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Dear Students,	welcome	to	the	11th	lecture	of	our	course	on	issues	of	privacy,	
safety,	security	and	data	protection.	

Please	remember	from	the	last	lecture	the	key	challenges:	lack	of	integrated	
systems,	clinical	workplace	efficiency	and	all	aspects	around	cloud	computing	and	
service	oriented	computing	(SaaS).

Please	always	be	aware	of	the	definition	of	biomedical	informatics	(Medizinische
Informatik):	
Biomedical	Informatics is	the	inter‐disciplinary	field	that	studies	and	pursues	the	
effective	use	of	biomedical	data,	information,	and	knowledge	for	scientific	inquiry,	
problem	solving,	and	decision	making,	motivated	by	efforts	to	improve	human	
health	(and well‐being).
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Slide	11‐1:	Key	Challenges
• Data	in	the	Cloud,
• mobile	solutions,	the	trend	towards	software‐as‐a‐service,	and
• the	massive	increase	in	the	amount	of	data	…
…	in	the	medical	area	require	a	lot	of	future	effort	in	Privacy,	Data	Protection,	
Security	and	Safety.	

The	challenges	of	data	integration,	data	fusion	and	the	increased	use	of	data	for	
secondary	use	put	these	issues	from	a	“nice‐to‐have”	into	the	key	interest.	
Example:	In	January	2013,	the	US	Department	of	Health	and	Human	Services	
released	the	Omnibus	Final	Rule,	which	significantly	modified	the	privacy	and	
security	standards	under	the	Health	Insurance	Portability	and	Accountability	Act	
(HIPAA).	These	new	regulations	were	driven	by	a	need	to	ensure	the	
confidentiality,	integrity,	and	security	of	patients’	protected	health	information	
(PHI)	in	electronic	health	records	(EHRs)	and	addresses	these	concerns	by	
expanding	the	scope	of	regulations	and	increasing	penalties	for	PHI	violations	
(Wang	&	Huang,	2013).
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Let	us	start	with	a	look	at	safety	first
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According to	a	classic	survey	by	Amalberti et	al.	(2005)	we	can	determine	between	
very	risky	enterprises,	typically	Himalaya	mountaineering	and	relatively	save	
enterprises	with	low	risk,	typically	commercial	large‐jet	aviation.	The	medical	area	
is	in	between,	with	a	tendency	to	the	Himalaya	depending	on	the	health	area.
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These are	the	study	results	presented	by	Amalberti (2005),	ranging	from	very	
unsave to	ultrasave.
In	many	clinical	domains,	such	as	trauma	surgery,	the	rate	of	serious	complications	
is	relatively	high,	but	not	all	complications	are	related	to	medical	errors.	In	
contrast,	some	health	care	sectors,	e.g.	gastroenterologic endoscopy,	are	very	safe.

The	size	of	the	box	represents	the	range	of	risk	in	which	a	given	barrier	is	active.	
Reduction	of	risk	beyond	the	maximum	range	of	a	barrier	presupposes
crossing	this	barrier.	Shaded	boxes	represent	the	5	system	barriers.	ASA		American	
Society	of	Anesthesiologists.
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Slide	11‐4	Definitions:	Privacy,	Security	‐ Safety	
Privacy	=	include	the	individual	rights	of	people	to	protect	their	personal	life	and	
matters	from	the	outside	world;	
Safety	=	any	protection	from	harm,	injury,	or	damage;	a	weighting	process	reflects	
how	comfortable	an	organization	deals	with	its	risk	exposure.	Accident	rates	in	
health	care	currently	range	from	10‐1	to	10‐7	events	per	exposure	(Amalberti,	
Auroy,	Berwick	&	Barach,	2005).	
Security	=	(in	terms	of	computer,	data,	information	security)	means	protecting	
from	unauthorized	access,	use,	modification,	disruption	or	destruction	etc.;
A	good	example	for	these	issues	is	the	electronic	health	record	in	→Slide	11‐26:	
The	patient	data	must	be	confidential,	secure	and	safe,	whilst	at	the	same	time	it	
must	be	usable,	useful,	accurate,	up‐to‐date	and	accessible.
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security	as	an		integrative	concept	that	covers	amongst	others	availability,	safety,	
confidentiality,	integrity,	maintainability	and	security	in	the	different	fields	of	
applications.
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As	we	have	already	heard	in	lecture	7,	the	Institute	of	Medicine	(IOM)	
released	a	report	in	1999	entitled	‘‘To	Err	is	Human:	Building	a	Safer	Health	
System’’.	The	IOM	report	called	for	a	50%	reduction	in	medical	errors	over	5	
years.	Its	goal	was	to	break	the	cycle	of	inaction	regarding	medical	errors	by	
advocating	a	comprehensive	approach	to	improve	patient	safety.	The	
healthcare	industry	responded	with	a	wide	range	of	patient	safety	efforts	and	
safety	was	a	topic	for	researchers	(Figure	11‐3).	Hospital	information	
systems	vendors	adopted	safer	practices	and	emphasized	that	safety	was	also	
now	a	priority	for	them	(Stelfox et	al.,	2006).	However,	so	far	no	
comprehensive	nationwide	monitoring	system	exists	for	patient	safety,	and	a	
recent	effort	by	the	Agency	for	Healthcare	Research	and	Quality	(AHRQ)	to	
get	a	national	estimate	by	using	existing	measures	showed	little	
improvement	(Leape &	Berwick,	2005).
Kohn	L.T.,	Corrigan,	J.M.,	Donaldson,	M.S.	(1999):	To	Err	is	Human:	Building	a	
Safer	Health	System,	National	Academy	Press,	Washington	(DC)
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Five	years	after	the	IOM	report

Changes	in	patient	safety	publications
A	large	shift	in	the	number	of	patient	safety	publications
followed	the	release	of	the	IOM	report	(fig	1).	An	average	of59	patient	safety	
articles	were	published	per	100	000
MEDLINE	publications	in	the	5	years	before	the	IOM	report;
this	increased	to	164	articles	per	100	000	MEDLINE	publications
in	the	5	years	after	publication	of	the	report	(p,0.001).
Even	after	controlling	for	an	existing	3%	per	quarter	upward
trend	(p,0.001),	the	rate	of	patient	safety	publications
increased	immediately	after	the	release	of	the	IOM	report	by
64%	(p,0.001).	Significantly	increased	rates	of	publication
were	observed	for	all	types	of	patient	safety	articles	(table	1).
Rates	of	patient	safety	publications	in	the	top	general	medical
journals	mirrored	those	in	MEDLINE	indexed	journals,
averaging	four	articles	per	100	000	MEDLINE	publications
before	the	IOM	report	and	13	articles	per	100	000	MEDLINE
publications	after	the	IOM	report	(p,0.001).
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Here	we	se	that the	report	stimulated	research	to	a	certain	extent.
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http://www.scientificamerican.com/blog/post.cfm?id=deaths‐from‐avoidable‐
medical‐error‐2009‐08‐10
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Ötzi the	Iceman	(Similaun Man)	is	the	oldest	preserved	natural	mummy	of	a	man	
who	lived	around	3300	BC
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As	you	can	still	read	in	the	newspapers	wrong‐site	surgery	is	still	a	big	issue	,	or	as	
{Manjunath,	2010	#4665}	put	it	forward	it	is	a	clear	and	constant	fear.
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The	ECM	medical	version	consists	of	20	codes,	divided	into	four	categories	seen in	
this	slide,	frequently	used	in	a	medical	environment	to	classify	the	underlying	
causes	of	the	adverse	events: 1)	technical	factors,	2)	organizational	factors,	3)	
human	factors	and	4)	Patient	related	factors	– if	it	is	none	of	the	above	– it	is	
unclassifiable.

II.	EXTENDED	EINDHOVEN	CLASSIFICATION	MODEL
A	large	number	of	different	systems	have	been	used	to	classify	events	regarding	to	
patient	safety	[10].	Many	of	the	methods	used	to	analyze	patient	safety	were	
adapted	from	risk‐management	techniques	in	industries,	especially	in	high‐risk	
industries	such	as	the	chemical,	nuclear	power	and	aviation	industry	[5].	The	
Eindhoven	Classification	Model	(ECM)	was	originally	developed	to	manage	human	
error	in	the	chemical	process	industry	and	was	then	applied	to
various	other	industries,	such	as	steel	industry,	energy	production	and	in	
healthcare.	The	ECM	medical	version	consists	of	20	codes,	divided	into	four	
categories	(Fig.	1),	frequently	used	in	a	medical	environment	to	classify	the	
underlying	causes	of	the	adverse	events	[11].

