
human	user	and	deductions	made	by	the	sytem).	This	is	the	principle	of	rule‐based	
systems	(Shortliffe	&	Buchanan,	1984).	
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We	are	already	well	aware	about	the	notion	of	probable	information.	The	problem	
is	that	classical	logic	permits	only	exact	reasoning:	IF	A	is	true	THEN	A	is	non‐false	
and	IF	B	is	false	THEN	B	is	non‐true	– however,	most	of	our	real‐world	problems	do	
not	provide	this	exact	information,	mostly	is	inexact,	incomplete,	uncertain,	noisy,	
and/or	un‐measurable.		This	is	a	big	problem	in	the	biomedical	area.	
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Shortliffe	was	aware	of	the	problems	involved	with	classic	logic	and	
introduced	the	certainty	factor	(CF)	which	is	a	number	between	‐ 1	and	+	1	
that	reflects	the	degree	of	belief	in	a	hypothesis:	
Positive	CF’s	indicate	evidence	that	the	hypothesis	is	valid.	If	CF	=	1,	the	
hypothesis	is	known	to	be	correct	(and	contrary	for	CF	=	–1).	If	CF	=	0,	there	
is	either	no	evidence	regarding	the	hypothesis	or	the	supporting	evidence	is	
equally	balanced,	suggesting	that	the	hypothesis	is	not	true.	MYCIN’s	
hypotheses	are	statements	regarding	values	of	clinical	parameters	for	the	
various	nodes	in	the	context	tree.	
Let	us	look	on	an	original	example	in	the	next	slide.	

WS 2015

A. Holzinger                                                 LV 709.049                                           02.12.2015



This	MYCIN	Example	makes	the	of	the	Certainty	Factor	CF	clear	(Shortliffe	&	
Buchanan,	1984).
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MYCIN	was	not	a	success	in	the	clinical	practice,	however,	it	was	pioneer	work	for	
practically	each	following	system,	for	example	ONCOCIN	evolved	from	this	work	
and	assisted	physicians	in	managing	complex	drug	regimens	for	treating	cancer	
patients.	It	has	been	built	on	the	results	of	the	MYCIN	experiments	while	gaining	
experience	with	regular	clinical	use	of	an	advice	system	for	use	by	physicians.	The	
work	has	also	been	influenced	by	data	regarding	features	that	may	be	mandatory	if	
decision	support	tools	are	to	be	accepted	by	clinicians.	Clinical	oncology	was	
selected	due	to	the	fact	that	this	medical	domain	meets	many	of	the	criteria	that	
has	been	identified	for	building	an	effective	consultation	tool	using	AI	techniques	
(Shortliffe,	1986).	Up	to	date,	the	main	architecture	of	a	DSS	is	the	same	as	
developed	in	the	1970ies.
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As	we	have	already	heard at	the	very	beginning,	the	development	of	medical	expert	
systems	is	very	difficult– as	medicine	is	a	complex	application	domain	– dealing	
most	of	the	time	with	weakly	structured	data	(Holzinger,	2012).	Problems	include	
(Majumder &	Bhattacharya,	2000):
(a)	defining	general	system	architectures	in	terms	of	generic	tasks	such	as	
diagnosis,	therapy	planning	and	monitoring	to	be	executed	for	(b)	medical	
reasoning	in	(a);	(c)	patient	management	with	(d)	minimum	uncertainty.	Other	
challenges	include:	(e)	knowledge	acquisition	and	encoding,	(f)	human‐computer	
interface	and	interaction;	and	(g)	system	integration	into	existing	clinical	
environments,	e.g.	the	enterprise	hospital	information	system.
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This	slide	shows	the	typical	workflow	of	a	medical	reasoning	system:	Abduction,	
deduction	and	induction	represent	the	basic	elements	of	the	inference	model	of	
medical	reasoning.	Clinical	patient	data	is	used	to	generate	plausible	hypotheses,	
and	these	are	used	as	start	conditions	to	forecast	expected	consequences	for	
matching	with	the	state	of	the	patient	in	order	to	confirm	or	reject	these	
hypotheses	(Majumder &	Bhattacharya,	2000).
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Present‐day	DSS	consist	of	3	main	components:	
1)	Knowledge	base,	the	heart	of	the	system	and	contains	the	expert	facts,	
heuristics,	judgements,	predictions,	algorithms,	etc.,	and	the	relationships	–
derived	from	human	experts;
2)	Inference	engine,	examines	the	status	of	the	knowledge	base,	and	determines	
the	order	the	inferences	are	made;	it	also	includes	the	capability	of	reasoning	in	
the	presence	of	uncertainty	(compare	with	MYCIN);
3)	User	interface,	enables	effective	human‐computer	interaction	– additionally	
there	are	external	interfaces	providing	access	to	other	databases	and	data	sources	
(Metaxiotis &	Psarras,	2003).	
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DSS	deal	with	problems	based	on	available	knowledge.	Some	of	this	knowledge	can	
be	extracted	using	a	decision	support	tool	(data	mining)	which	is	in	fact	part	of	a	
KDD	process	(lecture	6).	Data	mining	tools	are	usually	difficult	to	exploit	because	
most	of	the	end	users	are	neither	experts	in	computing	nor	in	statistics.	It	is	
difficult	to	develop	a	KDD	system	that	fits	exactly	to	the	end	user	needs.	Those	
difficulties	can	only	be	tackled	by	including	end	users	into	DSS	development	It	is	
necessary	to	combine	methods	from	Software	Engineering	(SE)	and	HCI.	Abed,	
Bernard	&	Angué (1991)	proposed	an	approach	to	combine	(1)	the	Unified	Process	
(UP)	from	SE	and	(2)	the	U	model	from	HCI.
The	U	model	(see	next	slide)	considers	those	steps	which	do	not	exist	in	traditional	
SE	models.	
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DSS	deal	with	problems	based	on	available	knowledge.	Some	of	this	knowledge	can	
be	extracted	using	a	decision	support	tool	(data	mining)	which	is	in	fact	part	of	a	
KDD	process	(lecture	6).	Data	mining	tools	are	usually	difficult	to	exploit	because	
most	of	the	end	users	are	neither	experts	in	computing	nor	in	statistics.	It	is	
difficult	to	develop	a	KDD	system	that	fits	exactly	to	the	end	user	needs.

