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Dear Students,	welcome	to	the	9th	lecture	of	our	course.	Please	remember	from	
the	last	lecture:	some	applications	of	decision	support	systems,
Basic	architectures	of	DSS,	the	certainty	factor,	the	historical	roots	in	DSS,	
particularly	MYCIN,	Case‐based	reasoning	systems,	and	please	remember	the	
differences	between	unsupervised,	supervised,	semi‐supervised	and	interactive	
machine	learning	with	the	human‐in‐the‐loop	to	help	in	solving	problems	which	
would	otherwise	be	NP‐hard.

Please	always	be	aware	of	the	definition	of	biomedical	informatics	(Medizinische
Informatik,	health	informatics):	
Biomedical	Informatics is	the	inter‐disciplinary	field	that	studies	and	pursues	the	
effective	use	of	biomedical	data,	information,	and	knowledge	for	scientific	inquiry,	
problem	solving,	and	decision	making,	motivated	by	efforts	to	improve	human	
health	(and well‐being).
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Within the	next	90	minutes	you	will	learn	…
a	little	bit	about	interactive	and	hopefully	intelligent	information	visualization	and	
visual	analytics
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Data	visualization
Flow	cytometry
Human‐Computer	Interaction	(HCI)
Information	visualization
Interactive	information	visualization
k‐Anonymization
Longitudinal	data
Multivariate	data
Parallel	coordinates
RadViz
Semiotics
Star	plots
Temporal	data	analysis
Visual	analytics
Visual	information
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Biological	data	visualization	=	in	bioinformatics	the	visualization	of	sequences,	
genomes,	alignments,	phylogenies,	macromolecular	structures,	systems	biology,	
etc.	
Business	Intelligence	(BI)	=	all	issues	in	a	company	which	provides	historical,	
current	and	predictive	views	of	business	operations;	methods	include	data	mining,	
process	mining,	content	analytics	and	particularly	visual	analytics;	BI	is	directly	
connected	with	decision	support;	any	BI‐system	is	also	a	decision	support	system;
Classification	=	the	problem	of	identifying	to	which	of	a	set	of	categories	a	new	
observation	belongs,	on	the	basis	of	a	training	set	of	data	containing	observations	
(or	instances)	whose	category	membership	is	known;
Clustering	=	Mapping	objects	into	disjoint	subsets	to	let	appear	similar	objects	in	
the	same	subset;	it	is	a	main	task	in	exploratory	data	mining	in	bioinformatics;
Content	analytics	=	a	general	term	addressing	so‐called	“unstructured”	data	–
mainly	text	– by	using	methods	from	visual	analytics	in	business	intelligence;
Data	visualization	=	visual	representation	of	complex	data,	to	communicate	
information	clearly	and	effectively,	making	data	useful	and	usable;
Information	visualization	=		the	interdisciplinary	study	of	the	visual	representation	
of	large‐scale	collections	of	non‐numerical	data,	such	as	files	and	software,	
databases,	networks	etc.,	to	allow	users	to	see,	explore,	and	understand	
information	at	once;
Multi‐dimensional	=	containing	more	than	three	dimensions	and	data	are	
multivariate;	Multidimensional	scaling	=	Mapping	objects	into	a	low‐dimensional	
space	(plane,	cube	etc.)	in	order	to	let	appear	similar	objects	close	to	each	other;
Multi‐variate =	encompassing	the	simultaneous	observation	and	analysis	of	more	
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than	one	statistical	variable;	(Antonym:	univariate =	one‐dimensional);
Parallel	coordinates	=	for	visualizing	high‐dimensional	and	multivariate	data	in	the	
form	of	N	parallel	lines,	where	a	data	point	in	the	n‐dimensional	space	is	transferred	
to	a	polyline	with	vertices	on	the	parallel	axes;
RadViz =	radial	visualization	method,	which	maps	a	set	of	m‐dimensional	points	in	
the	2‐D	space,	similar	to	Hooke’s	law	in	mechanics;
Semiotics	=	deals	with	the	relationship	between	symbology and	language,	pragmatics	
and	linguistics.	Information	and	Communication	Technology	deals	not	only	in	words	
and	pictures	but	also	in	ideas	and	symbology;
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Parallel	coordinates	=	for	visualizing	high‐dimensional	and	multivariate	data	in	the	
form	of	N	parallel	lines,	where	a	data	point	in	the	n‐dimensional	space	is	
transferred	to	a	polyline	with	vertices	on	the	parallel	axes;
RadViz =	radial	visualization	method,	which	maps	a	set	of	m‐dimensional	points	in	
the	2‐D	space,	similar	to	Hooke’s	law	in	mechanics;
Semiotics	=	deals	with	the	relationship	between	symbology and	language,	
pragmatics	and	linguistics.	Information	and	Communication	Technology	deals	not	
only	in	words	and	pictures	but	also	in	ideas	and	symbology;
Semiotic	engineering	=	a	process	of	creating	a	semiotic	system,	i.e.	a	model	of	
human	intelligence	and	knowledge	and	the	logic	for	communication	and	cognition;
Star	plot	=	aka	radar	chart,	spider	web	diagram,	star	chart,	polygon	plot,	polar	
chart,	or	Kiviat diagram,	for	displaying	multivariate	data	in	the	form	of	a	two‐
dimensional	chart	of	three	or	more	quantitative	variables	represented	on	axes	
starting	from	the	same	point;
Visual	analytics	=	focuses	on	analytical	reasoning	of	complex	data	facilitated	by	
interactive	visual	interfaces;
Visualization	=	a	method	of	computer	science	to	transform	the	symbolic	into	the	
geometric,	to	form	a	mental	model	and	foster	unexpected	insights;
Visualization	mantra	=	“Overview	first,	zoom	&	filter	on	demand”	(Shneiderman,	
1996);
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At	the	end	of	this	ninth	lecture	you	will	…