20WS 2015/16

A. Holzinger                                      LV 706.049



Slide	11‐11	Adverse	event	reporting	and	learning	system
Here	we	see	the	AEMI	(Adverse	Events	in	Medical	Imaging)	system	developed	by	
(Rodrigues	et	al.,	2010),	which	intends	to	reduce	the	amount	of	time	and	manual	
labor	required	for	analyis.	The	AEMI	architecture	includes	tree	modules:
1)	Adverse	Events	Reporting	Forms	in	Medical	Imaging	(AERFMI),	
2)	Adverse	Events	Manager	Reports	in	Medical	Imaging	(AERMMI)	and	
3)	Knowledge	Manager	Adverse	Events	in	Medical	Imaging	(AEKMMI).	
AERFMI	provides	the	Web	interface	for	adverse	events	registration.	The	effort	on	
this	interface	was	focused	in	its	usability.	AERMMI	is	also	Web	based	and	aims	to	
enable	the	individual	analysis	of	each	adverse	event	recorded	by	AERFMI	and	
provides	some	relevant	statistics	related	to	the	various	events	registered.	AEKMMI	
is	a	Java	application.	This	module	uses	the	data	from	the	system	database	to	create	
a	Knowledge	Base	(KB)	based	on	the	EECM	using	the	logic	programming	language	
Prolog	(Rodrigues	et	al.,	2010).	
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Slide	11‐12	Review:	Framework	for	understanding	human	error
In	lecture	7	we	discussed	a	framework	for	demonstrating	how	human	error	–
resulting	in	adverse	events	– arise.	Remember,	the	framework	consists	of	three	
components:
1)	Human	fallibility	addresses	the	fundamental	sensory,	cognitive,	and	motor	
limitations	of	humans	that	predispose	them	to	error;
2)	Context	refers	to	situational	variables	that	can	affect	the	way	in	which	human	
fallibility	becomes	manifest;	and
3)	Barriers	concerning	the	various	ways	In	which	human	errors	can	be	contained;
We	will	now	focus	on	one	particular	issue	in	the	third	component:	The	next	slide	
shows	the	famous	“Swiss	cheese”	model	of	accident	causation.
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Slide	11‐13	Reason	(1997)	Swiss	Cheese	Model	
The	“Swiss	cheese”	model	of	accident	causation	emphasizes	that	adverse	events	
occur	when	active	failures	align	with	gaps	or	weaknesses	in	the	systems	permitting	
an	error	to	go	untrapped and	uncompensated	(Sundt,	Brown	&	Uhlig,	2005).	The	
model	was	originally	developed	by	(Reason,	1997),	and	a	good	reading	is	(Reason,	
2000).	
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Slide	11‐14	Risk	management	‐ FAA	System	Safety
We	will	talk	about	risk	management	also	in	the	last	lecture,	but	we	need	the	
definitions	now	for	a	common	understanding,	and	look	at	the	image	top	right	in	
the	slide:
Total	risk	=	identified	+	unidentified	risks.
Identified	risk	=	determined	through	various	analysis	techniques.	The	first	task	of	
system	safety	is	to	identify,	within	practical	limitations,	all	possible	risks.	This	step	
precedes	determine	the	significance	of	the	risk	(severity)	and	the	likelihood	of	its	
occurrence	(hazard	probability).	The	time	and	costs	of	analysis	efforts,	the	quality	
of	the	safety	program,	and	the	state	of	technology	impact	the	number	of	risks	
identified.
Unidentified	risk	is	the	risk	not	yet	identified.	Some	unidentified	risks	are	
subsequently	identified	when	a	mishap	occurs.	Some	risk	is	never	known.
Unacceptable	risk	is	that	risk	which	cannot	be	tolerated	by	the	managing	activity.	It	
is	a	subset	of	identified	risk	that	must	be	eliminated	or	controlled.
Acceptable	risk	is	the	part	of	identified	risk	that	is	allowed	to	persist	without	
further	engineering	or	management	action.	Making	this	decision	is	a	difficult	yet	
necessary	responsibility	of	the	managing	activity.	This	decision	is	made	with	full	
knowledge	that	it	is	the	user	who	is	exposed	to	this	risk.
Residual	risk	is	the	risk	left	over	after	system	safety	efforts	have	been	fully	
employed.	It	is	not	necessarily	the	same	as	acceptable	risk.	Residual	risk	is	the	sum	
of	acceptable	risk	and	unidentified	risk.	This	is	the	total	risk	passed	on	to	the	user.
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Slide	11‐15	Improving	Safety	with	IT	– here	a	meanwhile historical	example	
Mobile
Patient	safety	in	healthcare	is	the	equivalent	of	systems	safety	in	industry,	which	is	
usually	built	in	four	steps:	
(1)	measuring	risk	and	planning	the	ideal	defense	model,	
(2)	assessing	the	model	against	the	real	behavior	of	professionals,	and	modifying	
the	model	or	inducing	a	change	in	behavior	when	there	are	gaps,	
(3)	adopting	a	better	micro‐ and	macro‐organization,	
(4)	gradually	re‐introducing	within	the	rather	rigid,	prescriptive	system	built	in	
steps	1–3	some	level	of	resilience	enabling	it	to	adapt	to	crises	and	exceptional	
situations	.
In	this	slide	we	see	an	example	of	a	mobile	system	screening	for	laboratory	
abnormalities,	for	example,	hypokalemia	and	a	decreasing	haematocrit,	would	
require	urgent	action	but	occur	relatively	infrequently,	often	when	a	clinician	is	not	
at	hand,	and	such	results	can	be	buried	amid	less	critical	data.	
Such	mobile	systems	can	identify	and	rapidly	communicate	these	problems	to	
clinicians	automatically	(Bates	&	Gawande,	2003).
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Slide	11‐16:	Enhancing	Patient	Safety	with	ubiquitous	devices
This	is	another	example	on	how,	for	example	wrong	site	surgery	can	be	
avoided:	Patients	check	in	at	the	Hospital	– in	addition	to	an	ordinary	
wristband	an	RFID	transponder	is	supplied.	Patient	data	is	entered	via	our	
application	at	the	check‐in‐point,	any	previous	patient	data	can	be	retrieved	
from	the	HIS.	From	this	information,	uncritical	but	important	data	(such	as	
name,	blood	type,	allergies,	vital	medication	etc.)	is	transferred	to	the	
wristband’s	RFID	transponder.	The	Electronic	Patient	Record	(EPR)	is	
created	and	stored	at	the	central	server.	From	this	time	the	patient	is	easily	
and	unmistakably	identifiable.	All	information	can	be	read	from	the	
wristband’s	transponder	or	can	be	easily	retrieved	from	the	EPR	by	
identifying	the	patient	with	a	reader.	In	contrast	to	manual	identification,	
automatic	processes	are	less	error‐prone.	Unlike	barcodes,	RFID	
transponders	can	be	read	without	line	of	sight,	through	the	human	body	and	
most	other	materials.	This	enables	physicians	and	nurses	to	retrieve,	verify	
and	modify	information	in	the	Hospital	accurately	and	instantly.	In	addition,	
this	system	provides	patient	identification	and	patient	data	– even	when	the	
network	is	crashed	(Holzinger,	Schwaberger &	Weitlaner,	2005)
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Slide	11‐17:	Security	Problems	of	ubiquitous	computing	
Security	requires	confidentiality	(aka	secrecy),	integrity	and	availability.	All	other	requirements	such	as	non‐repudiation	can	
be	traced	back	to	one	of	these	three	requirements.	Non‐repudiation,	for	instance,	can	be	seen	as	a	special	case	of	integrity,	
i.e.	the	integrity	of	log	data	recording.
The	most	well‐known	security	requirement	is	confidentiality.	It	means	that	users	may	obtain	access	only	to	those	objects	for	
which	they	have	received	authorization,	and	will	not	get	access	to	information	they	must	not	see.	
The	integrity	of	the	data	and	programs	is	just	as	important	as	confidentiality	but	in	daily	life	it	is	frequently	neglected.	
Integrity	means	that	only	authorized	people	are	permitted	to	modify	data	(or	programs).	Secrecy	of	data	is	closely	
connected	to	the	integrity	of	programs	of	operating	systems.	If	the	integrity	of	the	operating	system	is	compromised,	then	
the	integrity	of	the	data	can	no	longer	be	guaranteed.	The	reason	is	that	a	part	of	the	operating	system	(i.e.	the	reference	
monitor)	checks	for	each	access	to	a	resource	whether	the	subject	is	authorized	to	perform	the	requested	operation.	Since	
the	operating	system	is	compromised	the	reference	monitor	is	no	longer	trustworthy.	It	is	then	obvious	that	secrecy	of	
information	cannot	be	guaranteed	any	longer	if	this	mechanism	is	not	working.	For	this	reason	it	is	important	to	protect	the	
integrity	of	operating	systems	just	as	properly	as	the	secrecy	of	information.
It	is	through	the	Internet	that	many	users	have	become	aware	that	availability	is	one	of	the	major	security	requirements	for	
computer	systems.	Availability	is	defined	as	the	readiness	of	a	system	for	correct	service.
With	growing	ubiquitous	computing	in	health	care	security	problems	are	increasing	(Weippl,	Holzinger	&	Tjoa,	2006):
1)	Protection	precautions:		vulnerability	to	eavesdropping,	traffic	analysis,	spoofing	and	denial	of	service.	Security	
objectives,	such	as	confidentiality,	integrity,	availability,	authentication,	authorization,	nonrepudiation	and	anonymity	are
not	achieved	unless	special	security	mechanisms	are	integrated	into	the	system.
2)	Confidentiality:	the	communication	between	reader	and	tag	is	unprotected,	except	of	high‐end	systems	(ISO	14443).	
Consequently,	eavesdroppers	can	listen	in	if	they	are	in	immediate	vicinity.	
3)	Integrity:	With	the	exception	of	high‐end	systems	which	use	message	authentication	codes	(MACs),	the	integrity	of	
transmitted	information	cannot	be	assured.	Checksums	(cyclic	redundancy	checks,	CRCs)	are	used,	but	protect	only	against	
random	failures.	The	writable	tag	memory	can	be	manipulated	if	access	control	is	not	implemented.
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Slide	11‐18	Clinical	Example:	Context‐aware	patient	safety	1/2
(Bardram &	Norskov,	2008)	developed	a	context	aware	patient	safety	and	
information	system	(CAPSIS)	designed	for	use	during	surgery,	designed	to	monitor	
what	is	going	on	in	the	operating	room	(OR).	This	information	is	used	to	display	
medical	data	to	the	clinicians	at	the	appropriate	time,	and	to	issue	warnings	if	any	
safety	issues	are	detected.	CAPSIS	was	implemented	using	the	Java	Context‐
Awareness	Framework	(JCAF)	and	monitors	such	information	as	the	status	of	the	
operation;	the	status	and	location	of	the	patient;	the	location	of	the	clinicians	in	the	
operating	team;	and	equipment,	medication,	and	blood	bags	used	in	the	operating	
room.	This	information	is	acquired	and	handled	by	the	JCAF	context	awareness	
infrastructure,	and	a	special	safety	service,	implemented	by	means	of	the	Java	
Expert	System	Shell	(Jess),	is	used	for	overall	reasoning	on	what	actions	should	be	
taken	or	what	warnings	should	be	issued.	CAPSIS	differs	from	other	patient	safety	
systems	in	being	designed	to	monitor	everything	(or	as	many	things	as	possible)	in	
the	OR,	and	therefore	to	be	capable	of	reasoning		across	the	entire	gamut	of	facts	
pertaining	to	the	situation	in	the		OR.	It	thus	supplements	human	vigilance	on	
safety	by	providing		a	machine	counterpart	that	is	capable	of	drawing	inferences	
(Bardram &	Norskov,	2008).
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Slide	11‐19	Clinical	Example:	Context	aware	patient	safety	2/2
This	slide	shows	the	user	interface	of	the	CAPSIS	system,	which	consists	of	4	
windows:	(A)	is	the	main	patient	safety	window,	which	provides	an	overview	of	the	
patient’s	safety	status	for	the	operation	in	question;	
(B)	shows	the	patient’s	medical	record;	
(C)	shows	the	patient’s	medical	images;	and	
(D)	shows	the	relevant	checklist	for	the	given	surgical	procedure.	
The	patient	safety	window	(A)	is	composed	of	three	panels:	the	patient	panel,	the	
staff	panel	and	the	patient	safety	panel.	The	patient	panel	aggregates	important	
information	about	the	current	patient	and	surgery,	including	the	patient’s	name,	
social	security	number	(SSN),	allergies	(CAVE),	picture,	scheduled	surgery,	and	
current	status	and	location.	The	main	purpose	of	this	frame	is	to	help	the	surgical	
staff	avoid	the	three	big	wrongs:	wrong	patient,	wrong	procedure	and	wrong	
surgical	site,	as	well	as	presenting	vital	information	on	the	safety	of	the	patient	
such	as	the	CAVE	list	and	patient	status	(Bardram &	Norskov,	2008).
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Slide	11‐20	Patient	Safety
Patient	safety	in	healthcare	is	the	equivalent	of	systems	safety	in	industry,	which	is	
usually	built	in	four	steps:	(1)	measuring	risk	and	planning	the	ideal	defense	
model,	(2)	assessing	the	model	against	the	real	behavior	of	professionals,	and	
modifying	the	model	or	inducing	a	change	in	behavior	when	there	are	gaps,	(3)	
adopting	a	better	micro‐ and	macro‐organization,	(4)	gradually	re‐introducing	
within	the	rather	rigid,	prescriptive	system	built	in	steps	1–3	some	level	of	
resilience	enabling	it	to	adapt	to	crises	and	exceptional	situations.	The	
development	of	patient	safety	has	nowhere	near	reached	step	4	except	in	specific	
areas	such	as	blood	transfusion	or	laboratory	testing.	Even	step	1	has	not	been	
completed	(Amalberti et	al.,	2011).	
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Slide	11‐21	Types	of	adverse	events	in	medicine	and	care
An	error	may	or	may	not	cause	an	adverse	event.	Adverse	events	are	injuries	that	
result	from	a	medical	intervention	and	are	responsible	for	harm	to	the	patient	
(death,	life‐threatening	illness,	disability	at	the	time	of	discharge,	prolongation	of	
the	hospital	stay,	etc.).	For	example,	a	near	miss	(Number	6	in	this	slide)	is	an	
adverse	event	that	either	resolves	spontaneously	or	is	neutralized	by	voluntary	
action	before	the	consequences	have	time	to	develop.	Adverse	events	may	be	due	
to	medical	errors,	in	which	case	they	are	preventable,	or	to	factors	that	are	not	
preventable;	so,	the	occurrence	is	always	a	combination	of	human	factors	and	
system	factors	(Garrouste‐Orgeas et	al.,	2012).