For	the	effective	use	in	It	is	necessary	to	combine	methods	from	Software	
Engineering	(SE)	and	HCI.	
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For	the	effective	use	in	It	is	necessary	to	combine	methods	from	Software	
Engineering	(SE)	and	HCI.
In	this	U‐model	we	determine	two	phases:	
(1)	a	descending	phase	for	specification	and	human–computer	systems	design	and	
development;	and	
(2)	an	ascending	phase	for	the	evaluation	of	the	system.
The	validation	consists	of	comparing	the	model	of	the	theoretical	tasks	specified	in	
the	descending	phase	with	the	model	of	the	real	tasks	highlighted	in	the	ascending	
phase,	according	to	the	original	principles	suggested	by	(Abed,	Bernard	&	Angué,	
1991).	The	result	of	the	comparison	either	validates	the	system	or	highlights	its	
deficiencies.
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The	final	model	resulting	from	the	assessment	allows	a	generalization	of	the	end	
users	specific	behaviour under	particular	work	conditions	and	context	– what	
traditional	often	ignore.	Ayed et	al.	(2010)	proposed	a	modified	version	of	the	U‐
model,	specifically	adapted	to	DSS	and	knowledge	discovery	(KDD):	
(1)	the	analysis	of	the	domain,	including	the	definition	of	the	system	objectives,	
which	allows	the	first	functional	and	structural	description	of	the	system	to	be	
developed;	and	
(2)	the	development	of	the	first	interface	prototypes	(models)	for	the	DSS	in	
question,	which,	by	giving	future	users	an	idea	of	the	possible	solutions,	allows	
them	to	be	implicated	as	early	as	possible	in	the	project	life	cycle.	
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If	you	look	at	this	slide	and	compare	the	DSS	process	with	the	KDD	(data	mining)	
process,	then	you	will	recognize	the	similarity	between	decision	making	processes	
and	data	mining	processes.	
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In	this	slide	we	can	see	the	various	phases	(A	to	E)	of	the	U‐Model	approach,	which	
is	based	on	the	principle	of	iterative	and	incremental	development,	which	allows	
each	task	accomplished	to	be	evaluated	as	soon	as	the	first	iterations	of	the	
development	process	have	been	completed:
A	=	requirements	analysis	(needs	capture)
B	=	Analysis	and	Specification
C	=	Design	and	Prototyping
D	=	Implementation
E	=	Test	and	Evaluation
Be	aware	of	the	user‐centred design	process,	which	will	be	discussed	in	→Lecture	
12!
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We	have	now	seen	some	sophisticated systems.	
But	on	a	day	to	day	basis	– in	every	clinical	enterprise	hospital	information	system	
there	is	the	possibility	of	implementation	decision	support	easily.
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Guidelines	have	to	be	formalized	(transformed	from	natural	language	to	a	logical	
algorithm)	and	implemented	(using	the	algorithm	to	program	decision	support	
software	which	is	used	in	practice).	Work	on	formalization	has	focused	on	
narrative	guidelines,	which	describe	a	process	of	care	with	branching	decisions	
unfolding	over	time	(Medlock	et	al.,	2011).	Systematic	guidelines	have	potential	to	
improve	the	quality	of	patient	care.
Quality.	The	demand	for	increased	quality	assurance	has	led	to	increased	interest	
in	performance	indicators	and	other	quality	metrics.	In	order	for	the	quality	of	
care	to	improve	as	a	result	of	these	measures,	they	must	be	linked	to	a	process	of	
care.	For	example,	a	rule	such	as	“80%	of	diabetic	patients	should	have	an	HbA1c	
below	7.0”	could	be	linked	to	processes	such	as:	“All	diabetic	patients	should	have	
an	annual	HbA1c	test”	and	“Patients	with	values	over	7.0	should	be	rechecked	
within	2	months.”	These	measure	quality	and	performance	at	the	population	level,	
but	in	order	to	improve	the	quality	of	care,	action	is	required	at	the	patient	level.	
Condition‐action	rules	specify	one	or	a	few	conditions	which	are	linked	to	a	
specific	action,	in	contrast	to	narrative	guidelines	which	describe	a	series	of	
branching	or	iterative	decisions	unfolding	over	time.	Narrative	guidelines	and	
clinical	rules	are	two	ends	of	a	continuum	of	clinical	care	standards.	
Clinical	rules	represent	elementary,	isolated	care	recommendations,	while	
narrative	guidelines	describe	a	coherent,	unified	care	process.	
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Most	work	in	developing	computer‐interpretable	guidelines	has	focused	on	the	
difficult	problem	of	formalizing	the	time‐oriented	structure	of	guidelines.	
Medlock	et	al.	(2011)	propose	the	Logical	Elements	Rule	Method	(LERM),	although	
presented	linearly	in	the	text,	in	practice	some	steps	may	be	done	in	parallel,	as	
shown	in	this	slide.	Some	steps,	such	as	extracting	data	elements	or	checking	for	
conflicts	between	rules,	may	need	to	be	repeated	with	the	results	of	later	steps	as	
input.
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Yes,	there	are	other possibilities	of	decision	support,	let	us	look	into	the	
bioinformatics	domain.
An	interesting	part	is	in	visualization	relevant	information	– we	will	partiuclarly