…	have	some	theoretical	background	on	visualization	and	visual	analytics;
…	got	an	overview	about	various	possible	visualization	methods	for	various	data;
…	got	an	introduction	into	the	work	of	and	possibilities	with	parallel	coordinates;
…	have	seen	the	principles	of	RadViz mappings	and	algorithms;
…	are	aware	of	the	possibilities	of	Star	Plots;
…	have	seen	that	visual	analytics	is	intelligent	Human‐Computer	Interaction;
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Information	visualization	is	the	study	of	visual	representations	of	abstract	data	to	
reinforce	human	cognition;	hence	it	is	very	important	for	decision	making.	A	lot	of	
challenges	are	involved:	The	human	perceptual	system	can	handle	large	quantities	
of	data	of	few	dimensions	but	has	great	difficulty	as	the	data	dimensionality	
increases	(again:	the	curse	of	dimensionality	(Donoho,	2000)).	The	grand	
challenge	is	to	focus	not	simply	on	computational	methods	of	displaying	large	
quantities	of	data	but	on	both	perception	and	cognition	of	such	large	amounts	of	
data.	One	aspect	is	to	focus	on	how	the	process	of	computer	visualization	can	be	
improved	to	mirror	the	process	of	natural	visualization.	Our	perceptual	systems	
were	designed	specifically	for	survival	in	and	understanding	of	the	surrounding	
external	environment,	not	abstract	objects	and	images	(Grinstein,	Inselberg	&	
Laskowski,	1998).
Visual	analysis	is	becoming	an	essential	component	of	medical	visualization	due	to	
the	rapidly	growing	role	and	availability	of	complex	multi‐dimensional,	time‐
varying,	mixed‐modality,	simulation	and	multi‐subject	datasets.	The	magnitude,	
complexity	and	heterogeneity	of	the	data	necessitate	the	use	of	visual	analysis	
techniques	for	diagnosis	and	medical	research	and,	even	more	importantly,	
treatment	planning	and	evaluation,	e.g.	radio	therapy	planning	and	post‐
chemotherapy	evaluation	(Childs	et	al.,	2013).
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A	concerted	effort	is	needed in	the	horizontal	ML‐pipeline	from	data	preprocessing	
to	data	visualization;
At	the	end	of	the	pipeline	the	end‐user	want	to	see	something	…
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And	exactly	this	poses	a	grand	challenge	to	computational	approaches, because	
Von‐Neumann	machines	are	missing	the	context!	A	computer	does	not	know	that	
noses	can	run	– and	feet	can	smell	– however,	one	solution	lies	in	machine	learning	
approaches	where	we	can	train	the	machines	to	learn	the	context.
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The	word	“Cell”	has	a	lot	of	different	meanings:	the	famous	Journal,	but	also	the	
basic	building	block	of	life,	a	battery	cell,	a	Voronoi	cell	in	mathematical	topology,	a	
prisoner’s	cell,	a	cell	of	a	radio	network,	a	blood	cell,	a	cell	of	a	spreadsheet,	an	cell	
in	aircrafts	or	car	manufacturing,	a	foam	cell,	cellulose	(in	German:	
“Zell‐Stoff”),	etc.	This	is	the	most	difficult	problem:	the	semantic	ambiguity	of	our	
natural	language	(noses	can	run	and	feet	can	smell	– without	context	this	is	
unsolvable	for	any	computer).	To	better	understand	these	processes	let	us	review	
more	detailed	the	already	learned	human	information	processing.
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The	answer	is:	it	depends!
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The	famous	proverb	“a	picture	is	worth	a	thousand	words”	refers	to	the	concept	
that	a	complex	idea	can	be	conveyed	with	just	one	single	image	and	infers	a	central	
goal	of	visualization:	to	make	it	possible	to	perceive	and	cognitively	process	large	
amounts	of	data	quickly.	Look	at	this	image.	It	is	a	good	example	on	how	a	picture	
can	explain	a	complex	idea:		A	ribbon	diagram	aka	Richardson	diagram,	
(Richardson,	2000),	is	a	standard	method	of	schematic	protein	representation.	The	
ribbon	shows	the	overall	path	and	organization	of	the	protein	backbone	and	is	
generated	by	interpolating	a	smooth	curve	through	the	polypeptide	backbone.	So‐
called	α‐helices	are	shown	as	curly	ribbons,	β‐strands	as	arrows,	and	thin	lines	for	
non‐repetitive	coils	or	loops.	The	direction	of	the	polypeptide	chain	is	shown	
locally	by	the	arrows,	and	may	be	indicated	overall	by	a	color	ramp	along	the	
length	of	the	ribbon.	Such	diagrams	are	useful	for	expressing	the	molecular	
structure	(twist,	fold	and	unfold).	Remember:	A	protein	is	a	single	chain	of	amino	
acids,	which	folds	into	a	globular	structure	and	the	Thermodynamics	Hypothesis	
states	that	a	protein	always	folds	into	a	state	of	minimum	energy.	Computationally,	
the	protein	folding	problem	becomes	an	optimization	problem:	We	are	looking	for	
a	path	to	the	global	minimum	in	a	very	high‐dimensional	energy	landscape.	First	
ribbon	diagrams	were	hand	drawn	(Richardson,	2000),	(Magnani et	al.,	2010).
A	protein	is	a	single	chain	of	amino	acids,	which	folds
into	a	globular	structure.	The	Thermodynamics	Hypothesis	states	that	a	protein
always	folds	into	a	state	of	minimum	energy.	To	predict	protein	structure,	we
would	like	to	model	the	folding	of	a	protein	computationally.	As	such,	the
protein	folding	problem	becomes	an	optimization	problem:	We	are	looking	for
a	path	to	the	global	minimum	in	a	very	high‐dimensional	energy	landscape.
http://t3.gstatic.com/images?q=tbn:ANd9GcSGC3eO60_EdByeIfZEVGdNeAWXsQ4JtEOdEBvQ7DkbdUl_AmQe
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Whether	and	to	what	extent	the	proverb	above	is	true	is	a	long	debate	and	there	is	
no	clear	evidence	to	date.	The	best	answer	to	the	question	“Is	a	picture	worth	a	
thousand	words?”	is:	“it	depends!”.	Some	researchers	are	arguing	that	sometimes	
a	picture	might	be	worth	a	billion	words	(Michel	et	al.,	2011),	whereas	others	are	
arguing	that	sometimes	text	is	better	than	an	image.	
A	more	profane	example:	what	is	the	difference	between	tortoise	and	turtle?	If	you	
are	not	good	in	animal	biology,	you	maybe	have	problems	with	the	words,	but	if	
you	look	at	a	picture	showing	a	turtle	and	at	one	showing	a	tortoise,	you	
immediately	understand	that	one	is	a	land	animal	and	the	other	a	sea	animal.
Be	aware,	that	most	information	in	Hospitals	is	only	available	in	text	format,	and	
that	text	is	the	communication	media	in	patient	findings,	and	the	amount	of	this	
unstructured	data	is	immensely	increasing	(Holzinger	et	al.,	2008),	(Holzinger	et	
al.,	2013).	Consequently,	text	mining	is	a	huge	area	of	biomedical	informatics	(refer	
to	→Lecture	6).	
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Semiotics	:=	the	study	of	signs	and	symbols	as	a	significant	part	of	communication.	
As	different	from	linguistics,	however,	semiotics	also	studies	non‐linguistic	sign	
systems.	Semiotics	is	often	divided	into	three	branches:
Semantics:	relation	between	signs	and	the	things	to	which	they	refer;	their	
signified	denotata,	or	meaning
Syntactics:	relations	among	or	between	signs	in	formal	structures
Pragmatics:	relation	between	signs	and	sign‐using	agents	or	interpreters
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Computer	Science	lacks	a	reliable	concept	of	the	human	mind,	whereas	the	psychological	science	lacks	solid	concepts	for	
algorithms	and	data	structures;	consequently,	there	is	a	need	for	a	theory	in	which	both	domains	find	a	place	(Andersen,	
2001).	A	sign	(“Zeichen”)	integrates	two	sides:	physical	(=signifier)	and	psychological	(=signified).
Semiotics	is	the	study	of	signs	and	therefore	can	talk	about	representations	(algorithms	and	data	structures	as	signifiers)	
and	the	interpretation	by	the	end	user	(domain	concepts	as	the	signified).	However,	only	those	parts	of	the	computational	
processes	that	influence	the	interpretation,	and	only	those	parts	of	the	interpretations	that	are	influenced	by	the	
computation,	may	be	analyzed	by	semiotic	methods	(Holzinger	et	al.,	2011b).	