31WS 2015/16

A. Holzinger                                      LV 706.049



Slide	11‐22	Safety,	Security	‐>	Technical	Dependability
Dependability	consists	of	three	parts:	the	threats	to,	the	attributes	of,	and	the	
means	by	which	dependability	is	attained,	as	shown	in	this	slide.	
Computing	systems	are	characterized	by	five	fundamental	properties:	
functionality,	usability,	performance,	cost,	and	dependability.	Dependability	of	a	
computing	system	is	the	ability	to	deliver	service	that	can	justifiably	be	trusted.	
The	trust‐factor	is	perceived	by	the	users	(remember	the	Previous	Exposure	to	
Technology,	PET‐Factor	(Holzinger,	Searle	&	Wernbacher,	2011)),	and	a	user	is	
another	system	(human)	that	interacts	with	the	former	at	the	service	interface.	
The	function	of	a	system	is	what	the	system	is	intended	to	do,	and	is	described	by	
the	functional	specification.	Correct	service	is	delivered	when	the	service	
implements	the	system	function.	A	system	failure	is	an	event	that	occurs	when	the	
delivered	service	deviates	from	correct	service.	A	failure	is	thus	a	transition	from	
correct	service	to	incorrect	service,	i.e.,	to	not	implementing	the	system	function.	
The	delivery	of	incorrect	service	is	a	system	outage.	A	transition	from	incorrect	
service	to	correct	service	is	service	restoration.	Based	on	the	definition	of	failure,	
an	3	alternate	definition	of	dependability,	which	complements	the	initial	definition	
in	providing	a	criterion	for	adjudicating	whether	the	delivered	service	can	be	
trusted	or	not:	the	ability	of	a	system	to	avoid	failures	that	are	more	frequent	or	
more	severe,	and	outage	durations	that	are	longer,	than	is	acceptable	to	the	
user(s).	In	the	opposite	case,	the	system	is	no	longer	dependable:	it	suffers	from	a	
dependability	failure,	that	is	a	meta‐failure	(Avizienis,	Laprie &	Randell,	2001).	
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Slide	11‐23	Types	of	faults:	Design	– Physical	– Interaction
Combining	the	elementary	fault	classes	leads	to	the	tree	in	this	slide:	The	leaves	of	
the	tree	lead	into	three	major	fault	classes	for	which	defenses	need	to	be	devised:	
design	faults,	physical	faults,	interaction	faults.	The	boxes	in	this	slide	point	at	
generic	illustrative	fault	classes.	Non‐malicious	deliberate	faults	can	arise	during	
either	development	or	operation.	During	development,	they	result	generally	from	
tradeoffs,	either	a)	aimed	at	preserving	acceptable	performance	and	facilitating	
system	utilization,	or	b)	induced	by	economic	considerations;	such	faults	can	be	
sources	of	security	breaches,	in	the	form	of	covert	channels.	Non‐malicious	
deliberate	interaction	faults	may	result	from	the	action	of	an	operator	either	aimed	
at	overcoming	an	unforeseen	situation,	or	deliberately	violating	an	operating	
procedure	without	having	realized	the	possibly	damaging	consequences	of	his	or	
her	action.	Non‐malicious	deliberate	faults	share	the	property	that	often	it	is	
recognized	that	they	were	faults	only	after	an	unacceptable	system	behavior,	thus	a	
failure,	has	ensued;	the	specifier(s),	designer(s),	implementer(s)	or	operator(s)	
did	not	realize	that	the	consequence	of	some	decision	of	theirs	was	a	fault	
(Avizienis,	Laprie &	Randell,	2001).
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Slide	11‐24	A	Two‐Tiered	System	of	Medicine
This	table	by	(Amalberti,	Auroy,	Berwick	&	Barach,	2005)	show	a	detailed	
comparison	of	these	2	possible	tiers	of	health	care.	Physician	training	would	have	
to	accommodate	this	2‐tiered	approach,	and	patients	would	have	to	understand	
that	aggressive	treatment	of	high‐risk	disease	may	require	acceptance	of	greater	
risk	and	number	of	medical	errors	during	clinical	treatment.
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Slide	11‐25	Toward	a	strategic	view	on	safety	in	health	care
An	improved	vision	by	leadership	of	the	safety	and	dangers	of	health	care	is	
needed	to	optimize	the	risk–benefit	ratio.	Stratification	could	lead	to	2	tiers	or	
“speeds”	of	medical	care,	each	with	its	own	type	and	level	of	safety	goals.	This	2‐
tier	system	could	distinguish	between	medical	domains	that	are	stable	enough	to	
reach	criteria	for	ultrasafety and	those	that	will	always	deal	with	unstable	
conditions	and	are	therefore	inevitably	less	safe.	For	medicine,	high‐reliability	
organizations	may	offer	a	sound	safety	model	and	High‐reliability	organizations	
are	those	that	have	consistently	reduced	the	number	of	expected	or	“normal”	
accidents	(according	to	the	normal	accident	theory)	through	such	means	as	change	
to	culture	and	technologic	advances,	despite	an	inherently	high‐stress,	fast‐paced	
environment	(Amalberti,	Auroy,	Berwick	&	Barach,	2005).
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Ok,	now	lets	focus	on	data	issues
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37

Requirements	of	an	electronic	patient	record
Remember	the	requirements	to	a	patient	record	from	the	viewpoint	of	ensuring	
privacy:	The	patient	data	must	be	confidential,	secure	and	safe,	while	at	the	same	
time	must	be	usable,	useful,	accurate,	up‐to‐date	and	accessible.

Security	issues	are	crucial	in	a	number	of	machine	learning	applications,	especially	
in	scenarios	dealing	with	human	activity	rather	than	natural	phenomena	(e.g.,	
information	ranking,	spam
detection,	malware	detection,	etc.).	In	such	cases,	learning	algorithms	may	have	to	
cope	with	manipulated	data	aimed	at	hampering	decision	making.	Although	some	
previous	work	addressed	the
issue	of	handling	malicious	data	in	the	context	of	supervised	learning,	very	little	is	
known	about
the	behavior	of	anomaly	detection	methods	in	such	scenarios.	
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An	excellent	paper	by	(Neubauer &	Heurix,	2011)	shall	provide	a	good	teaching	example,	in	the	
following	consisting	of	8	slides.
Protection	of	the	patients’	data	privacy	can	be	achieved	with	two	different	techniques,	
anonymization	and	encryption,	which	unfortunately	both	suffer	from	major	drawbacks:	While	
anonymization	– the	removal	of	the	identifier	from	the	medical	data	– cannot	be	reversed	and	
therefore	prevents	primary	use	of	the	records	by	health	care	providers	who	obviously	need	to	
know	the	corresponding	patient	(as	a	minor	point,	patients	cannot	benefit	from	the	results	gained	
in	clinical	studies	because	they	cannot	be	informed	about	new	findings	etc.),	encryption	of	the	
medical	records	prevents	them	from	being	used	for	clinical	research	(secondary	use	of	clinical	
data).	

In	this	slide	we	see	two	separate	health	care	provider	environments	where	the	individual	
workstations	have	direct	access	to	their	local	data	repositories.	Via	the	pseudonymization service,	
the	health	care	providers	are	able	to	access	records	of	other	domains	if	they	are	explicitly	
authorized	to	do	so.	In	this	scenario,	the	patient	also	has	the	opportunity	to	retrieve	the	records	at	
home.

At	least	without	the	explicit	permission	of	the	patient,	who	has	to	decrypt	the	data	and,	in	doing	so,	reveals	her	identity.	
Considering	that	some	medical	records	can	be	very	large,	encryption	can	also	be	seen	as	a	time‐consuming	operation.	A	method	
that	resolves	these	issues	is	pseudonymization,	where	identification	data	is	transformed	and	then	replaced	by	a	specifier that	
cannot	be	associated	with	the	identification	data	without	knowing	a	certain	secret.	Pseudonymization allows	the	data	to	be	
associated	with	a	patient	only	under	specified	and	controlled	circumstances.	