focus	on	visualization	and	visual	analytics	in	the	next	lecture	number	9.	Here	only	
some	taster	from	the	biology	domain.
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The	word	gamut	is	defined	as	the	whole	range	of	anything.	It	indicates	a	complete	list	of	causes	of	a	particular	roentgen	
finding	or	pattern.
Most	radiologists	use	the	“Gamut	approach”	without	calling	it	that.	You	see	an	epiphyseal	lesion	of	bone	and	immediately	
search	your	memory	bank	for	causes.	You	recall	perhaps	six	causes,	then	eliminate	two	because	of	rarity	or	incompatible	
roentgen	pattern.	Then	with	the	clinical	information	at	your	elbow	in	the	form	of	an	x‐ray	requisition	or	a	clinician,	you	
weed	out	two	more	that	don’t	fit	the	clinical	setting,	leaving	you	with	perhaps	one	or	two	likely	diagnoses.
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Yes,	there	are	other possibilities	of	decision	support,	let	us	look	into	the	
bioinformatics	domain.
An	interesting	part	is	in	visualization	relevant	information	– we	will	partiuclarly
focus	on	visualization	and	visual	analytics	in	the	next	lecture	number	9.	Here	only	
some	taster	from	the	biology	domain.
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Progress	in	genomics	has	increased	the	data	available	for	conducting	expression	
analysis,	used	in	transcriptomics.	This	can	be	very	helpful	for	decision	support.	It	
deals	with	the	study	of	mRNA	and	the	extraction	of	information	contained	in	the	
genes.	This	is	reflected	in	the	exon	arrays	requiring	techniques	to	extract	
information.	This	slide	shows	the	correlation	of	two	probe	intensities	– among	11	
tissues	(breast,	cerebellum,	heart,	kidney,	liver,	muscle,	pancreas,	prostate,	spleen,	
testes,	and	thyroid):	The	black	boxes	represent	exons;	grey	boxes	represent	
introns;	(b)	Probe	design	of	Exon	arrays.	4	probes	target	each	putative	exon;	
below:	The	top	color	bar	indicates	the	probe	annotation	type,	core	probes	(red),	
extended	probes	(blue),	full	probes	(yellow).	The	signal	intensities	of	core	probes	
tend	to	have	high	correlation	(top	right	corner	of	the	heatmap)	(Kapur et	al.,	2007).
Corchado et	al.	(2009)	provided	a	tool	based	on	a	mixture	of	experts	model	which	
allows	the	analysis	of	the	information	contained	in	the	exon	arrays,	from	which	
automatic	classifications	for	decision	support	in	diagnoses	of	leukaemia patients	
can	be	made.	The	proposed	model	integrates	several	cooperative	algorithms	
characterized	for	their	efficiency	for	data	processing,	filtering,	classification	and	
knowledge	extraction.	This	is	a	mixture	of	experts	tool	that	integrates	different	
cognitive	and	statistical	approaches	to	deal	with	the	analysis	of	exon	arrays.	
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Exon	arrays	as	seen	in	Slide	8‐22	are	chips	which	allow	for	a	large	number	of	data	to	be	analyzed	
and	classified	for	each	patient	(6	Million	features	per	array).	The	high	dimensionality	of	data	makes	
it	impossible	to	use	standard	techniques	for	expression	array	analysis	(which	contain	
approximately	50,000	probes).	
High	dimensionality	of	data	from	each	exon	array	implies	problems	in	handling	and	processing,	
thus	making	it	necessary	to	improve	each	of	the	steps	of	expression	array	analysis	in	order	to	
obtain	an	efficient	method	of	classification.	An	expression	analysis	basically	consists	of	three	steps:	
1.	normalization	and	filtering;
2.	clustering	and	classification;	and	
3.	extraction	of	knowledge.	
These	steps	can	be	automated	and	included	within	an	expert	system.	Since	the	problem	at	hand	
deals	with	high	dimensional	arrays,	it	is	important	to	have	a	very	good	pre‐processing	technique	
that	can	facilitate	automatic	decision‐making	with	regards	to	selecting	the	most	vitally	important	
variables	for	the	classification	process.	In	light	of	these	decisions,	it	will	be	possible	to	reduce	the	
set	of	original	data.	After	the	organization	of	groups,	patients	can	be	classified	and	assigned	into	the	
group	with	which	they	share	the	most	similarities.	Finally,	an	extraction	of	knowledge	system	
facilitates	the	interpretation	of	the	results	obtained	after	the	pre‐processing	and	classification	
steps,	thus	making	it	possible	to	learn	from	the	information	acquired	from	the	results.	The	process	
of	extracting	knowledge	shapes	the	knowledge	obtained	into	a	set	of	rules	that	can	be	used	for	
improving	new	classifications.
In	this	slide	we	see	such	an	exon	array	structure:	(1)	Exon—intron	structure	of	a	gene.	Gray	boxes	
represent	introns,	rest	represent	exons.	Introns	are	not	drawn	to	scale.	(2)	Probe	design	of	exon	
arrays.	Four	probes	target	each	putative	exon.	(3)	Probe	design	of	3’	expression	arrays.	Probe	
target	the	3’	end	of	mRNA	sequence	(Corchado,	De	Paz,	Rodriguez	&	Bajo,	2009).	
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Hybrid	System	including	three	experts	in	sequential	order	– integrating	completely	
different	techniques	(which	experts	may	select	appropriately)	and	considered	as	optimal	
for	solving	the	problem	of	classifying	leukaemia patients.	