In	Figure	9‐4	we	see	three	examples	of	languages,	which	claim	to	be	visual:
1)	Cave	paintings	(=	images),	which	can	be	directly	interpreted;
2)	Schematic	diagram,	showing	a	virtual	environment	and	the	human‐computer	interaction	on	a	fairly	abstract	level;
3)	Expression	of	a	mathematical	equation,	that	is	on	a	highly	abstract	level;
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Semiotic framework	stamper	1973,	1996
Semiotics	is	the	study	of	signs	and	therefore	can	describe	representations	(algorithms	and	data	structures	as	signifiers)	and
the	interpretation	by	the	end	user	(domain	concepts	as	the	signified).	However,	only	those	parts	of	the	computational	
process	that	influence	the	interpretation,	and	only	those	parts	of	the	interpretations	that	are	influenced	by	the	computation,	
can	be	analyzed	by	semiotic	methods	(Holzinger	et	al.,	2011),	(Holzinger,	2002a).	Semiotics	can	be	divided	into	three	
branches:	
Syntactics:	Relations	among	signs	in	formal	structures;	
Semantics:	Relations	between	signs	and	their	meaning;	and	
Pragmatics:	Relations	between	signs,	and	the	effects	these	may	have	on	the	end	users	who	use	them.	
A	relatively	new	field	is	Biosemiotics,	which	is	a	synthesis	of	biology	and	semiotics,	and	studying	the	origins,	action	and	
interpretation	of	signs	and	biological	codes	(Barbieri,	2008):	Life	is	essentially	about	creating	new	organic	codes	and	
conserving	those	which	have	been	created	(macroevolution).	For	example,	biosemiotics	claims	that	language	has	biological	
roots	and	must	be	studied	as	a	natural	phenomenon,	not	following	the	divide	between	nature	and	culture.	Or	another	
example:	The	study	of	protein	synthesis	has	revealed	that	genes	and	proteins	are	not	formed	spontaneously	in	the	cell	but	
are	manufactured	by	a	system	of	molecular	machines	based	on	RNAs.	In	1981,	the	components	of	this	manufacturing	system	
were	called	ribosoids and	the	system	itself	was	given	the	collective	name	of	ribotype.	The	cell	was	described	in	this	way	as	a	
structure	made	of	genes,	proteins	and	ribosoids,	i.e.,	as	a	trinity	of	genotype,	phenotype	and	ribotype (Barbieri,	2010).	
A	different	example:	Burton‐Jones	et	al.	(2005)	proposed	metrics	to	assess	the	quality	of	an	ontology	by	drawing	upon	
semiotic	theory;	their	metrics	assess	the	syntactic,	semantic,	pragmatic,	and	social	aspects	of	the	quality	of	an	ontology.	
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Visualization		is	a	method	of	computer	science	to	transform	the	symbolic	into	the	
geometric,	to	support	the	formation	of	a	mental	model	and	foster	insights;	as	such	
it	is	an	essential	component	of	the	knowledge	discovery	process	(refer	to	→Lecture	
6,	Slide	6‐3),	(2007)	.
Information	visualization	is	the	interdisciplinary	study	of	the	visual	representation	
of	large‐scale	collections	of	non‐numerical	data,	such	as	files	and	software,	
databases,	networks	etc.,	to	allow	users	to	see,	explore,	and	understand	
information	at	once	(Ware,	2004),	(Ware,	2012);
Data	visualization	is	the	visual	representation	of	complex	data,	to	communicate	
information	clearly	and	effectively,	making	data	useful	and	usable	(Ward,	Grinstein	
&	Keim,	2010);
Visual	Analytics	focuses	on	analytical	reasoning	of	complex	data	facilitated	by	
interactive	visual	interfaces	(Aigner,	Bertone &	Miksch,	2007);
Content	Analytics	is	a	general	term	addressing	so‐called	“unstructured”	data	–
mainly	text	– by	using	mixed	methods	from	visual	analytics	and	business	
intelligence	(Holzinger	et	al.,	2013);
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Large‐scale	high	dimensional	data	visualization	is	highly	valuable	for	scientific	
discovery	in	many	fields	of	data	mining	and	information	retrieval.	PlotViz is	a	3D	
data	point	browser	that	visualizes	large	volume	of	2‐ or	3‐dimensional	data	as	
points	in	a	virtual	space	on	a	computer	screen	and	enable	users	to	explore	the	
virtual	space	interactively.
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Making issues	visible	which	otherwise	would	be	unaccessible.
Interactive	Visualizations	provide	the	ability	to	comprehend	data	and	to	
interactively	analyze	information	properties.	The	process	of	data	visualization	
includes	four	steps
1)	the	data	itself	and	interactive	data	exploration;
2)	the	preprocessing	and	transformation	of	the	data;	
3)	the	graphical	algorithms	to	produce	the	corresponding	image	on	a	screen
4)	the	human	perceptual	and	cognitive	system;	
McCormick	(1987)	defined	the	science	of	visualization	by	a	taxonomy	diagram,	wherein	he	stated	that	images	and	signals	
(captured	from	cameras,	sensors	etc.)	are	transformed	by	image	processing	and	presented	pictorially.	Abstractions	of	these	
visual	representations	can	then	be	transformed	by	computer	vision	to	create	symbolic	representations	in	the	form	of	
symbols	and	structures.	Finally,	by	using	computer	graphics	the	symbols	or	structures	can	be	synthesized	into	visual	
representations.	McCormick	concluded	that	the	common	denominator	of	the	computational	sciences	is	visualization	and	
indeed	the	research	opportunities	and	engineering	applications	of	visualization	are	sheer	endless.	
In	this	example	we	see,	how	an	interactive	visualization	can	enhance	student	understanding	of	complex	data	(Holzinger	et	
al.,	2009):	Generally,	learning	in	the	area	of	physiology	is	difficult	for	medical	students	for	several	reasons.	Medical	students	
often	do	not	have	sufficient	mathematical	background	for	understanding	physiological	models	and	the	dynamics	of	complex	
mathematical	rules	related	to	these	models.	Moreover,	learning	is	often	without	recourse	to	patients	due	to	ethical	
restrictions	(Simon,	1972).	Simulations	are	assumed	to	offer	various	benefits,	especially	to	novice	medical	students	learning	
theoretical	concepts,	processes,	relationships,	as	well	as	invasive	procedural	skills,	which	is	extremely	important	within	
decreasing	clinical	exposure.	Consequently,	students	can	acquire	knowledge	in	a	safe	environment	(Kneebone,	2005)	and	
apply	the	new	knowledge	in	practice	(Weller,	2004).	
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Taking	all	these considerations	into	account	interactive	visualization	is	a	typical	
human‐computer	interaction	task.
However,	to	solve	problems	in	the	complex	medical	domain	we	need	to	cover	the	
whole	pipeline	from	data	preprocessing	to	visualization.
Our	group	logo	derives	from	this	horizontal	concerted	and	integrated	approach.
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McCormick,	1987	defined	the	science	of	visualization	by	a	taxonomy	diagram	(see	
in	the	slide	right),	wherein	he	stated	that	images	and	signals	(captured	from	
cameras,	sensors	etc.)	are	transformed	by	image	processing	and	presented	
pictorially.	Abstractions	of	these	visual	representations	can	then	be	transformed	by	
computer	vision	to	create	symbolic	representations	in	the	form	of	symbols	and	
structures.	Finally,	by	using	computer	graphics	the	symbols	or	structures	can	be	
synthesized	into	visual	representations.	McCormick	concluded	that	the	common	
denominator	of	the	computational	sciences	is	visualization	and	indeed	the	
research	opportunities	and	engineering	applications	of	visualization	are	sheer	
endless.	
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Mental	Models	can	be	seen	as	abstractions	of	visualizations.	The	first	step	between	
mental	models	and	external	representations	is	internalization.	The	formation	of	a	
mental	model	happens	ontogenetically	after	the	appearance	of	the	original	
external	phenomenon.	This	insight	has	been	formulated	by	Vygotsky,	who	argues	
that	in	each	individual’s	development,	every	higher	order	cognitive	function	
appears	twice:	first	between	people,	as	an	inter‐psychological	process,	then	inside	
an	individual,	as	an	intra‐psychological	process.	In	information	visualization	it	
makes	sense	to	understand	the	role	of	visualization	in	human	cognitive	activities	
from	a	developmental	perspective.	Mental	models	can	serve	as	the	cognitive	basis	
of	creativity	and	innovation.	The	construction	and	simulation	of	mental	models	can	
give	rise	to	new	concepts	and	designs	including	novel	visual	representations.	Some	
visual	representations	such	as	the	scatter	plot	and	line	graph	have	existed	for	
centuries.	In	the	slide	we	see	that	visualization	is	an	interactive	process	
(internalize,	process,	augment,	create)	across	representational	media	(Liu	&	
Stasko,	2010).	
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Stage	1:	Parallel	processing	to	extract	low‐level	properties	of	the	visual	scene,	i.e.	
billions	of	neurons	in	the	eye	and	visual	cortex	work	in	parallel,	extracting	features	
from	every	part	of	the	visual	field	simultaneously.	The	information	at	this	stage	is	
of	transitory	nature,	briefly	held	in	an	iconic	store	(refer	to	memory	models).	
Stage	2:	Pattern	perception,	the	visual	field	is	divided	into	regions	and	patterns	
(e.g.	simple	contours,	regions	of	same	colour,	patterns	of	motion,	etc.).	The	
information	at	this	stage	is	slowly	serially	processed	in	a	state	of	flux.
Stage	3:	Sequential	goal‐directed	processing,	here	objects	are	held	in	the	visual	
working	memory	by	demands	of	active	attention.
GIST =	
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We	demonstrate	the	usefulness	of	the	visualization	sciences	on	some	examples.
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Next	time	you	are	in	London – visit	Broad	Street	
There	are	many	famous	visualization	examples	from	the	past,	and	one	important	
for	medicine	is	the	example	on	the	work	done	by	John	Snow	in	1854	during	the	
Cholera	epidemic	in	London.	He	identified	the	Broad	Street	pump	as	the	source	of	
cholera	by	plotting	the	location	of	cholera	deaths	on	a	map	(Figure	9‐10).	After	he	
removed	the	pump	handle	the	epidemic	ended	(McLeod,	2000).	
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Cholera	is	an	infection	of	the	small	intestine	that	is	caused	by	the	bacterium	Vibrio	
cholerae.	The	main	symptoms	are	profuse	watery	diarrhea	and	vomiting.	
Transmission	occurs	primarily	by	drinking	or	eating	water	or	food	that	has	been	
contaminated	by	the	diarrhea	of	an	infected	person	or	the	feces	of	an	infected	but	
asymptomatic	person.	The	severity	of	the	diarrhea	and	vomiting	can	lead	to	rapid	
dehydration	and	electrolyte	imbalance	and	death	in	some	cases.	The	primary	
treatment	is	with	oral	rehydration	solution	(ORS)	to	replace	water	and	electrolytes,	
and	if	this	is	not	tolerated	or	doesn't	provide	quick	enough	treatment,	intravenous	
fluids	can	also	be	used.	Antibiotics	are	beneficial	in	those	with	severe	disease	to	
shorten	the	duration	and	severity.	Worldwide	it	affects	3–5	million	people	and	
causes	100,000–130,000	deaths	a	year	as	of	2010.	Cholera	was	one	of	the	earliest	
infections	to	be	studied	by	epidemiological	methods.

http://www.ahooy.net/un‐says‐cholera‐epidemic‐in‐somalia/
Scanning	electron	microscope	image	of	Vibrio	cholerae bacteria,	which	infect	the	
digestive	system.

Zeiss	DSM	962	SEM
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In	Sep	1854,	a	cholera	epidemic	hit	an	area	of	London	around	Broad	(now	
Broadwick)	Street – near	Oxford	Circus	Underground
•	Up	to	this	time,	cholera	was	thought	to	be	an	airborne	disease.
•	Dr.	John	Snow	plotted	the	deaths	on	a	map	and	noticed	a	higher	clustering
around	the	Broad	Street	water	pump.
•	Workers	in	the	nearby	brewery,	which	had	its	own	water	(and	beer)	supply,	were	
largely	unaffected.
•	The	handle	on	the	Broad	Street	water	pump	was	then	removed.
•	Snow	had	shown	that	cholera	is	in	fact	a	waterborne	disease.
•	Tufte [1997b,	pages	27–37]	tells	the	story	in	more	detail.
•	Not	really	infovis,	more	geovis,	since	it	is	based	on	an	underlying	map.
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W.	Edwards	Deming	was	once	referred	to	as	the	“Apostle	of	Quality”	for	his	role	in
promoting	a	philosophy	of	quality	(Gabor,	1990)	and	he	is	widely	credited	with	
being	a
major	reason	for	the	popularity	of	the	total	quality	management	movement	of	the
1980s	and	1990s.	One	biography	titles	Deming	“The	Man	Who	Discovered	Quality”
(Gabor,	1990).	If	that	title	is	apt,	then	perhaps	we	could	label	Florence	Nightingale	
“The
woman	who	discovered	quality.”	One	hundred	years	before	Deming	went	to	Japan,
Nightingale	went	to	the	Crimean	peninsula.	In	her	subsequent	work	and	writings	
she
proved	to	be	a	relentless	advocate	of	quality	in	the	operations	function.	Because	
her
context	was	the	medical	profession,	she	has	become	well‐known	in	that	arena,	but	
her
objectives	and	methods	align	in	many	ways	with	those	of	the	modern	quality
movement.	We	believe	that	Florence	was,	like	Deming,	an	apostle	of	quality	and
deserves	a	prominent	place	in	quality	history.
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Many
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Many concepts	do	exist!