Aimed	to	provide	a	pseudonymization service,	PIPE	(Pseudonymization of	Information	for	Privacy	
in	e‐Health)	can	be	applied	to	different	scenarios:	In	the	local	scenario,	the	PIPE	server	
pseudonymizes only	records	stored	in	the	local	(health)	data	repository	and	makes	them	available	
to	a	local	(health	care	provider’s)workstation	where	both	patient	and	health	care	provider	interact	
with	the	pseudonymization server	as	part	of	a	health	care	provider	environment	(e.g.,	with	a	
hospital	information	system).	In	an	alternative	central	scenario,	the	PIPE	pseudonymization server	
is	responsible	for	providing	linking	information	to	different	health	records	stored	at	distributed	
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locations.	In	the	slide	two	separate	health	care	provider	environments	exist	where	the	individual	
workstations	have	direct	access	to	their	local	data	repositories.	Via	the	pseudonymization service,	the	
health	care	providers	are	able	to	access	records	of	other	domains	if	they	are	explicitly	authorized	to	do	
so.	In	this	scenario,	the	patient	also	has	the	opportunity	to	retrieve	the	records	at	home.
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The	PIPE	protocol	uses	a	combination	of	symmetric	and	asymmetric	cryptographic	
keys	to	realize	a	logical	multi‐tier	hull	model	with	three	different	layers	– which	we	
can	see	in	this	slide,	where	each	layer	is	responsible	for	one	step	in	the	data	access	
process.	The	user	has	to	pass	all	layers	in	order	to	retrieve	the	actual	health	data	
records.	The	outer	public	and	outer	private	keys	form	the	outer	layer,	the	
authentication	layer,	which	is	responsible	for	unambiguously	identifying	the	
corresponding	user.	Together	with	the	user’s	identifier,	the	outer	private	key	
represents	the	authentication	credentials,	which	are	stored	along	with	the	server’s	
public	key	on	the	user’s	smart	card.	In	combination	with	the	correct	PIN,	the	smart	
card	provides	two‐factor	authentication,	where	the	authentication	procedure	
involves	both	the	user’s	and	the	PIPE	server’s	outer	keypair,	the	user’s	identifier,	
and	two	randomly	selected	challenges.	The	middle	layer,	the	authorization	layer,	
consists	of	the	user’s	inner	asymmetric	keypair and	the	inner	symmetric	key.	While	
the	user’s	outer	private	key	is	created	on	the	smart	card	when	the	card	is	issued	to	
the	user	and	never	actually	leaves	the	card,	the	other	keys	are	stored	in	the	
pseudonymization database	where	the	secret	keys	are	stored	encrypted:	the	inner	
symmetric	key	is	encrypted	with	the	inner	public	key,	while	the	inner	private	key	is	
encrypted	with	the	outer	public	key	(Neubauer &	Heurix,	2011).
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Here	in	this	slide	we	see	the	data	model.	
The	identification	and	health	pseudonyms	always	form	a	1:1	relationship	and	are	
referenced	with	their	corresponding	document	type	where	this	reference	is	stored	in	
cleartext (record/pseudonym	mapping).	The	link	between	the	identification	and	health	
pseudonyms	is	stored	encrypted	with	the	user's	inner	symmetric	key	
(pseudonym/pseudonym	mapping):	while	the	root	pseudonyms	are	encrypted	with	the	
data	owner's	(patient's)	inner	symmetric	key	only,	the	shared	pseudonyms	are	encrypted	
with	both	the	data	owner's	and	the	authorized	user's	(health	professional's)	inner	
symmetric	key	so	that	both	users	are	able	to	decrypt	them	using	their	corresponding	
ciphertexts.	The	link	between	the	identification	and	health	record	is	hidden	and	
represented	by	the	link	between	identification	and	health	pseudonyms.	Each	health	
record	is	assigned	exactly	one	root	health	pseudonym	while	each	identification	record	has	
multiple	root	pseudonyms,	depending	on	the	number	of	health	records,	due	to	the	1:1	
relationship.	The	health	record	is	assigned	a	number	of	shared	health	pseudonyms	
according	to	the	number	of	individual	authorizations	for	that	particular	health	record.
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This	slide	shows	the	User	authentication,	which	involves	the	mutual	authentication	
of	the	user	using	the	smart	card	and	the	server,	involving	their	outer	keypair and	
two	nonces (randomly	selected	numbers	used	once)	as	user/server	challenges.	
Once	both	identities	are	confirmed,	the	user’s	inner	private	key	is	retrieved	from	
the	pseudonymization database	and	transferred	to	the	user’s	smart	card	to	be	
decrypted	with	the	user’s	outer	private	3	Transport	Layer	Security.	key.	With	the	
decrypted	inner	private	key,	the	user’s	inner	symmetric	key	can	be	decrypted	
within	the	HSM	at	the	pseudonymization server	and	be	cached	for	further	
operations	along	with	the	user’s	inner	private	key.	In	addition,	a	session	key	is	
generated	at	the	HSM	and	securely	(via	encryption)	transported	to	the	user’s	smart	
card	so	that	the	key	appears	in	cleartext only	on	the	smart	card	and	HSM	
(Neubauer &	Heurix,	2011).
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To	retrieve	a	particular	health	record,	the	user	first	needs	to	query	for	the	
particular	encrypted	pseudonyms	by	creating	a	keyword	using	the	keyword	
templates,	retrieving	the	corresponding	keyword	identifier,	and	querying	for	the	
encrypted	identifier	to	find	matching	encrypted	pseudonyms,	i.e.,	the	encrypted	
pseudonym	mappings	associated	with	the	encrypted	keyword	identifier.	The	
pseudonym	pairs	are	then	decrypted	with	the	user’s	inner	symmetric	key	and	the	
plaintext	pseudonyms	then	used	to	retrieve	the	corresponding	identification	and	
health	records,	which	are	transferred	to	the	user	to	be	displayed	(possibly	
merged).	Optionally,	the	pseudonyms	and	keyword	identifier	are	also	transferred	
to	the	user	(root	pseudonyms	for	authorizations).	The	record	retrieval	procedure	
is	the	same	for	the	patient	as	data	owner,	health	care	provider	as	authorized	user,	
and	relative	as	affiliated	user,	with	the	difference	that	the	patient	and	relative	both	
query	for	the	patient’s	root	pseudonyms,	while	the	health	care	provider	relies	on	
the	shared	pseudonyms	(Neubauer &	Heurix,	2011).
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To	provide	a	trusted	health	care	provider	with	the	knowledge	of	the	link	between	
the	patient’s	identification	record	and	a	particular	health	record,	a	new	shared	
pseudonym	pair	is	created	as	authorization	relation.	The	patient	first	has	to	
retrieve	the	root	pseudonym	pair	and	keyword	identifier	corresponding	to	the	
health	record	he	or	she	intends	to	share	with	the	health	care	provider.	
Furthermore,	both	the	patient	as	data	owner	and	the	health	care	provider	as	
authorized	user	have	to	be	authenticated	at	the	same	workstation	so	that	both	user	
identifiers	are	available	at	the	client	side,	while	both	inner	symmetric	keys	are	
cached	at	the	HSM	of	the	pseudonymization server.	The	root	pseudonym	pair	is	
then	transferred	to	the	pseudonymization server	along	with	both	user	identifiers	
and	the	keyword	identifier,	and	the	corresponding	record	identifiers	retrieved	
using	the	cleartext record/pseudonym	mappings.	The	server	then	randomly	
selects	a	newshared pseudonym	pair,	which	is	first	encrypted	with	both	users’	
inner	symmetric	keys	(along	with	both	identifiers	and	the	keyword	identifier)	and	
then	stores	them	in	the	database	as	authorization	relation.	Finally,	the	cleartext
pseudonyms	are	then	referenced	with	the	retrieved	record	identifiers	to	create	two	
new	record/pseudonym	mappings		(Neubauer &	Heurix,	2011).
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Slide	11‐33	Pseudonymization of	Information	for	Privacy	7/8
As	with	authorizations,	a	user	affiliation	requires	that	both	the	patient	as	data	
owner	and	the	trusted	relative	as	affiliated	user	are	authenticated	at	the	same	
workstation.	Then	both	user	identifiers	are	transferred	to	the	pseudonymization
server	where	they	are	encrypted	with	both	users’	inner	symmetric	keys.	In	
addition,	the	patient’s	inner	private	key	is	also	encrypted	with	the	relative’s	inner	
symmetric	key,	and	all	elements	are	stored	in	the	pseudonymization metadata	
storage	as	affiliation	relation	(Neubauer &	Heurix,	2011).