The	model	by	Corchado et	al	(2009)	incorporates	the	mixture	of	three	experts	in	
sequential	form,	having	the	advantage	of	integrating	different	techniques,	considered	to	
be	optimal	for	using	in	the	stages	of	the	expression	analysis	for	the	problem	of	classifying	
leukaemia patients.	Techniques	that	offer	good	results	in	each	phase	are	combined	and	
the	model	considers	the	characteristics	of	each	expert	in	order	to	achieve	an	appropriate	
integration.	The	structure	of	the	modules	can	be	seen	in	Figure	8‐15,	the	steps	include:
1)	pre‐processing	and	filtering;
2)	clustering;
3)	extraction	of	knowledge	and	
4)	information	representation.	
The	different	modules	work	independently,	to	facilitate	the	modification	of	any	of	the	
proposed	experts,	or	to	incorporate	new	techniques	(including	new	experts).	This	affects	
the	expert	of	a	single	module,	while	the	others	remain	unchanged.	This	allows	a	
generalization	and	making	it	possible	to	select	the	expert	best	suited	to	apply	in	each	
particular	problem.
The	initial	problem	description	is	composed	of	all	the	individuals	D={d_1,…d_t }	together	
with	the	n	probes.	The	first	expert	pre‐processes	and	filters	the	probes,	reducing	the	set	of	
probes	to	s	elements	but	maintaining	the	t	individuals.	The	second	expert	executes	the	
clustering,	creates	r	groups	and	assigns	the	new	individual	(t	+	1)	to	one	of	these	groups.	
The	third	expert	explains	how	the	individual	elements	have	been	classified	into	groups	by	
means	of	a	knowledge	extraction	technique,	and	by	obtaining	a	graphical	representation	
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(a	tree).	The	final	module	represents	the	probability	of	assigning	individuals	to	each	of	the	
groups	depending	on	the	probes	selected,	taking	into	account	the	knowledge	extracted	
(Corchado,	De	Paz,	Rodriguez	&	Bajo,	2009).	
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This	slide	shows	the	classification	performed	for	patients	from	groups	CLL	and	
ALL.	The	X	axis	represents	the	probes	used	in	the	classification	and	the	Y	axis	
represents	the	individuals.	Above	we	can	see,	represented	in	black,	most	of	the	
people	of	the	CLL	group	are	together,	coinciding	with	the	previous	classification	
given	by	the	experts.	Only	a	small	portion	of	the	individuals	departed	from	the	
initial	classification.	Below	we	see	the	classification	obtained	for	the	ALL	patients.	
It	can	be	seen	that,	although	the	ranking	is	not	bad,	the	proportion	of	individuals	
misclassified	is	higher.	Groups	that	have	fewer	individuals	have	a	high	
classification	error.
Classification	obtained	for	(a)	ALL	patients	and	(b)	CLL	patients.	Each	of	the	values	
obtained	correspond	to	the	fluorescence	intensity	for	an	individual.	At	the	bottom	
of	the	image	it	is	shown	the	fluorescence	scale	of	values,	the	lowest	level	is	2	(blue)	
while	the	highest	is	12	(red)	(For	interpretation	of	this	images	in	color	please	refer	
to	the	original	article	(Corchado,	De	Paz,	Rodriguez	&	Bajo,	2009)).	
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Following	the	decision	tree	shown	in	this	slide,	the	patients	were	assigned	to	the	
expected	groups.	Only	one	of	the	patients	was	assigned	to	a	different	group	by	both	
methods.	The	healthy	patients	were	eliminated	in	order	to	proceed	with	the	
classification.
The	values	of	the	leaf	nodes	represent	the	predicted	group	and	the	number	of	
elements	assigned	to	each	of	the	groups	following	the	order	(ALL,	AML,	CLL,	CML,	
NOL,	MDS).	The	rest	of	the	nodes	represent	the	probe	and	the	fuzzy	value	to	
compare	the	individual	to	classify.	If	the	condition	is	true,	then	the	branch	on	the	
left	is	selected,	otherwise,	the	branch	on	the	right	is	selected.	The	tree	helps	to	
obtain	an	explanation	of	the	reason	why	an	individual	has	been	assigned	to	a	
group.	
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The	work	of	(Corchado,	De	Paz,	Rodriguez	&	Bajo,	2009)	demonstrates	a	model	of	
experts	that	uses	exon	arrays	to	perform	an	automatic	diagnosis	of	cancer	patients.	
The	system	incorporates	experts	at	each	phase	of	the	microarray	analysis,	a	
process	that	is	capable	of	extracting	knowledge	from	diagnoses	that	have	already	
been	performed,	and	that	has	been	used	to	increase	the	efficiency	of	new	
diagnoses.	The	model	combines	
1)	methods	to	reduce	the	dimensionality	of	the	original	set	of	data;	
2)	pre‐processing	and	data	filtering	techniques;	