The	periodic	table	of	the	chemical	elements	is	a	tabular	form	of	displaying	the	
chemical	elements	in	categories,	first	devised	in	1869	by	the	Russian	chemist	
Dmitri	Mendeleev;	a	similar	approach	to	categorize	visualization	methods	was	
done	by	(Lengler &	Eppler,	2007),	
accessible	online:	www.visual‐literacy.org/periodic_table/periodic_table.html	
They	have	subdivided	the	application	area	dimension	(“groups”)	into	the	following	
categories	and	distinguished	them	by	background	color	– see	next	slide.

http://www.visual‐literacy.org/periodic_table/periodic_table.html
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1)	Data	Visualization	includes	standard	quantitative	formats	such	as	Pie	Charts,	Area	Charts	or	Line	Graphs.	They	are	visual	
representations	of	quantitative	data	in	schematic	form	(either	with	or	without	axes),	they	are	all‐purpose,	mainly	used	for	
getting	an	overview	of	data.	They	have	mapped	them	to	the	Alkali	Metals	which	most	easily	form	bonds	with	non‐metals,	a	
correspondence	might	be	the	combination	between	data	visualization	(answering	“how	much”	questions)	and	visual	
metaphors	(answering	how	and	why	questions).	
2)	Information	Visualization,	such	as	semantic	networks	or	tree‐maps,	is	defined	as	the	use	of	interactive	visual	
representations	of	data	to	amplify	cognition.	This	means	that	the	data	is	transformed	into	an	image;	it	is	mapped	to	screen	
space.	The	image	can	be	changed	by	users	as	they	proceed	working	with	it.	
3)	Concept	Visualization,	such	as	a	concept	map	or	a	Gantt	chart;	these	are	methods	to	elaborate	(mostly)	qualitative	
concepts,	ideas,	plans,	and	analyses	through	the	help	of	rule‐guided	mapping	procedures.	In	Concept	Visualization	
knowledge	is	usually	presented	in	a	2‐D	graphical	display	where	concepts	(usually	represented	within	boxes	or	circles),	
connected	by	directed	arcs	encoding	brief	relationships	(linking	phrases)	between	pairs	of	concepts.	These	relationships	
usually	consist	of	verbs,	forming	propositions	or	phrases	for	each	pair	of	concepts.	
3)	Metaphor	Visualization,	such	as	metro	maps	or	story	template	can	be	used	as	effective	and	simple	templates	to	convey	
complex	insights.	Visual	Metaphors	fulfill	a	dual	function,	first	they	position	information	graphically	to	organize	and	
structure	it.	Second	they	convey	an	insight	about	the	represented	information	through	the	key	characteristics	of	the	
metaphor	that	is	employed.
4)	Strategy	Visualization,	such	as	a	Strategy	Canvas	or	technology	roadmap	is	defined	“as	the	systematic	use	of	
complementary	visual	representations	to	improve	the	analysis,	development,	formulation,	communication,	and	
implementation	of	strategies	in	organizations.”	This	is	the	most	specific	of	all	groups,	as	it	has	achieved	great	relevance	in	
management.	
5)	Compound	Visualization	consists	of	several	of	the	aforementioned	formats.	They	can	be	complex	knowledge	maps	that	
contain	diagrammatic	and	metaphoric	elements,	conceptual	cartoons	with	quantitative	charts,	or	wall	sized	infomurals.	This	
label	thus	typically	designates	the	complementary	use	of	different	graphic	representation	formats	in	one	single	schema	or	
frame.	According	to	Tufte they	result	from	two	(or	more)	spatially	distinct	different	data	representations,	each	of	which	can	
operate	independently,	but	can	be	used	together	to	correlate	information	in	one	representation	with	that	in	another.
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Slide	9‐22	Visualizations	for	multivariate	data	Overview	1/2
For	a	first	overview	let	us	summarize	some	important	visualization	methods:	
Scatterplots	(SP)	are	the	oldest,	point‐based	techniques,	and	projects	(maps)	data	
from	an	n‐dimensional	space	into	an	arbitrary	k‐dimensional	display	space	
(usually	it	will	be	the	2‐dimensional	space	;‐).	To	verify	cluster	separation	in	high‐
dimensional	data,	analysts	often	reduce	the	data	with	a	dimension	reduction	
technique,	and	then	visualize	it	with	2D	Scatterplots,	interactive	3D	Scatterplots,	or	
Scatterplot	Matrices	(SPLOMs)	(Sedlmair,	Munzner &	Tory,	2013).
Parallel	Coordinates	(PCP)	is	best	suited	for	the	study	of	high‐dimensional	
geometry,	where	each	data	point	is	plotted	as	a	polyline.	
Radial	Coordinate	Visualization	(RadViz)	is	a	“force‐driven”	point	layout	technique,	
based	on	Hooke’s	law	for	equilibrium.	
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Slide	9‐23	Visualizations	for	multivariate	data	Overview	2/2
Radar	Chart	aka	star	plot,	spider	web,	polar	graph,	polygon	plot	is	a	radial	axis	
technique.
Heatmap is	a	tabular	display	technique	using	color	instead	of	figures	for	the	
entities.
Glyph	is	a	visual	representation	of	the	entity,	where	its	attributes	are	controlled	by	
data	attributes.
Chernoff face	is	a	face	glyph	which	displays	multivariate	data	in	the	shape	of	a	
human	face.
http://www.mathworks.de/de/help/stats/glyphplot.html

Biology	heat	maps	are	typically	used	in	molecular	biology	to	represent	the	level	of	
expression	of	many	genes	across	a	number	of	comparable	samples	(e.g.	cells	in	
different	states,	samples	from	different	patients)	as	they	are	obtained	from	DNA	
microarrays
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The	so	called	‖‐coords have	been	developed	in	the	context	of	modern	visualization	
by	Alfred	Inselberg	in	the	1950ies	and	are	excellent	for	visualizing	high‐
dimensional	and	multivariate	data	in	the	form	of	N	parallel	lines,	where	a	data	
point	in	the	N‐dimensional	space	is	represented	as	a	polyline	with	vertices	on	the	
parallel	axes.	
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The	so	called	‖‐coords have	been	developed	in	the	context	of	modern	visualization	
by	Alfred	Inselberg	in	the	1950ies	and	are	excellent	for	visualizing	high‐
dimensional	and	multivariate	data	in	the	form	of	N	parallel	lines,	where	a	data	
point	in	the	N‐dimensional	space	is	represented	as	a	polyline	with	vertices	on	the	
parallel	axes.	We	follow	the	paper	of	(Inselberg,	2005)	and	the	book	of	(Inselberg,	
2009),	which	contains	an	excellent	compact	disc	providing	a	lot	of	interactive	
material.
On	the	plane	with	xy‐Cartesian	coordinates	a	vertical	line,	labeled	X	̅_i is	placed	at	
each	x=i‐1		for	i=1,2,…N.	These	are	the	axes	of	the	parallel	coordinate	system	for	
R^N.	A	point		C=(c_1,c_2,…	c_N )∈R^N	is	now	mapped	into	the	polygonal	line		C	̅			
whose									N‐vertices	with	xy‐coords (i‐1	,	c_i )	are	on	the	parallel	axes.	In	C	̅	the	
full	lines	and	not	only	the	segments	between	the	axes	are	included.	
‖‐coords are	constructed	by	placing	axes	in	parallel	with	respect	to	the	embedding	
2D	Cartesian	coordinate	system	in	the	plane	(the	parallel‐coordinates	domain).	
While	the	orientation	of	axes	can	be	chosen	freely,	the	most	common	use	is	either	
horizontal	(parallel	to	the	x‐axis)	or	vertical	(parallel	to	the	y‐axis),	see	next	slide.	
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On	the	plane	with	xy‐Cartesian	coordinates	a	vertical	line,	labeled	X	̅_i is	placed	at	
each	x=i‐1		for	i=1,2,…N.	These	are	the	axes	of	the	parallel	coordinate	system	for	
R^N.	A	point	C=(c_1,c_2,…	c_N )∈R^N	is	mapped	into	the	polygonal	line	C	̅	whose	N‐
vertices	with	xy‐coords (i‐1	,	c_i )	are	on	the	parallel	axes.	In	C	̅	the	full	lines	and	not	
only	the	segments	between	the	axes	are	included:
Note	that	each	point	in	the	n‐dimensional	space	is	represented	as	a	polyline	with	
vertices	on	the	parallel	axes;	the	position	of	the	vertex	on	the	i‐th axis	corresponds	
to	the	i‐th coordinate	of	the	point	(Inselberg,	2005).
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A	polygonal	line	P	̅	on	the	N‐1	points	represents	a	point		P=(p_1,〖…p〗_(i‐1),p_i…	
p_N )∈l	since	the	pair	of	values	〖…p〗_(i‐1),p_i marked	on	the	X	̅_(i‐1)		and	X	̅_i axes.	
We	can	see	several	polygonal	lines,	intersecting	at	l_((i‐1),i)		representing	data	
points	on	a	line	〖l⊂R〗^10.		If	we	plot	this	result	we	get	the	line	interval	in	R^10	as	
can	be	seen	in	Slide	9‐27.
Note:	When	thinking	of	visualizing	data	with	‖‐coords,	especially	in	the	biomedical	
domain,	one	is	immediately	confronted	with	some	challenges	(Heinrich	&	
Weiskopf,	2012):
Overplotting occurs	in	parallel	coordinates	if	lines	potentially	occlude	patterns	in	
the	data.	
The	order	of	axes	implicitly	defines	which	patterns	emerge	between	adjacent	axes.	
The	line‐tracing	problem	occurs	if	two	or	more	lines	intersect	an	axis	at	the	same	
position.	
Nominal	and	ordinal	data	such	as	sets	and	clusters	have	to	be	mapped	to	a	metric	
scale	before	it	can	be	visualized	in	parallel	coordinates.	
Time	series	are	special	in	that	time	points,	if	interpreted	as	dimensions,	have	a	
fixed	order.	
Uncertain	data	is	another	challenge	for	visualization,	and	there	are	approaches	for	
the	visualization	of	uncertainty	in	parallel	coordinates.	
The	indexing	is	essential	and	is	important	for	the	visualization	of	proximity	
properties	such	as	the	minimum	distance	between	a	pair	of	lines,	see	next	slide.
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Again:	The	indexing	is	essential	and	is	important	for	the	visualization	of	proximity	
properties	such	as	the	minimum	distance	between	a	pair	of	lines.
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This	is	an	example	of	an	implementation	in	R	by	Graham	Williams,	see:	
http://datamining.togaware.com/survivor/Scatterplot.html