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Finally,	from	the	viewpoint	of	the	patient	as	data	owner,	health	data	storage	first	
requires	that	an	‘old’	root	identification	pseudonym	is	retrieved	as	reference	to	the	
identification	record.	Furthermore,	the	patient	creates	a	new	keyword	and	enters	
the	new	health	record	into	the	workstation.	Then	the	pseudonym,	new	keyword,	
new	health	record,	and	user	identifier	are	transferred	to	the	pseudonymization
server,	where	the	keyword	is	stored	(and	its	identifier	determined	by	the	database	
engine)	and	the	identification	record	identifier	retrieved.	The	new	record	is	stored	
in	the	health	records	database	and	its	record	identifier	returned	to	the	server.	
Then,	the	server	creates	a	new	root	pseudonym	pair	and	stores	it	encrypted	with	
the	keyword	identifier	and	user	identifier	as	root	access,	as	well	as	the	cleartext
record/pseudonym	mappings	(Neubauer &	Heurix,	2011).
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Slide	11‐35	Example:	private	personal	health	record
As	the	awareness	of	patients	for	their	medical	data	increases,	there	is	a	trend	of	
private	personal	health	records,	sometimes	called	health	vaults.	An	example	can	be	
seen	in	http://healthbutler.com
In	the	following	four	slides	we	look	at	the	technological	concept	of	such	a	personal	
health	record	system.	In	this	concept	we	will	get	to	know	a	very	interesting	
concept:	Mashups.
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Slide	11‐36	Example:	Concept	of	a	Personal	Health	Record	System	1/4
PHRs	that	use	centralized	data	stores	do	not	offer	stakeholders	a	choice	in	services,	
data	storage,	or	user	requirements.	However,	various	stakeholders	have	varying	
skills,	requirements,	and	responsibilities,	which	a	single	application	can	not	satisfy.	
Consequently,	personalization	is	required	where	such	a	heterogeneous	mix	of	
stakeholders	exists.	The	concept	of	Mashups (Auinger et	al.,	2009)	let	users	create	
applications	to	suit	their	individual	requirements.	End	users	can	use	mashup	
makers	to	integrate	various	resources.	Mashup	makers	let	users	create	
personalized	applications	with	lower	costs	than	traditional	integration	projects,	in	
which	a	single	application	must	incorporate	many	users’	needs.	As	the	explosion	of	
Web	mashups available	on	the	Programmable	Web	(www.	
programmableweb.com)	show,	many	users	are	finding	new	and	diverse	ways	to	
satisfy	individual	requirements.	
This	slide	shows	the	conceptual	architecture	of	a	system	called	Sqwelch (Fox,	
Cooley	&	Hauswirth,	2011):	Within	the	architecture,	there	are	three	components:
1)	Composition	services	provide	mechanisms	for	modeling	widgets	and	engaging	
with	the	stakeholder	community	in	developing	mashups.	
2)	Hosting	services	provide	mechanisms	for	managing	the	environment,	
customizing	mashup	containers,	and	deploying	mashups.	
3)	Infrastructure	services	form	the	basis	of	the	mashup	maker,	including	discovery	
services,	social	networking	capabilities,	security	and	trust,	widget	interaction,	and	
management.
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Slide	11‐37	Example	for	component	relationships	2/4
Here	we	see	the	Sqwelch component	relationships:	The	components	work	in	
cooperation	and	fulfill	specific	roles	to	enable	heterogeneous	widgets	and	users	to	
collaborate	in	a	trusted	way:	When	registering	widgets,	developers	create	model	
references	that	are	stored	for	future	use	in	the	discovery	and	mediation	
components.	During	a	mashup’s execution,	the	social	networking	component	
determines	the	destinations	for	data	if	users	are	collaborating,	which	in	turn	uses	
trust	and	importance	as	a	means	of	controlling	data	access.	Model	references	are	
used	to	transform	data,	and	component	interaction	is	provided	as	publish–
subscribe	to	loosely	couple	the	remote	resources	(Web	widgets)	(Fox,	Cooley	&	
Hauswirth,	2011).
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Slide	11‐38	Widget	collaboration	sequence	3/4
Here	we	see	the	Widget	collaboration	sequence.	Widgets	communicate	with	the	
Sqwelch server	using	HTML	5	standards.	Sqwelch alerts	users	if	widgets	aren’t	
trusted.
The	diagram	shows	the	calls	to	be	made	by	widgets,	the	execution	host	(Sqwelch
default.html),	and	the	server	(Sqwelch.	com)	in	enabling	trusted	publish–subscribe	
between	heterogeneous	widgets.	In	our	example,	the	publishing	widget	could	be	
the	sensor	viewer	widget	and	the	subscribing	widget	could	be	the	sensor	filter	
widget.	We	must	consider	some	important	points	(Fox,	Cooley	&	Hauswirth,	2011):	
1)	The	HTML	5	postMessage syntax	is	used	to	publish	data	payloads	from	widgets	
and	from	the	Sqwelch main	page.	HTML	5	event	listener	functions	are	required	in	
subscribing	widgets	to	listen	for	incoming	payloads.	
2)	The	payloads	sempublishpost returns	are	those	expected	by	the	subscribing	
widgets	(payload),	based	on	the	original	published	payload.	
3)	Payload	as	received	by	the	subscribing	widget	will	be	a	combination	of	default	
values	the	user	specifies	and	real	values,	depending	on	the	importance	associated	
with	the	real	data	and	the	trust	specified	for	the	subscribing	widget.	
4)	If	the	widget	isn’t	trusted,	Sqwelch alerts	the	user	and	provides	a	view	of	the	
data	elements	the	subscribing	widget	has	requested.	This	will	happen	only	once	
for	each	widget	in	the	current	session.	
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Slide	11‐39	User	collaboration	sequence	4/4
Finally,	here	the	User	collaboration	sequence	is	depicted:	Polling	is	used	by	
subscribing	mashups deployed	by	caregivers	to	retrieve	data	published	by	the	
patient.	Sqwelch alerts	the	caregiver	if	the	patient	doesn’t	trust	him	or	her.	The	
sequences	include	(Fox,	Cooley	&	Hauswirth,	2011):
1)	The	polling	code	is	run	on	the	hosting	mashup	webpage,	retrieving	data	for	all	
social	widgets	in	the	current	page	using	getsocialsubscriptions.	
2)	The	hosting	mashup	webpage	returns	with	the	latest	heart	rate	readings	for	
Mary.	
3)	If	Mary	doesn’t	trust	either	the	widget	or	John,	the	payload	will	contain	static,	
user‐defined	information,	and	Mary	will	be	alerted.
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Ok,	now	lets	now	focus	on	data	privacy	issues	– spy fridges
Trust	plays	an	increasingly	important	role
We	are	surrounded	by	zillions	of	computing	devices,	sensors	etc.	
RFID	tags,	smart	dust,	sensor	networks,	cameras,	etc.
Embedded	in	devices	for	everyday	use,	or	even	human	bodies
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Privacy	has	become	a	growing	concern,	due	to	the	massive	increase	in	personal	
information	stored	in	electronic	databases,	such	as	medical	records,	financial	
records,	web	search	histories,	and	social	network	data.	Machine	learning	can	be	
employed	to	discover	novel	population‐wide	patterns,	however	the	results	of	such	
algorithms	may	reveal	certain	individuals’	sensitive	information,	thereby	violating	
their	privacy.	Thus,	an	emerging	challenge	for	machine	learning	is	how	to	learn	
from	data	sets	that	contain	sensitive	personal	information.	
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Of	course	there	are	many	threats	to	break privacy
Pseudonyms
i)		Self‐generated	pseudonyms
ii)		Reference	pseudonyms
iii)	Cryptographic	pseudonyms
iv)	One‐way	pseudonyms
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Differential	privacy	=	aims	to	provide	means	to	maximize	the	accuracy	of	queries	
from	statistical	databases	while	minimizing	the	chances	of	identifying	its	records.	
Here	we	have	three	parties:	1)	user,	2)	data,	3)	trusted	ML;	ml	learns	from	the	
dataset,	user	goal	is	to	obtain	labels	for	the	test	set,	and	the	ML	goal	is	to	provide	
predictions	– now	it	is	important	not	to	violate	privacy!	In	(a)	the	user	sends	the	
test	data	to	the	learner	and	gets	back	predictions	(human‐in‐the‐loop);	(b)	the	
user	sends	a	small	subset	of	the	test	set	and	the	learner	sends	a	Private	Vector	w	–
guranteed with	similar	predictions	as	on	the	test	set;	c	learner	sends	the	user	a	
private	Vector	w	which	contains	similar	predictions	on	all	the	points	in	the	input	
space.