3)	a	clustering	method	to	classify	patients;	and
4)	modern	extraction	of	knowledge	techniques.	
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What	could	we learn	by	the	model	from	Corchado?
The	system	of	(Corchado,	De	Paz,	Rodriguez	&	Bajo,	2009)	works	in	a	way	that	is	
similar	to	how	human	specialist	teams	work	in	a	lab,	is	also	capable	of	working	
with	big	data	and	making	decisions	automatically	and	reduces	the	time	needed	for	
making	predictions.	The	main	advantage	of	this	model	is	the	ability	to	work	with	
exon	array	data	0;	very	few	tools	are	capable	of	working	with	this	type	of	data	
because	of	the	high	dimensionality.	The	proposed	model	resolves	this	problem	by	
using	a	technique	that	detects	the	importance	of	the	genes	for	the	classification	of	
the	diseases	by	analyzing	the	available	data.	For	the	time	being,	three	experts	have	
been	designed,	one	for	each	phase	of	the	model.	
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Case‐based	reasoning	is	a	problem	solving	paradigm,	different	from	other	AI	
approaches.	Instead	of	relying	solely	on	general	knowledge	of	a	problem	domain,	
or	making	associations	along	generalized	relationships	between	problem	
descriptors	and	conclusions,	CBR	is	able	to	utilize	the	specific	knowledge	of	
previously	experienced,	concrete	problem	situations	(cases).	
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Note:	Always	remember	that	Thinking‐Reasoning‐Decision‐Action	is	intrinsically	
tied	together.	A	good	primer	for	clinical	thinking	is		(Alfaro‐LeFevre,	2013).
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Case‐based	reasoning	is	a	problem	solving	paradigm,	different	from	other	AI	
approaches.	Instead	of	relying	solely	on	general	knowledge	of	a	problem	domain,	
or	making	associations	along	generalized	relationships	between	problem	
descriptors	and	conclusions,	CBR	is	able	to	utilize	the	specific	knowledge	of	
previously	experienced,	concrete	problem	situations	(cases).	A	new	problem	is	
solved	by	finding	a	similar	past	case,	and	reusing	it	in	the	new	problem	situation.	A	
second	important	difference	is	that	CBR	also	is	an	approach	to	incremental,	
sustained	learning,	since	a	new	experience	is	retained	each	time	a	problem	has	
been	solved,	making	it	immediately	available	for	future	problems.	The	description	
of	a	problem	defines	a	new	case.	This	new	case	is	used	to	RETRIEVE	a	case	from	
the	collection	of	previous	cases.	The	retrieved	case	is	combined	with	the	new	case	‐
through	REUSE	‐ into	a	solved	case,	i.e.	a	proposed	solution	to	the	initial	problem.	
Through	the	REVISE	process	this	solution	is	tested	for	success,	e.g.	by	being	
applied	to	the	real	world	environment	or	evaluated	by	a	teacher,	and	repaired	if	
failed.	During	RETAIN,	useful	experience	is	retained	for	future	reuse,	and	the	case	
base	is	updated	by	a	new	learned	case,	or	by	modification	of	some	existing	cases	
(Aamodt &	Plaza,	1994).
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In	this	slide	we	see	the	task‐method	structure:	Tasks	have	node	names	in	bold	
letters,	while	methods	are	written	in	italics.	The	links	between	task	nodes	(plain	
lines)	are	task	decompositions,	i.e.	part‐of	relations,	where	the	direction	of	the	
relationship	is	downwards.	The	top‐level	task	is	problem	solving	and	learning	from	
experience	and	the	method	to	accomplish	the	task	is	case‐based	reasoning	
(indicated	in	a	special	way	by	a	stippled	arrow).	This	splits	the	top‐level	task	into	
the	four	major	CBR	tasks	corresponding	to	the	four	processes:	retrieve,	reuse,	
revise,	and	retain.	All	four	tasks	are	necessary	in	order	to	perform	the	top‐level	
task.	The	relation	between	tasks	and	methods	(stippled	lines)	identify	alternative	
methods	applicable	for	solving	a	task.	A	method	specifies	the	algorithm	that	
identifies	and	controls	the	execution	of	subtasks,	and	accesses	and	utilizes	the	
knowledge	and	information	needed	to	do	this	(Aamodt &	Plaza,	1994).
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Example:	Radiotherapy	planning	for	cancer	treatment	is	a	computationally	
complex	problem.		An	example	from	(Petrovic,	Mishra	&	Sundar,	2011)	shall	
demonstrate	it:	Prostate	cancer	is	generally	treated	in	two	phases.	In	phase	I,	both	
the	prostate	and	the	surrounding	area,	where	the	cancer	has	spread	to,	will	be	
irradiated,	while,	in	phase	II	only	the	prostate	will	be	irradiated.	The	total	dose	
prescribed	by	the	oncologist	is	usually	in	the	range	of	70–76	Gy,	while	the	dose	