41WS 2015

A. Holzinger                                      LV 709.049



This	shows	an	interesting	example	of	(Mane	&	Börner,	2007):	The	multiple	
coordinated	views	help	a	medical	practitioner	to	gain	a	good	insight	about	the	
medical	data	variations	among	selected	patients.	The	matrix	view	(A)	helps	to	
quickly	identify	similar	patterns	and	worst	case	conditions.	The	parallel	
coordinates	view	(B)	helps	to	quickly	identify	and	compare	trends	shared	by	
groups	of	patients.	So	the	matrix	view	and	parallel	coordinate	view	complement	
each	other	to	help	the	medical	practitioners	gain	an	understanding	of	the	data.	
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An	important	issue	of	all	real‐world	datasets	is,	that	many	of	their	attributes	can	
identify	individuals,	or	the	data	are	proprietary	and	valuable.	The	field	of	data	
mining	has	developed	a	variety	of	ways	for	dealing	with	such	data,	and	has	
established	an	entire	subfield	for	privacy‐preserving	data	mining.	
The	k‐anonymity	model		is	an	approach	(NP‐hard)	to	protect	individual	records	
from	re‐identification.	It	works	by	ensuring	that	each	data	record	in	the	table	is	
indistinguishable	from	k	‐1	other	records	with	respect	to	the	quasi‐identifiers	in	
the	table	(El	Emam &	Dankar,	2008).
Visualization	has	seen	little	work	on	handling	sensitive	data.	With	the	growing	
applicability	of	data	visualization	in	real‐world	scenarios,	the	handling	of	sensitive	
data	has	become	a	non‐trivial	issue	we	need	to	address	in	developing	visualization	
tools.	Figure	203	shows	the	work	of	(Dasgupta &	Kosara,	2011):	a)	shows	the	
parallel	coordinates	display	of	the	original	data,	and	b)	to	d)	show	the	anonymized	
image	for	different	values	of	k.	Since	we	see	aggregated	values	instead	of	single	
ones,	represented	by	polygons	instead	of	clusters,	it	is	not	possible	to	point	to	
particular	values	on	the	axes.	At	the	same	time,	much	of	the	overall	structure	is	still	
visible	in	the	visualization,	even	though	individual	records	cannot	be	identified	
anymore.	
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To	date	rarely	such	sophisticated	visualization	methods	are	used	in	the	context	of	
enterprise	business	hospital	information	systems.	The	question	remains	open:	
why?
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Decision	Support	with	Parallel	Coordinates	in	Diagnostics.	Visual	inspection	of	the	
tongue	is	an	important	diagnostic	method	of	Traditional	Chinese	Medicine	(TCM).	
Observing	the	abnormal	changes	in	the	tongue	and	the	tongue	coating	can	support	
in	diagnosing	diseases.	(Pham	&	Cai,	2004)	demonstrate	it	nicely,	how	proper	
visualization	can	contribute	to	medical	decision	making.	Also	no	interest	– would
be	a	nice	student	work	– but	nobody	so	far	was	interested	– why?
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Flow	cytometry is	used	in	diagnosis,	especially	blood	cancers,	but	has	many	other	
applications	in	both	research	and	clinical	practice.	

Flow	cytometry is	a	laser	based,	biophysical	technology	employed	in	cell	counting,	
sorting,	biomarker	detection	and	protein	engineering,	by	suspending	cells	in	a	
stream	of	fluid	and	passing	them	by	an	electronic	detection	apparatus.	It	allows	
simultaneous	multiparametric analysis	of	the	physical	and/or	chemical	
characteristics	of	up	to	thousands	of	particles	per	second.
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Flow	cytometry is	routinely	used	in	the	diagnosis	of	health	disorders,	especially	
blood	cancers,	but	has	many	other	applications	in	basic	research,	clinical	practice	
and	clinical	trials.	A	common	variation	is	to	physically	sort	particles	based	on	their	
properties,	so	as	to	purify	populations	of	interest.
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Here	you see	typical	scatterplot	
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http://www.scielo.br/scielo.php?pid=S1678‐
31662010000300004&script=sci_arttext

RadViz is	a	method	for	mapping	a	set	of	n‐dimensional	points	into	a	plane	and	to	
identify	relations	among	data.	Its	main	advantage	is	that	it	needs	no	projections	
and	provides	a	global	view	on	the	multidimensional	data.	This	method	is	following	
Hooke’s	law	from	classical	mechanics	(spring	laws).
A	nice	tool	can	be	found	at:	http://orange.biolab.si/
This	is	an	open	source	data	visualization	and	analysis	tool	for	novice	and	experts	
for	data	mining	through	visual	programming	and	Python	scripting	including	
components	for	machine	learning	and	add‐ons	for	bioinformatics	and	text	mining	
(Demšar et	al.,	2013).	
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Each RadViz mapping of points from n‐dimensional space into a plane is uniquely

defined by position of the corresponding n anchors (points Sj), which are placed in

a single plane. Let us consider a point ݕ ൌ ,ଵݕ ,ଶݕ ݕ	… from the n‐dimensional

space; This point is now mapped into a single point u in the plane of anchors: for

each anchor j the stiffness of its spring is set to yj and the Hooke’s law is used to

find the point u, where all the spring forces reach equilibrium (means they sum to

0). The position of ݑ ൌ ሾݑଵ, ଶሿݑ is now derived by:
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The algorithm using the RadViz process (Novakova & Stepankova, 2009) is:

1. Normalize the data to the interval 0, 1

ݔ̅ ൌ
ݔ െ ݉݅ ݊

ݔܽ݉ െ ݉݅ ݊

2. Now place the dimensional anchors

3. Now calculate the point to place each record and to draw it:

ݕ ൌ̅ݔ



ୀଵ

ݑ								 ൌ
 Ԧܵ



ୀଵ
ݔ̅

ݕ
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Here	we	see	some	RadViz Examples	from	(Novakova &	Stepankova,	2009):
A	=	data	projection	in	3D	space;	B	=	the	example	from	Slide	9‐34;	C=	RadVizS
clustering;	D	=	same	from	another	angle;	E	=	Mirror	projection;	F=	after	
normalization	

56WS 2015

A. Holzinger                                      LV 709.049



Slide	9‐36	Star	plots/Radar	chart/Spider‐web/Polygon	plot
StarPlots aka	radar	chart,	spider	web	diagram,	polygon	plot,	polar	chart,	or	Kiviat
diagram,	are	graphical	methods	for	displaying	multivariate	data	in	the	form	of	a	2D	
chart	of	three	or	more	quantitative	variables	represented	on	axes	starting	from	the	
same	point.	
Despite	of	their	usefulness,	such	diagrams	have	not	been	widely	used	in	the	
biomedical	domain.	One	example	of	their	use	include	distinguishing	metabolic	
profiles	of	different	cancer	classes	with	star	plots	by	the	work	of	(Vion‐Dury et	al.,	
1993).
Vion‐Dury,	J.,	Favre,	R.,	Sciaky,	M.,	Kriat,	M.,	Confort‐Gouny,	S.,	Harle,	J.,	Grazziani,	
N.,	Viout,	P.,	Grisoli,	F.	&	Cozzone,	P.	1993.	Graphic‐aided	study	of	metabolic	
modifications	of	plasma	in	cancer	using	proton	magnetic	resonance	spectroscopy.	
NMR	in	Biomedicine,	6,	(1),	58‐65.
In	this	slide	we	see	an	example	of	gender	differences	in	death	rate	by	treatment	
overlaid	(Saary,	2008).	
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Each	multivariate	observation	can	be	seen	as	a	data	point	in	an	n‐dimensional	vector	space:
Arrange	N	axes	on	a	circle	in	R^2
3	≤	N	≤	Nmax
Map	coordinate	vectors	P	∈	ԹN	from	ԹN→Թ2
P={p_1,p_2,…,p_N }∈	R^N	where	each	pi	represents	a	different	attribute	with	a	different	physical	unit
Each	axis	represents	one	attribute	of	data
Each	data	record,	or	data	point	P	is	visualized	by	a	line	along	the	data	points
A	line	is	perceived	better	than	just	points	on	the	axes