We	consider	the	problem	of	differentially	private	kernelized learning	and	study	it	
under	three	practical	models.	Our	algorithms	for	the	first	two	models	are	
computationally	efficient	but	for	the	third	model	they	can	have	exponential	time	
complexity	for	some	kernel	functions.	Interactive:	Our	interactive	model	is	useful	
for	several	learning	tasks	faced	by	online	systems	like	ad‐systems,	
recommendation	systems.	We	provide	an	efficient	algorithm	that	can	accurately	
predict	for	exponentially	many	test	points,	in	terms	of	error	bound	and	training	
points.	Semi‐interactive:	Our	semi‐interactive	model	is	useful	when	public	test	sets	
are	available.	Here,	we	provide	an	efficient	differentially	private	algorithm	with	
additional	generalization	error	that	is	independent	of	the	dimensionality	of	the	
data.	Non‐interactive:	Finally,	we	provide	a	privacy	preserving	algorithm	with	
generalization	error	bound	for	the	standard	learning	model	but	where	kernel	
function	is	restricted	to	a	function	of	low‐dimensional	vector	spaces.	Although	our	
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algorithm	for	this	setting	might	not	be	computationally	efficient	in	general,	but	for	
the	case	of	linear	kernels	we	can	prove	it	to	be	efficient.	