ranges	in	phases	I	and	II	of	the	treatment	are	46–64	Gy and	16–24	Gy,	respectively.	
The	dose	is	delivered	in	fractions,	each	fraction	being	usually	2	Gy.	
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In	this	slide	we	see	the	workflow	of	radiotherapy:	1.	CT	scanning,	2.	Tumor	
localization,	3.	Skin	reference	marks,	4.	Treatment	planning,	5.	Virtual	simulation,	
6.	Radiotherapy	treatment;	
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The	patient	is	first	examined	and	then	CT	scans	or	MRI	are	carried	out.	Thereafter,	the	generated	
scans	are	passed	onto	the	planning	department.	In	the	planning	department,	first,	the	tumour
volume	and	the	organs	at	risk	are	outlined	by	the	medical	physicist	so	that	the	region	that	contains	
the	tumour can	be	distinguished	from	other	parts	that	are	likely	to	contain	microscopic	(tiny)	
tumour cells.	Afterwards,	the	medical	physicist	in	consultation	with	the	oncologist	defines	the	
planning	parameters	including	the	number	of	beams	to	be	used	in	the	radiation,	the	angle	between	
beams,	the	number	of	wedges	,	the	wedge	angles	and	generates	a	Distribution	Volume	Histogram	
(DVH)	diagram	for	both	phases	I	and	II	of	the	treatment.	DVH	presents	the	simulated	radiation	
distribution	within	a	volume	of	interest	which	would	result	from	a	proposed	radiation	treatment	
plan.	The	next	task	is	to	decide	the	dose	in	phases	I	and	II	of	the	treatment	so	that	the	tumour cells	
can	be	killed	without	impairing	the	remaining	body,	particularly	the	organs	lying	close	to	the	
tumour cells,	i.e.	rectum	and	bladder.	The	organs	lying	close	by	should	preferably	not	be	impaired	
at	all	by	the	treatment.	However,	the	oncologist	usually	looks	for	a	compromise	of	distributing	the	
inevitable	dose	among	the	organs.	Rectum	is	a	more	sensitive	organ	compared	to	the	bladder	and	is	
the	primary	concern	of	oncologists	while	deciding	the	dose	plan.	There	is	a	maximum	dose	limit	for	
different	volume	percentages	of	the	rectum,	and	it	has	to	be	respected	by	oncologists	when	
prescribing	a	dose	plan.	In	certain	cases,	this	condition	may	be	sacrificed	to	some	extent	so	that	an	
adequate	dose	can	be	imparted	to	the	cancer	cells.	Oncologists	generally	use	three	groups	of	
parameters	to	generate	a	good	plan	for	each	patient.	The	first	group	of	parameters	is	related	to	the	
stage	of	cancer.	It	includes	Clinical	Stage	(a	labelling	system),	Gleason	Score	evaluates	the	grade	of	
prostate	cancer	and	is	a	integer	between	1	to	10),	and	Prostate	Specific	Antigen	(PSA)	value	
between	1	to	40.	The	second	group	of	parameters	is	related	to	the	potential	risk	to	the	rectum	
(degree	of	radiation	received	by	different	volume	percentages	of	the	rectum.	It	includes	the	DVH	of	
the	rectum	for	Phases	I	and	II	at	66%,	50%,	25%,	and	10%	of	the	rectum	volume.	Example:	the	DVH	
states	that	66%	of	the	rectum	will	receive	50%	of	radiation.	It	means	that	if	the	dose	prescribed	by	
the	oncologist	in	the	phase	I	of	the	treatment	is	60	Gy,	then	the	amount	of	radiation	received	by	
66%	of	the	rectum	is	30	Gy.	The	final	PSA	value	is	a	parameter	related	to	the	success	rate	of	the	
patient	after	the	treatment.	
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In	the	system	developed	by	(Petrovic,	Mishra	&	Sundar,	2011),	the	cases	which	are	
similar	to	the	new	case	are	retrieved	using	a	fuzzy	similarity	measure.	A	modified	
Dempster–Shafer	theory	is	applied	to	fuse	the	information	from	the	retrieved	cases	
and	generate	a	solution	as	shown	in	this	slide.
1)	The	clinical	stage	of	the	cancer	is	of	ordinal	type	and	can	be	divided	in	seven	
different	categories	T1a,	T1b,	T1c,	T2a,	T2b,	T3a,	T3b,	
2)	the	value	of	the	Gleason	Score	is	an	integer	number	from	[1,	10]	interval,	
3)	PSA	is	a	real	numbers	from	[1,	40];	and	
4)	DVH	is	a	real	number	between	[0,1].
In	order	to	use	features	of	different	data	type,	measurement	units	and	scale	
together	in	the	similarity	measure	we	need	to	normalise them.	However,	it	would	
not	be	easy	to	define	a	preferably	linear	mapping	in	the	[0,	1]	interval.	Instead,	we	
define	fuzzy	sets	low,	medium	and	high	for	each	feature.	They	are	normalised fuzzy	
sets	whose	membership	functions	take	value	from	[0,	1]	interval.	In	addition,	fuzzy	
sets	enable	expression	of	preference	of	the	oncologist.	An	example	of	membership	
functions	of	fuzzy	sets	low,	medium	and	high	Gleason	score	is	given	in	Figure	Slide	
8‐36.	