There	are	commercial	software	tools	which	can	help,	e.g.	the	SAS	statistical	software	package	(http://www.sas.com)	and	
Microsoft	Excel	(http://office.microsoft.com/en‐us/excel‐help/present‐your‐data‐in‐a‐radar‐chart‐HA010218672.aspx).		
In	SAS	you	can	use	the	GRADAR	procedure,	the	data	can	consist	of	one	or	more	group	variables	and	one	or	more	outcome	
variables	for	which	there	is	a	count	or	frequency	for	each	level	of	the	group	variable.	The	vertices	of	the	radar	plot	are	
determined	by	the	levels	of	a	single	variable	that	is	given	in	the	CHART	statement.	The	spokes	in	the	chart	are	positioned	
much	like	a	clock	starting	at	the	12‐o’clock	position	and	moving	in	a	clockwise	direction.	
In	Excel,	the	radar	plot	is	generated	by	using	the	Insert	function	that	allows	the	option	to	insert	one	of	a	variety	of	charts.	
Radar	plots	are	among	a	number	of	other	less	commonly	used	graphing	styles	available	on	this	menu	including	surface,	
doughnut,	bubble,	and	stock	plots.	In	this	example,	Excel	does	not	prepare	the	chart	by	performing	calculations	on	the	raw	
data;	hence,	the	sums	(or	means)	of	the	raw‐data	groups	must	be	represented	in	a	separate	new	table	(Saary,	2008).	
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Here	we	see	an	simple	algorithm	for	drawing	the	axes	and	lines	of	a	star	plot	
diagram.
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Visual	analytics	seeks	to	support	an	“intelligent”	interaction	discourse	with	the	end	
user	through	images,	to	stimulate	curiosity	and	a	penchant	to	decipher	the	
unknown.	In	this	slide	we	see	a	representative	visual	analytics	process	(Mueller	et	
al.,	2011)	– which	is	also	a	nice	example	for	Human–Computer	Interaction:	The	
computer	supports	the	user	in	analytical	reasoning,	constructing	a	formal	model	of	
the	given	data	and	enabling	insight.	Validation	and	refinement	of	this	
computational	model	of	insight	can	occur	only	in	the	human	domain	expert’s	mind.	
The	human	user	must	guide	the	computer	in	the	formalization	(learning	process)	
of	sophisticated	models	that	capture	what	the	human	desires,	cf.	with	(Holzinger,	
2012).	
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A	recent	example	is	from	(Ren et	al.,	2010),	who	developed	DaisyViz,	which	is	
based	on	the	idea	of	model‐based	interface	development,	which	uses	a	declarative	
model	of	user	interfaces	to	enhance	the	development	process.	Basically,	a	user	
interface	model	abstracts	the	features	of	a	user	interface	and	represents	all	the	
relevant	aspects	of	the	user	interface	in	a	formal	language.	The	user	interface	
model,	the	core	of	development	process,	is	then	parsed	according	to	knowledge	
bases	to	generate	applications.	From	the	perspective	of	end‐users,	their	only	
design	concern	is	to	construct	an	interface	model.	The	slide	shows	the	user	
interface	model	for	Infovis (UIMI),	developed	by	Ren et	al.	(2010).	In	this	
framework,	one	can	construct	a	model	by	simply	answering	several	questions:	
1)	What	facets	of	the	target	information	should	be	visualized?
2)	What	data	source	should	each	facet	be	linked	to	and	what	relationships	these	
facets	have?
The	answers	to	these	two	questions	result	in	the	data	model.
3)	What	layout	algorithm	should	be	used	to	visualize	each	facet?
The	answer	to	this	question	results	in	the	visualization	model.
4)	What	interactive	techniques	should	be	used	for	each	facet	and	for	which	infovis
tasks?
The	answer	to	this	question	results	in	the	control	model.
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There	are	many	visual	design	guidelines	but	the	basic	principle	might	be	
summarized	as	the	Visual	Information	Seeking	Mantra	by	(Shneiderman,	1996):	
Overview	first,	zoom	and	filter,	then	details‐on‐demand,	which	has	been	further	
elaborated	by	(Keim et	al.,	2008):
1)	Overview:	Gain	an	overview	about	the	entire	data	set	(know	your	data!);
2)	Zoom:	Zoom	in	on	items	of	interest;	(Remember:	the	question	“what	is	
interesting?”	is	a	very	hard	one.
3)	Filter:	filter	out	uninteresting	items	– get	rid	of	distractors	– eliminate	irrelevant	
information;
4)	Details‐on‐demand:	Select	an	item	or	group	and		provide	details	when	needed;
5)	Relate:	View	relationships	among	items;
6)	History:	Keep	a	history	of	actions	to	support	undo,	replay,	and	progressive	
refinement;
7)	Extract:	Allow	extraction	of	sub‐collections	and	of	the	query	parameters;
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Ward,	Grinstein	&	Keim (2010)	summarize	how	a	developer	can	let	the	user	
interactively	manipulate	the	data:
Focus	Selection	=	via	direct	manipulation	and	selection	tools,	e.g.	multi‐touch	(in	
data	space	a	n‐dim	location	might	be	indicated);
Extent	Selection	=	specifying	extents	for	an	interaction,	e.g.	via	a	vector	of	values	(a	
range	for	each	data	dimension	or	a	set	of	constraints;
Interaction	type	selection	=		e.g.	a	pair	of	menus:	one	to	select	the	space,	and	the	
other	to	specify	the	general	class	of	the	interaction;
Interaction	level	selection	=	e.g.	the	magnitude	of	scaling	that	will	occur	at	the	focal	
point	(via	a	slider,	along	with	a	reset	button).
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(Powsner &	Tufte,	1994)	presented	a	graphical	summary	of	the	patient	status,	
which	maps	findings	and	treatments	over	time.	The	example	shows	that	no	tests	of	
serum	glucose	were	done	during	the	12	months	before	admission,	although	many	
were	made	more	than	1	year	earlier.	The	non‐linear	time‐scale	compresses	years	
of	data	into	a	context	for	assessing	recent	trends.
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Life	Lines	was	a	very	early	project	on	a	general	visualization	environment	for	
personal	patient	histories.	A	Java	user	interface	presents	a	one‐screen	overview	of	
a	computerized	patient	record	using	timelines.	Problems,	diagnoses,	test	results	or	
medications	can	be	represented	as	dots	or	horizontal	lines.	Zooming	provides	
more	details;	line	color	and	thickness	illustrate	relationships	or	significance.	The	
visual	display	acts	as	a	giant	menu,	giving	direct	access	to	the	data	(Plaisant et	al.,	
1996).
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Temporal	means	of,	relating	to,	or	limited	by time

Temporal	analysis	and	temporal data	mining	are	especially	concerned	with	
extracting	useful	information	from	time‐oriented	data

Classification	– given	a	set	of	classes,	the	goal	of	classification	is	to	determine	
which	class	a	dataset,	sequence.

The	analysis	of	time‐oriented	data	is	very	important	in	the	biomedical	domain.	In	
recent	years,	a	variety	of	techniques	for	visualizing	such	data	are	available,	e.g.:
Classification	=	given	a	set	of	classes:	the	aim	is	to	determine	which	class	the	
dataset	belongs	to;	a	classification	is	often	necessary	as	pre‐processing;
Clustering	=	grouping	data	into	clusters	based	on	similarity;	the	similarity	measure	
is	the	key	aspect	of	the	clustering	process;
Search/Retrieval	=	look	for	a	priori	specified	queries	in	large	data	sets	(query‐by‐
example),	can	be	exact	matched	or	approximate	matched	(similarity	measures	are	
needed	that	define	the	degree	of	exactness);
Pattern	discovery	=	automatically	discovering	relevant	patterns	in	the	data,	e.g.	
local	structures	in	the	data	or	combinations	thereof;
Prediction	=	foresee	likely	future	behaviour of	data	– to	infer	from	the	data	
collected	in	the	past	and	present	how	the	data	will	evolve	in	the	future	(e.g.	
autoregressive	models,	rule‐based	models	etc.)
For	an	excellent	overview	consult	the	book	by	(Aigner et	al.,	2011).
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Data	in	only	one	dimension	is	relatively	packed
Adding	a	dimension	“stretch”	the		points	across	that	dimension,	making	them	
further	apart
Adding	more	dimensions	will	make	the	points	further	apart—high	dimensional	
data	is	extremely	sparse
Distance	measure	becomes	meaningless—due	to	equi‐distance
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Interesting clusters may exist only in	some subspaces – this helps in	reducing the
high‐dimensionality search space

Often	in	high	dimensional	data,	many	dimensions	are	irrelev ant	and	can	mask	
existing	clusters	in	noisy
data.	F	ature selection	removes	irrelev ant	and	redundant	dimensions	by	analyzing	
the	entire	dataset.	Subspace	clustering	algorithms	localize	the	search	for	relev ant	
dimensions	allowing	them	to	find	clusters	that	exist	in	multiple,	possibly	
overlapping	subspaces.	There	are	two	major	branches
of	subspace	clustering	based	on	their	search	strategy	.	Topdown algorithms	¯nd an	
initial	clustering	in	the	full	set	of
dimensions	and	ev aluate the	subspaces	of	each	cluster,	iteratively	improving	the	
results.	Bottom‐up	approaches	¯nd
dense	regions	in	low	dimensional	spaces	and	combine	them
to	form	clusters.	This	paper	presents	a	survey	of	the	various
subspace	clustering	algorithms	along	with	a	hierarchy	organizing	the	algorithms	
by	their	de¯ning characteristics.	We
then	compare	the	two	main	approaches	to	subspace	clustering	using	empirical	
scalability	and	accuracy	tests	and	discuss
some	potential	applications	where	subspace	clustering	could
be	particularly	useful.