Models	for	kernelized privacy	preserving	learning	using	kernel	ERM.	We	have	three	
parties:	a	dataset,	a	trusted
learner	and	a	user.	Learner	learns	optimum	(w

)	of	the	ERM	using	the	training	data	from	the	dataset.	User's	goal	is	to
obtain	labels	for	its	test	set	while	learner's	goal	is	to	provide	user	with	accurate	
predictions/model	parameters	without
violating	dataset's	privacy.	(a)	Interactive	Model:	In	this	model,	the	user	sends	its	test	
data	to	the	learner	for	which
it	returns	back	accurate	predictions	without	violating	dataset's	privacy.	(b)	Semi‐
interactive	model:	In	this	model,
the	user	sends	a	small	subset	of	its	test	set,	and	then	learner	sends	a	di
erentially private	b	w	that	is	guaranteed	to	obtain
similar	predictions	to	w

on	user's	test	set.	(c)	Non‐interactive	Model:	In	this	model,	learner	sends	the	user	a
di
erentially private	b	w	that	is	expected	to	provide	similar	predictions	to	w

on	all	the	points	in	the	input	space
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Can	be	used	to	”anonymize”	a	selected	private	attribute	value	within	the	domain	of	
all	possible	values
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The	amount	of	patient‐related	data	produced	in	today's	clinical	setting	poses	many	
challenges	with	respect	to	collection,	storage	and	responsible	use.	For	example,	in	
research	and	public	health	care	analysis	data	must	be	anonymized	before	transfer,	
for	which	the	k‐anonymity	measure	was	introduced	and	successively	enhanced	by	
further	criteria.	As	k‐anonymity	is	an	NP‐hard	problem,	modern	approaches	make	
use	of	approximation	as	well	as	heuristics	based	methods.	This	talk	will	give	a	
short	introduction	into	anonymization	and	its	criteria	followed	by	an	overview	of	
methods	&	state‐of‐the‐art	algorithms	to	tackle	the	problem.	I	will	demonstrate	
currently	available	tools	and	outline	their	strengths	and	weaknesses,	before	
concluding	the	session	by	contemplating	an	interactive	machine	learning	(iML)	
approach	to	the	problem.
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K‐Anonymity …	eg.	If	the	values	of	confidential	attributes	are	very	similar	in	a	
group	of	k	records	which	overlap	quasi‐identifier	values
A	release	of	data	is	said	to	have	the	k‐anonymity	property	if	the	information	for	
each	person	contained	in	the	release	cannot	be	distinguished	from	at	least	k‐1	
individuals	whose	information	also	appear	in	the	release.
L‐diversity	…	The	l‐diversity	model	is	an	extension	of	the	k‐anonymity	model	
which	reduces	the	granularity	of	data	representation	using	techniques	including	
generalization	and	suppression	such	that	any	given	record	maps	onto	at	least	k	
other	records	in	the	data.	The	l‐diversity	model	handles	some	of	the	weaknesses	in	
the	k‐anonymity	model	where	protected	identities	to	the	level	of	k‐individuals	is	
not	equivalent	to	protecting	the	corresponding	sensitive	values	that	were	
generalized	or	suppressed,	especially	when	the	sensitive	values	within	a	group	
exhibit	homogeneity.
T‐closeness	…	at	most	distance	t	between	both	distributions	This	reduction	is	a	
trade	off	that	results	in	some	loss	of	effectiveness	of	data	management	or	mining	
algorithms	in	order	to	gain	some	privacy.	The	t‐closeness	model	extends	the	l‐
diversity	model	by	treating	the	values	of	an	attribute	distinctly	by	taking	into	
account	the	distribution	of	data	values	for	that	attribute.
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Machine	learning is	the	most	growing	field	in	computer	science [Jordan,	M.	I.	&	
Mitchell,	T.	M.	2015.	Machine	learning:	Trends,	perspectives,	and	prospects.	
Science,	349,	(6245),	255‐260],	and	it	is	well	accepted	that	health	informatics	is	
amongst	the	greatest	challenges	[LeCun,	Y.,	Bengio,	Y.	&	Hinton,	G.	2015.	Deep	
learning.	Nature,	521,	(7553),	436‐444	].	To	ensure	privacy,	data	protection,	safety	
and	information	security	is	of	utmost	importance.
The	amount	of	patient‐related	data	produced	in	today’s	clinical	setting	poses	many	
challenges	with	respect	to	collection,	storage	and	responsible	use.	For	example,	in	
research	and	public	health	care	analysis,	data	must	be	anonymized	before	transfer,	
for	which	the	k‐anonymity	measure	was	introduced	and	successively	enhanced	by	
further	criteria.	As	k‐anonymity	is	an	NP‐hard	problem,	which	cannot	be	solved	by	
automatic	machine	learning	(aML)	approaches	we	must	often	make	use	of	
approximation	and	heuristics.	As	data	security	is	not	guranteed given	a	certain	k‐
anonymity	degree,	additional	measures	have	been	introduced	in	order	to	refine	
results	(l‐diversity,	t‐closeness,	delta‐presence).	This	motivates	methods,	
methodolgies and	algorithmic	machine	learning	approaches	to	tackle	the	problem.	
As	the	resulting	data	set	will	be	a	tradeoff	between	utility	and	individual	privacy,	
we	need	to	optimize	those	measures	to	individual	(subjective)	standards.	
Moreover,	the	efficacy	of	an	algorithm	strongly	depends	on	the	background	
knowledge	of	a	potential	attacker	as	well	as	the	underlying	problem	domain.	One	
possible	solution	is	to	make	use	of	interactive	machine	learning	(iML) approaches	
and	put	a	human‐in‐the‐loop	and	a	central	question	is:	“could	human	intelligence	
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lead	to	general	heuristics	we	can	use	to	improve	heuristics?”
Research	topics	covered	by	this	special	session	include	but	are	not	limited	to	the	
following	topics:
– Production	of	Open	Data	Sets
– Privacy	preserving	machine	learning,	data	mining	and	knowledge	discovery
– Data	leak	detection
– Data	citation
– Anonymization	and	Pseudonymization
– Securing	expert‐in‐the‐loop	machine	learning	systems
– Synthetic	data	sets	for	machine	learning	algorithm	testing
– Evaluation	and	benchmarking
This	special	session	will	bring	together	scientists	with	diverse	background,	interested	
in	both	the	underlying	theoretical	principles	as	well	as	the	application	of	such	
methods	for	practical	use	in	the	biomedical,	life	sciences	and	health	care	domain.	The	
cross‐domain	integration	and	appraisal	of	different	fields	will	provide	an	atmosphere	
to	foster	different	perspectives	and	opinions;	it	will	offer	a	platform	for	novel	crazy	
ideas	and	a	fresh	look	on	the	methodologies	to	put	these	ideas	into	business.
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Informed	Patient	Consent	=	

Data Citation	=	The	scientific	method	and	the	credibility	of	science	rely	on	full	
transparency		and	explicit	references	to	both	methods	
and	data.	These	require	that	science	data	be	open	and	available	without	undue	and	
proprietary	restriction.	However,	a	consistent,	rigorous	approach	to	data	citation	is	
lacking.	