54WS 2015

A. Holzinger                                                 LV 709.049                                           02.12.2015



G‐Score	for	the	prognosis	of	men	with	prostate	cancer	using	samples	from	a	
prostate	biopsy.	Together	with	other	parameters,	it	is	incorporated	into	a	strategy	
of	prostate	cancer	staging	which	predicts	prognosis	and	helps	guide	therapy.	A	
Gleason	score	is	given	to	prostate	cancer	based	upon	its	microscopic	appearance,	
Cancers	with	a	higher	Gleason	score	are	more	aggressive	and	have	a	worse	
prognosis	(in	the image	above	GS=5	at	the	left	and	4	at	the	right).
The	parameters	of	these	membership	functions	are	set	in	collaboration	with	the	
oncologist.	Each	attribute	l	(Gleason	score	(l	=	1),	PSA	(l	=	2))	of	case	cp is	
represented	by	a	triplet	(vpl1,	vpl2,	vpl3),	where	vplm,	m	=	1,	2,	3	are	membership	
degrees	of	attribute	l	in	the	corresponding	fuzzy	sets	low	(m	=	1),	medium	(m	=	2)	
and	high	(m	=	3).
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This	final	slide	demonstrates	the	adaptation	mechanism.		In	this	example,	the	final	
outcome	of	the	Dempster–Shafer	theory	is	a	dose	plan	having	62	Gy and	10	Gy of	
radiation	in	phases	I	and	II	of	treatment,	respectively.	This	is	not	a	feasible	dose	
plan	because	the	dose	received	by	10%	of	the	rectum	is	56.2	Gy which	is	larger	
than	the	prescribed	maximum	dose	limit	(55	Gy).	Hence,	in	order	to	generate	a	
feasible	dose	plan,	the	repair	mechanism	is	performed.	The	dose	corresponding	to	
the	phase	II	of	the	treatment	is	decreased	by	2	Gy,	which	leads	to	the	new	dose	plan	
62	Gy and	8	Gy,	which	is	a	feasible	dose	plan.

The	Dempster–Shafer	theory	(DST)	is	a	mathematical	theory	of	evidence	and	
allows	the	combination	of	evidence	from	different	sources	resulting in	a	degree	of	
belief	(represented	by	a	belief	function)	that	takes	into	account	all	the	available	
evidence.	

Zadeh,	L.	A.	1986.	A	simple	view	of	the	Dempster‐Shafer	theory	of	evidence	and	its	
implication	for	the	rule	of	combination.	AI	magazine,	7,	(2),	85.
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http://www‐03.ibm.com/press/us/en/presskit/27297.wss

After	proving	its	prowess	on	"Jeopardy"	two	years	ago,	the	Watson	"cognitive"	
computing	system	is	embarking	on	two	new	projects	designed	to	help	doctors	
make	more	accurate	decisions	and	tap	into	data	from	electronic	medical	records	
(EMRs).

Known	as	"WatsonPaths"	and	"Watson	EMR	Assistant,"	the	two	projects	
announced	Tuesday	are	a	collaboration	between	Big	Blue	and	Case	Western	
Reserve	University's	Cleveland	Clinic	Lerner	College	of	Medicine.

http://news.cnet.com/8301‐11386_3‐57607545‐76/ibm‐on‐watson‐our‐son‐the‐
doctors‐helper/

http://www.research.ibm.com/cognitive‐
computing/watson/watsonpaths.shtml#fbid=jBn1NNDhmN2

A. Holzinger                                                 LV 709.049                                           02.12.2015

WS 2015 57



http://idibon.com/wp‐content/uploads/2015/09/robots.png

1st	generation:	Rules

The	first	generation	of	machine	intelligence	meant	that	people	manually	created	
rules.	For	example,	in	text	analytics	someone	might	create	a	rule	that	the	word	
“Ford”	followed	by	“Focus”	meant	that	“Ford”	referred	to	a	car,	and	they	would	
create	a	separate	rule	that	“Ford”	preceded	by	“Harrison”	meant	that	“Ford”	
referred	to	a	person.

The	rule‐based	approach	is	very	time	consuming	and	not	very	accurate.	Even	after	
an	analyst	has	exhausted	all	the	words	and	phrases	they	can	think	of,	there	are	
always	other	contexts	and	new	innovations	that	aren’t	captured.	For	one	of	our	
clients,	their	experts	analysts	were	only	able	to	capture	11%	of	the	documents	they	
wanted	to	analyze	using	rules:	this	clearly	is	too	limited.
2nd	generation:	Simple	machine	learning

The	dominant	form	of	machine	intelligence	today	is	simple	machine	learning.	
Simple	machine	learning	uses	statistical	methods	to	make	decisions	about	data	
processing.	For	example,	a	sentence	might	have	the	word	“Ford”	labeled	as	a	car,	
and	the	machine	learning	algorithm	will	learn	by	itself	that	the	following	word	
“Focus”	is	evidence	that	“Ford”	is	a	car	in	this	context.