n	machine	learning	problems	that	involve	learning	a	"state‐of‐nature"	(maybe	an	
infinite	distribution)	from	a	finite	number	of	data	samples	in	a	high‐dimensional	
feature	space	with	each	feature	having	a	number	of	possible	values,	an	enormous	
amount	of	training	data	are	required	to	ensure	that	there	are	several	samples	with	
each	combination	of	values.	With	a	fixed	number	of	training	samples,	the	
predictive	power	reduces	as	the	dimensionality	increases,	and	this	is	known	as	the	
Hughes	effect[3]	or	Hughes	phenomenon	(named	after	Gordon	F.	Hughes).[4][5]
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Visualization	is	most	important,	because	this	is	what	the	end	user	“experiences”.	
Very	important	in	the	future	are	visualizations	of	time	(e.g.	entropy)	and	space	(e.g.	
topology).
As	we	know	from	the	famous	Forrester	Reports,	more	than	80%	of	all	data	contain	
“unstructured”	elements,	hence	content	analytics	techniques	along	with	advanced	
interactive	visualizations	are	essential.
Amazingly,	there	are	only	very	few	of	the	sophisticated	visualization	methods	
integrated	in	“real‐world”	(e.g.	Hospital	Information	System)	and	we	are	lacking	of	
visualization	methods	for	mobile	computers.	Finally,	two	major	questions	will	be	
important	in	the	future:
How	can	we	measure	the	benefits	of	visual	analysis	as	compared	to	traditional	
methods?
Can	(and	how	can)	we	develop	powerful	visual	analytics	tools	for	the	non‐expert	
end	user?
Future	research	questions	include:	finding	proper	visual	encodings,	understanding	
multi‐dimensional	spaces,	facilitating	sensitivity,	understanding	of	uncertainty	and	
facilitating	trade‐offs	(Saad,	Hamarneh &	Möller,	2010),	(Tory	&	Möller,	2004).
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My DEDICATION is to make data valuable … Thank you!

WS 2015

A. Holzinger                                      LV 709.049



75WS 2015

A. Holzinger                                      LV 709.049



76WS 2015

A. Holzinger                                      LV 709.049



77WS 2015

A. Holzinger                                      LV 709.049



78WS 2015

A. Holzinger                                      LV 709.049



79WS 2015

A. Holzinger                                      LV 709.049



80WS 2015

A. Holzinger                                      LV 709.049



The	user	interface.	At	left:	the	node‐link	diagram,	here	with	nodes	positioned	according	to	an	attribute‐driven	layout,	i.e.,
adopting	their	corresponding	positions	within	a	degree	× s‐mean	scatterplot.	Top	middle:	the	FlowVizMenu is	popped	up	
and
contains	the	same	scatterplot.	Fluid	gestures	within	the	menu	select	dimensions	to	drive	the	attribute‐driven	layout	with	
smoothly
animated	transitions.	At	right:	the	P‐SPLOM,	here	showing	a	SPLOM	of	the	nodes’	metrics.
Abstract—A	standard	approach	for	visualizing	multivariate	networks	is	to	use	one	or	more	multidimensional	views	(for	
example,
scatterplots)	for	selecting	nodes	by	various	metrics,	possibly	coordinated	with	a	node‐link	view	of	the	network.	In	this	
paper,	we
present	three	novel	approaches	for	achieving	a	tighter	integration	of	these	views	through	hybrid	techniques	for	
multidimensional
visualization,	graph	selection	and	layout.	First,	we	present	the	FlowVizMenu,	a	radial	menu	containing	a	scatterplot	that	can	
be	popped
up	transiently	and	manipulated	with	rapid,	fluid	gestures	to	select	and	modify	the	axes	of	its	scatterplot.	Second,	the	
FlowVizMenu
can	be	used	to	steer	an	attribute‐driven	layout	of	the	network,	causing	certain	nodes	of	a	node‐link	diagram	to	move	toward	
their
corresponding	positions	in	a	scatterplot	while	others	can	be	positioned	manually	or	by	force‐directed	layout.	Third,	we	
describe	a
novel	hybrid	approach	that	combines	a	scatterplot	matrix	(SPLOM)	and	parallel	coordinates	called	the	Parallel	Scatterplot	
Matrix	(PSPLOM),
which	can	be	used	to	visualize	and	select	features	within	the	network.	We	also	describe	a	novel	arrangement	of	scatterplots
called	the	Scatterplot	Staircase	(SPLOS)	that	requires	less	space	than	a	traditional	scatterplot	matrix.	Initial	user	feedback	is	
reported.
Index	Terms—Interactive	graph	drawing,	network	layout,	attribute‐driven	layout,	parallel	coordinates,	scatterplot	matrix,	
radial	menu.

81WS 2015

A. Holzinger                                      LV 709.049



DeepView – the	Swiss‐PdbViewer (or	SPDBV),	is	an	interactive	molecular	graphics	program	for
viewing	and	analyzing	protein	and	nucleic	acid	structures.	In	combination	with	Swiss‐Model	(a	server
for	automated	comparative	protein	modeling	maintained	at	http://www.expasy.org/swissmod)	new
protein	structures	can	also	be	modeled.
Annex	5:	Glossary	provides	an	extended	dictionary	for	DeepView terminology.	To	facilitate
understanding	of	the	following	chapters,	some	essential	terms	are	introduced	here:
A	molecular	coordinate	file	(e.g.	*.pdb,	*.mmCIF,	etc.)	is	a	text	file	containing,	amongst	other
information,	the	atom	coordinates	of	one	or	several	molecules.	It	can	be	opened	from	a	local	directory
or	imported	from	a	remote	server	by	entering	its	PDB	accession	code.	The	content	of	one	coordinate
file	is	loaded	in	one	(or	more)	layers,	the	first	one	will	be	referred	to	as	the	"reference	layer".
DeepView can	simultaneously	display	several	layers,	and	this	constitutes	a	project.	When	working	on
projects,	the	layer	that	is	currently	governed	by	the	Control	Panel	is	called	the	currently	active	layer.
Each	molecule	is	composed	of	groups,	which	can	be	amino	acids,	hetero‐groups,	water	molecules,	etc.
and	each	group	is	composed	of	atoms.
Non‐coordinate	files	containin specific	information	other	than	atom	coordinates.	Molecular	surfaces,
electrostatic	potential	maps,	and	electron	density	maps	are	examples	of	non‐coordinate	files,	which
can	either	be	computed	by	DeepView,	or	loaded	from	specialized	external	programs.
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Image	Plots
An	image	plot	is	capable	of	displaying	information	for	at	least
three	variables.	The	first	two	variables	are	shared	and	represented
by	the	horizontal	axis	and	vertical	axis,	which	form	a	grid	of
numerous	rectangular	tiles.	In	our	example,	these	two	variables
are	time	and	age.	The	third	variable	is	represented	by	different
hues	or	saturations	of	colors	in	the	rectangular	tiles.	In	our
examples,	the	third	variables	are	disease	rates	or	counts.
New	information	previously	masked	by	case	pyramids	and	timeseries
plots	can	be	revealed	from	image	plots.	However,	reading	the
graph	properly	requires	some	training	and	practice.	Figure	1	displays
some	of	the	typical	patterns.	In	this	figure,	a	monochromatic	color
scale	is	used,	with	higher	saturation,	or	darker	colors,	representing
higher	values	of	an	outcome.	Panel	A	shows	a	decrease	of	color
saturation	from	left	to	right,	indicating	that	the	outcome	decreases
along	time,	and	the	observed	decrease	is	somewhat	uniform	across
age.	Panel	B	shows	a	decrease	of	color	saturation	from	top	to	bottom,
indicating	an	increase	in	an	outcome	in	the	older	age	group
irrespective	of	time.	Panel	C	shows	the	combined	effect	of	Panels	A
and	B:	an	outcome	increasing	with	age	but	decreasing	across	time.
Panel	D	shows	a	striated	pattern	typical	for	periodic	fluctuations	in	an
outcome	across	time—evidence	of	seasonality.	Panel	E	also	shows	a
striated	pattern,	but	tilted	at	an	angle.	This	pattern	indicates	that	at
any	time	point,	the	outcome	across	age	is	uneven	and	likely	to	be
cohort‐specific.	This	phenomenon,	known	as	the	‘‘age‐cohort	effect,’’
[21]	can	be	observed	if	an	outcome	was	measured	in	the	same	cohort
repeatedly	and	an	outcome	remains	higher	or	lower	in	a	group	of
subjects	as	they	aged.	Finally,	Panel	F	shows	a	set	of	four	distinct
clusters	combined	with	Panel	B,	where	substantially	higher	outcomes
in	the	younger	group	at	the	middle	of	the	time	duration	are	observed.
These	clusters	might	be	indicative	of	disproportionally	high	values	of
an	outcome,	or	an	aberration	in	the	expected	values.	Depending	on
the	context	a	cluster,	the	pattern	may	indicate	potential	outbreaks.
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http://www.nature.com/labinvest/journal/v86/n4/images/3700399f4.jpg

Three‐dimensional	reconstruction.	Representative	two‐dimensional	views	from	
3D	reconstruction	of	the	normal	(a–d)	and	MCT	treated	(e–h)	rat	pulmonary	
vasculature	are	displayed.	75	optical	sections	(1	mum	step	size)	were	used	to	
construct	the	image	views,	note	the	marked	loss	of	vasculature	in	the	pulmonary	
hypertensive	MCT	treated	lung.	Additional	3D	animations	can	be	viewed	online	as	
Supplements	at	http://www.nature.com/labinvest.