For	most	secondary	data	use,	it	is	necessary	to	use	de‐identified	data,	but	for	the	
remaining	data	protection	issues	are	very	important	(Safran et	al.,	2007).		The	
secondary	use	of	data	involves	the	linkage	of	data	sets	to	bring	different	modalities	
of	data	together,	which	raises	more	concerns	over	the	privacy	of	the	data.	The	
publication	of	the	Human	Genome	gave	rise	to	new	ways	of	finding	relationships	
between	clinical	disease	and	human	genetics.	The	increasing	use	and	storage	of	
genetic	information	also	impacts	the	use	of	familial	records,	since	the	information	
about	the	patient	also	provides	information	on	the	patient’s	relatives.	The	issues	of	
data	privacy	and	patient	confidentiality	and	the	use	of	the	data	for	medical	
research	are	made	more	difficult	in	this	post‐genomic	age.	
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My DEDICATION is to make data valuable … Thank you!
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Slide	11‐40	Security	and	Privacy	of	some	PHR’s
This	work	by	(Carrión,	Fernández‐Alemán &	Toval,	2011)	is	interesting	for	two	
reasons:	1)	it	provides	a	good	overview	of	some	personal	health	records	and	2)	it	
shows	to	what	extent	they	addressed	security	and	privacy	issues.
The	figure	shows	scores	as	two	overlapping	histograms:	In	general,	quite	a	good	
level	can	be	observed	in	the	characteristics	analyzed.	Nevertheless,	some	
improvements	could	be	made	to	current	PHR	privacy	policies	to	enhance	specific	
capabilities	such	as:	the	management	of	other	users’	data,	the	notification	of	
changes	in	the	privacy	policy	to	users	and	the	audit	of	accesses	to	users'	PHRs.	The	
characteristics	on	how	they	reached	these	scores	can	be	inferred	from	the	
following	slides.
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Slide	11‐41	9	Security	Characteristics	to	analyze	PHR’s	1/2
Carrión,	Fernández‐Alemán &	Toval (2011)	defined	nine	characteristics	to	analyze	the	Personal	
Health	Records:		Privacy	policy,	location,	Data	source,	Data	managed,	Access	management,	Access	
audit,	Data	accessed	without	the	user's	permission,	Security	measures,	Changes	in	privacy	policy	
and	Standards:
Privacy	Policy	Location.	This	characteristic	is	related	to	the	question	Where	is	the	Privacy	Policy	on	
the	PHR	web	site?	PHRs	should	provide	a	Privacy	Policy	which	describes	how	users'	data	are	used	
in	order	for	users	to	be	informed.	The	Privacy	Policy	should	be	easily	accessible	by	users.	The	
difficulty	of	Privacy	Policy	access	is	assessed	by	counting	the	number	of	links	clicked.	The	values	
that	this	characteristic	may	take	are:	0.	The	Privacy	Policy	is	not	visible	or	not	accessible.	1.	The	
Privacy	Policy	is	accessed	by	clicking	one	link.	2.	The	Privacy	Policy	is	accessed	by	clicking	two	or	
more	links.	
Data	Source.	This	characteristic	is	related	to	the	question	Where	do	users’	PHR	data	proceed	from?	
Generally,	the	user	is	his/her	data	source,	but	there	are	PHRs	which	do	not	only	use	this	source.	
Some	contact	the	users'	healthcare	providers,	others	allow	other	users	and	different	programs	to	
enter	users'	data	and	others	use	self‐monitoring	devices	to	obtain	users'	data.	The	values	that	this	
characteristic	may	take	are:	0.	Not	indicated.	1.	User.	2.	User	healthcare	provider.	3.	User	and	
his/her	healthcare	providers.	4.	User,	other	authorized	users	and	other	services/programs.	5.	Self‐
monitoring	devices	connected	with	the	user.	
Data	Managed.	This	characteristic	is	related	to	the	question	Who	do	the	data	managed	by	the	users	
belong	to?	The	users	can	manage	their	own	data,	but	they	can	sometimes	manage	other	users'	data,	
such	as	that	of	their	family.	The	values	that	this	characteristic	may	take	are:	0.	Not	indicated.	1.	Data	
user.	2.	Data	user	and	his/her	family	data.	
Access	management.	This	characteristic	is	related	to	the	question	Who	can	obtain	access	granted	
by	the	users?	The	users	decide	who	can	access	their	PHR	data.	The	PHR	systems	analyzed	allow	
access	to	be	given	to	different	roles.	The	values	that	this	characteristic	may	take	are:	0.	Not	
indicated.	1.	Other	users	and	services/programs.	2.	Healthcare	professionals.	3.	Other	users.	4.	
Other	users,	healthcare	professionals	and	services/programs.	To	be	continued	on	the	next	slide.
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Slide	11‐42	9	Security	Characteristics	to	analyze	PHR’s	2/2
Access	audit.	This	characteristic	is	related	to	the	question	Can	users	see	an	audit	of	accesses	to	their	
PHRs?	The	values	that	this	characteristic	may	take	are:	0.	No.	1.	Yes.	Data	accessed	without	the	
user's	permission.	This	characteristic	is	related	to	the	question	What	data	are	accessed	without	the	
user's	explicit	consent?	The	PHR	systems	typically	access	certain	data	related	to	the	users	in	order	
to	verify	that	everything	is	correct.	The	values	that	this	characteristic	may	take	are:	0.	Not	
indicated.	1.	Information	related	to	the	accesses.	2.	De‐identified	user	information.	3.	Information	
related	to	the	accesses	and	de‐identified	user	information.	4.	Information	related	to	the	accesses	
and	identified	user	information.	
Security	measures.	This	characteristic	is	related	to	the	question	What	security	measures	are	used	in	
PHR	systems?	There	are	two	types	of	security	measures:	physical	measures	and	electronic	
measures.	The	physical	security	measures	are	related	to	the	protection	of	the	servers	in	which	the	
data	are	stored.	The	electronic	security	measures	are	related	to	how	stored	and	transmitted	data	
are	protected,	for	example,	by	using	a	Secure	Sockets	Layer	(SSL)	scheme.	The	values	that	this	
characteristic	may	take	are:	0.	Not	indicated.	1.	Physical	security	measures.	2.	Electronic	security	
measures.	3.	Physical	security	measures	and	electronic	security	measures.
Changes	in	Privacy	Policy.	This	characteristic	is	related	to	the	question	Are	changes	in	privacy	
policy	notified	to	users?	Changes	in	Privacy	Policy	should	be	notified	to	users	in	order	to	make	
them	aware	of	how	their	data	are	managed	by	the	PHR	system.	The	values	that	this	characteristic	
may	take	are:	0.	Not	indicated.	1.	Changes	are	notified	to	users.	2.	Changes	are	announced	on	home	
page.	3.	Changes	are	notified	to	users	and	changes	are	announced	on	home	page.	4.	Changes	may	
not	be	notified.	Standards.	This	characteristic	is	related	to	the	question	Are	PHR	systems	based	on	
privacy	and	security	standards?	The	PHR	systems	analyzed	use	or	are	based	on	two	standards:	the	
Health	Insurance	Portability	and	Accountability	Act	(HIPAA)	and	the	Health	On	the	Net	Code	of	
Conduct	(HONcode).	The	values	that	this	characteristic	may	take	are:	Usable	Privacy	and	Security	
in	Personal	Health	Records	41	0.	Not	indicated.	1.	HIPAA	is	mentioned.	2.	System	is	covered	by	
HONcode.	3.	HIPAA	is	mentioned	and	system	is	covered	by	HONcode (Carrión,	Fernández‐Alemán
&	Toval,	2011).
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Slide	11‐43	Overview	Personal	Health	Records	(PHR)	
The	last	slide	shows	the	summary	of	the	researched	personal	health	records	
(Carrión,	Fernández‐Alemán &	Toval,	2011).	Note:	By	2013	the	Google	Health	
record	is	not	longer	in	operation:	Google	Health	has	been	permanently	
discontinued.	All	data	remaining	in	Google	Health	user	accounts	as	of	January	2,	
2013	has	been	systematically	destroyed,	and	Google	is	no	longer	able	to	recover	
any	Google	Health	data	for	any	user,	see:	
http://www.google.com/intl/en_us/health/about
See	also	this	blog:	http://googleblog.blogspot.co.at/2011/06/update‐on‐google‐
health‐and‐google.html
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Slide	11‐44	Ethical	Issues	‐ during	Quality	Improvement
Here	a	summary	of	ethical	issues	by	a	work	of	(Tapp et	al.,	2009):	They	identified	
the	experiences	of	professionals	involved	in	planning	and	performing	QI	
programmes in	European	family	medicine	on	the	ethical	implications	involved	in	
those	processes.	For	this	purpose	the	used	four	focus	groups	with	29	general	
practitioners	(GPs)	and	administrators	of	general	practice	quality	work	in	Europe.	
Two	focus	groups	comprised	EQuiP members	and	two	focus	groups	comprised	
attendees	to	an	invitational	conference	on	QI	in	family	medicine	held	by	EQuiP in	
Barcelona.	Four	overarching	themes	were	identified,	including	implications	of	
using	patient	data,	prioritizing	QI	projects,	issues	surrounding	the	ethical	approval	
dilemma	and	the	impact	of	QI.	Each	theme	was	accompanied	by	an	identified	
solution.	Practical	implications	– Prioritising is	necessary	and	in	doing	that	GPs	
should	ensure	that	a	variety	of	work	is	conducted	so	that	some	patient	groups	are	
not	neglected.	Transparency	and	flexibility	on	various	levels	is	necessary	to	avoid	
harmful	consequences	of	QI	in	terms	of	bureaucratisation,	increased	workload	and	
burnout	on	part	of	the	GP	and	harmful	effects	on	the	doctor‐patient	relationship.	
There	is	a	need	to	address	the	system	of	approval	for	national	QI	programmes and	
QI	projects	utilising more	sophisticated	methodologies	(Tapp et	al.,	2009).	
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