Simple	machine	learning	can	be	fast,	provided	that	you	already	have	labeled	
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examples	for	‘supervised	learning’.	It	also	tends	to	be	more	accurate,	because	
statistics	are	usually	better	than	human	intuition	in	deciding	which	features	(like	
words	and	phrases)	matter.	The	major	drawback	for	supervised	machine	learning	is	
that	you	need	the	labeled	examples:	if	you	have	too	few	labels	or	the	labels	aren’t	
representative	of	the	entire	data	set,	then	the	accuracy	is	low	or	limited	to	a	specific	
domain.
3rd	generation:	Deep	learning

There	has	been	a	recent	rise	in	the	use	of	machine	learning	that	learns	more	
sophisticated	relationships	between	features,	known	as	deep	learning.	For	example,	if	
you	had	the	sentence	“We	Will	Let	Harrison	Ford	Focus	on	Star	Wars”,	there	is	
conflicting	evidence	between	“Harrison”	and	“Focus”	about	whether	“Ford”	is	a	
person	or	a	car.

Deep	learning	can	automatically	learn	how	to	use	combinations	of	features	when	
making	a	decision.	For	simple	machine	learning,	a	human	has	to	tell	the	algorithm	
which	combination	of	features	to	consider.	Deep	learning	often	cuts	down	on	the	
amount	of	human	time	needed	and	typically	gets	up	to	5%	more	accurate	results	than	
simple	machine	learning	for	text	analytics–although	only	when	applied	to	data	from	
the	same	sources	as	it	learned	from.
4th	generation:	Adaptive	learning

Adaptive	learning	brings	human	analysts	into	the	process	at	every	step.	This	is	in	
contrast	to	rule‐based,	simple	machine	learning	and	deep	learning	approaches,	
where	the	humans	only	create	rules	and	label	data	at	the	start	of	the	process.	For	
example,	if	you	had	the	sentence	“We	Will	Help	Tom	Ford	Escape	from	New	York”,	and	
your	system	hadn’t	seen	any	examples	of	“Tom	Ford”	or	“Ford	Escape”,	you	will	need	
human	input	to	build	the	knowledge.

Adaptive	learning	systems	require	the	least	human	effort	because	they	only	require	
human	input	when	it	matters	most	and	continually	expand	their	knowledge	when	
new	information	is	encountered.	As	we	show	here,	they	are	also	the	most	accurate.	
They	combine	the	three	other	types	of	machine	intelligence,	adding	new	types	of	
‘unsupervised	machine	learning’	and	methods	for	optimizing	the	input	from	multiple,	
possibly	disagreeing,	humans.
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‐)	Unsupervised:	All	clear..

‐)	Supervised	machine	learning:	The	training‐ and	test‐data	split	can	actually	be	
done	fully	automatic.	I	guess	what	you	mean	is	that	humans	are	providing	the	
LABELS	for	the	training	/	test	data	and	/	or	SELECT	FEATURES	(the	latter	is	also	
true	for	unsupervised	learning	as	long	as	you	are	not	trying	to	do	unsupervised	
subspace	clustering	e.g.)

‐)	Semi‐supervised:	Isn't	this	just	a	method	for	mixing	labeled	and	unlabeled	data	
so	that	the	algorithm	tries	to	find	labels	according	to	a	similarity	measure	to	one	of	
the	given	groups?

‐)	iML:	I	think	the	REALLY	important	point	with	iML	is	that	humans	are	not	(only)	
involved	in	preprocessing,	by	selecting	data	or	features,	but	actually	DURING	the	
learning	phase	which	is	not	the	case	in	the	3	methods	described	above.	See	the	ppt,	
slide	2	;)
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My	DEDICATION	is	to	make	data	valuable …	Thank	you!
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http://psychology.wikia.com/wiki/Information_retrieval
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The	role	of	CDS	tools	and	electronic	and	personal
health	records	in	the	development	of	clinical	practice
guidelines	and	quality	measures.	(Solid	lines	indicate
currently	available	information	flow	patterns,	dotted	line	represents
potential	pathways	for	future	data	flow).

Stakeholders'	Roles	in	Supporting	Individualized
Approaches	to	Health	Care
The	pathway	to	use	CDS	in	support	of	personalized	medicine
requires	many	integrated	components	to	be	developed
in	parallel	with	the	emerging	EHR	foundation	in
health	care.	Developing	a	health	care	system	that	optimizes
personalized	prevention	and	treatment	requires
engagement	from	many	diverse	stakeholders.	Organizing
the	work	that	needs	to	be	done	by	stakeholder	organizations
is	a	helpful	framework	to	consider	the	actors	and
actions	needed	for	the	complete	picture	of	personalized
medicine	CDS	systems	to	emerge.	These	include	the	consumer/
patient,	molecular	diagnostic	(laboratory	test	or
device)	developer,	providers,	payor,	CDS	developers,	and
oversight	and	regulatory	bodies,	among	many	others.
An	overview	of	the	continuum	of	information	flow	from
evidence	development	through	clinical	application	using
EHR	technology	is	shown	in	Figure	1.	Personalized	medical
practices	will	increasingly	be	based	on	scientific	evidence
gained	from	population‐based	longitudinal	studies
and	clinical	research	studies	such	as	randomized	clinical
trials.	These	inputs	provide	the	evidence	that	certain	medical
technologies	are	recommended	or	shown	to	have	benefit
under	various	clinical	conditions.	This	becomes	the
basis	for	algorithms	or	treatment	recommendations	that
are	integrated	into	practice	guidelines	for	many	medical
conditions	to	be	used	in	patient	care	encounters	in	two
major	applications.	First,	key	program	inputs	are	created
for	CDS	tools	and	integrated	into	electronic	knowledge
base	that	is	used	to	support	the	rules	used	in	making	rec
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http://www.youtube.com/watch?v=IKahVCzKR8Y
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