Visualization	of	the	complex	lung	microvasculature	and	resolution	of	its	three‐
dimensional	architecture	remains	a	difficult	experimental	challenge.	We	present	a	
novel	fluorescent	microscopy	technique	to	visualize	both	the	normal	and	diseased	
pulmonary	microvasculature.	Physiologically	relevant	pulmonary	perfusion	
conditions	were	applied	using	a	low‐viscosity	perfusate infused	under	continuous	
airway	ventilation.	Intensely	fluorescent	polystyrene	microspheres,	confined	to	the	
vascular	space,	were	imaged	through	confocal	optical	sectioning	of	200	mum‐thick	
lung	sections.	We	applied	this	technique	to	rat	lungs	and	the	markedly	enhanced	
depth	of	field	in	projected	images	allowed	us	to	follow	vascular	branching	patterns	
in	both	normal	lungs	and	lungs	from	animals	with	experimentally	induced	
pulmonary	arterial	hypertension.	In	addition,	this	method	allowed	complementary	
immunostaining and	identification	of	cellular	components	surrounding	the	blood	
vessels.	Fluorescent	microangiography is	a	widely	applicable	and	quantitative	tool	
for	the	study	of	vascular	changes	in	animal	models	of	pulmonary	disease.
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When	compared	to	our	other	senses	(hearing,	smell,	taste,	and	touch),	which	are	like	narrow
alleyways	paved	in	cobblestones,	vision	is	like	a	superhighway.
Perceptual	Edge	Tapping	the	Power	of	Visual	Perception	Page	2
From	Light	to	Thought
Figure	1	provides	a	visual	representation	of	the	primary	components	of	visual	perception.	We
don't	actually	see	physical	objects;	we	see	light,	either	emitted	by	objects	or	reflected	off	of
their	surfaces.	This	light	enters	our	eyes	through	an	opening	in	the	iris	called	the	pupil.	When
we	focus	directly	on	objects,	the	emitted	or	reflected	light	shines	on	a	small	area	on	the	retina
at	the	back	of	the	eye	called	the	fovea.	The	retina	consists	of	millions	of	light	receptors,
subdivided	into	two	basic	types,	rods	and	cones.	Rods	sense	dim	light	and	record	what	they
detect	in	black	and	white.	Cones	sense	brighter	light	and	record	what	they	detect	in	color.
Cones	are	further	subdivided	into	three	types,	each	of	which	detects	a	different	range	of	the
color	spectrum:	roughly	blue,	green,	and	red.	The	fovea	is	simply	an	area	with	an	extremely
dense	collection	of	cones.	As	a	result,	light	that	shines	on	the	fovea	can	be	seen	in	extremely
fine	detail.	We're	capable	of	seeing	up	to	625	separate	data	points	in	a	one‐inch	square	area,
such	as	a	dense	collection	of	dots	in	a	scatter	plot.	Perception	of	visual	stimuli	detected	by
parts	of	the	retina	other	than	the	fovea	is	much	less	detailed,	but	it's	capable	of
simultaneously	processing	vast	amounts	of	information	throughout	one's	span	of	vision,
ready	to	notice	a	point	of	interest	that	invites	greater	attention	(for	example,	the	peripheral
approach	of	a	speeding	car),	which	then	leads	to	a	quick	shift	in	one's	gaze	to	that	area	of
interest.	Rods	and	cones	translate	what	they	detect	into	electrochemical	signals	and	pass
them	on,	through	the	optic	nerve,	to	the	brain	where	they	can	be	processed.	Our	eyes	sense
visual	stimuli,	then	our	brains	perceive	that	data,	making	sense	of	it.
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“Looking	at		the		data”		is	central		for	exploratory	data	analysis.	Dimensionality		
reduction		for	data		visualization		can		be		represented		as		an		information		retrieval		
task,		where		the	quality	of	visualization	can	be	measured	by		precision		and		recall		
measures		and	their	smoothed	extensions.	Furthermore,	
we		show		that		visualization		can		be		optimized	to	directly	maximize	the	quality	for	
any	desired		tradeoff		between		precision	and	recall,	yielding	very	well‐performing	
visualization	methods.	
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Polysomnographic (PSG)	signal	processing
represents	a	complex	process	consisting	of	several	subsequent
steps,	namely	pre‐processing,	segmentation,	extraction	of
descriptive	features,	and	classification.	In	this	paper	we	focus
on	visualization	methods	that	are	also	unseparable part	of	the
whole	process.	The	aim	of	these	methods	is	to	ease	the	work	of
medical	doctors	and	to	show	trends	that	are	not	obvious	when
performing	a	manual	inspection	of	the	recorded	signal.
In	this	study,	the	designed	methods	are	applied	to	neonatal
PSG	data	and	enable	the	enhancement	in	visual	differentiation
between	three	important	behavioral	states:	quiet	sleep	(QS),
active	sleep	(AS)	and	wakefulness	(WK).	The	ratio	of	these
states	is	a	significant	indicator	of	the	maturity	of	the	newborn
brain	in	clinical	practice.

Many	data	mining	techniques	applied	to	neonatal	PSG
signals	need	the	investigated	signal	to	be	fully	or	at	least
partially	segmented	to	parts	with	similar	characteristics	and
interpretation	[2]‐[8].	A	common	approach	is	based	on
splitting	the	signal	in	the	time	domain	into	smaller	windows,
called	segments,	and	describing	each	one	of	them	by
extracted	features.	There	exist	several	approaches	to
constant	and	adaptive	signal	segmentation,	which	divide
non‐stationary	signal	to	quasi‐stationary	segments.
Fig.	1.	The	results	of	the	segmentation.	The	real	clinical	neonatal
polysomnographic data	were	used.	Adaptive	segmentation	was
applied	to	EEG	signals	(electrodes	Fpl ,	Fp2,	T3,	C3,	C4,	T4,	01	,
02),	EOG	signal	and	EMG	signal.	For	ECG	and	Respiration	signal
(PNG)a	constantsegmentation was	used.
III.	FEATUREEXTRACTION
The	most	important	step	in	the	process	of	data	evaluation
is	feature	extraction.	We	used	visualization	of	obtained
features	as	an	additional	tool	that	helped	us	to	decide	which
In	this	paper	we	present	adaptive	segmentation.	Our
approach	involves	two	parameters:	amplitude‐ and
frequency‐dependent	changes	in	PSG	signals.	
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Fig.	2.	Visual	comparison	of	clustering	results.	On	the	top:	expert
classification	(AS	‐ active	sleep,	QS	‐ quiet	sleep,	WK	‐ wakefulness);
on	the	bottom:	representation	of	final	clusters	(clustering	into	9
groups,	displayed	channels:	EEG	,	EOG,	EMG,	ECG	and	PNG).

In	this	study	we	focused	on	hierarchical	clustering
methods.	We	used	the	Ward's	method	as	a	specific
procedure	for	hierarchical	clustering	analysis	(Ward's
linkage	is	suitable	for	decreasing	the	total	within‐cluster	sum
of	square	error)	.	Fig.	2.	illustrates	clustering	results	for	PSG
channels.	When	cluster	analysis	is	done,	found	clusters	may
be	manually	identified	by	an	expert,	or	an	automatic
classification	method	can	be	performed.	Because	we	aim	to
make	the	differentiation	between	three	stages	in	our	dataset
(wake,	active	sleep	and	quiet	sleep)	it	is	necessary	to	use	at
least	three	clusters	in	the	clustering	process.	But	for	reliable
differentiation	of	stages,	we	used	greater	number	of	clusters	.

The	most	important	step	in	the	process	of	data	evaluation
is	feature	extraction.	We	used	visualization	of	obtained
features	as	an	additional	tool	that	helped	us	to	decide	whichfeatures to	select.	Proper	selection	of	features	and	visual
comparison	of	the	computed	features	may	significantly
influence	the	success	rate	of	the	classification.	Extracted
features	were:	statistical	parameters	(mean	values,	skewness,
kurtosis);	mean	and	maximum	values	of	first	and	second
derivation	of	the	samples	in	segment	;	absolute	and	relative
power/energy	for	important	EEG	frequency	bands	derived
from	Fourier	or	wavelet	transform;	statistical	values	of	the
wavelet	coefficients	corresponding	to	different
decomposition	scales	;	Shannon's	entropy	of	wavelet
transform	details	and	approximations;	and	mean	and
maximum	values	of	wavelet	coefficients	of	first	and	second
derivation.	
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Useful	additional	way	of	cluster	analysis	visualization	is
identifying	segments	from	different	clusters	in	the	original
signals	and	representing	them	by	different	colours.	This	kind
of	visualization	is	shown	in	Fig.	3.	together	with	segment
borders	obtained	by	adaptive	segmentation.
The	used	clustering	approach	is	also	compared	with	kmeans
algorithm	[14].	The	results	for	Ward's	and	k‐means
clustering	algorithms	were	very	similar	for	used	PSG
datasets	(statistically	comparable).

Colored	segments	ofEEG data	(electrodes	FPI	,	FP2,	rs,	C3,
C4,	T4,	01	,	02,).	For	each	cluster	ofsegments a	unique	color	is	used.
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