Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD %
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This lecture is only the overview and motivation part © @Hci-koo:&

= The HCI-KDD approach: integrative ML
= Understanding Intelligence

= Complexity of the health domain

= Probabilistic information

= Automatic Machine Learning (aML)
* Interactive Machine Learning (iML)

= Active Representation Learning

= Multi-Task Learning

= Generalization and Transfer Learning

TU @HCI-HDD o4

01 What is the

@ HCI-KDD £~

approach?

Holringer Group, HCI-KDD.orE 1 MAKE Health 00 Holringer Graug, HO-KDDLorE 2 MUAKE Health 00 Holringer Graug, HO-KDDLorE 3 MUAKE Health 00
TY @ HCI-KDD L Machine Learning and Knowledge Extraction Pipeline S HCI-KDD 5 Knowledge Extraction is necessary as first step ... @ HCIKDD

= ML is a very practical field —
algorithm development is at the core —
however, T2
successful ML needs a ¢
various topics ...

o
i Data
Interactive pmjping Knowledge Discovery

Data Learning Data Prepro- Data
Visualization =~ Algorithms  Mapping  cessing Fusion

GDM e Graph-based Data Mining

TOM e Topological Data Mining

EDM e Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
€ a hotrwges (B kad g

Holzinger, A, 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.

Features are key to

learning and
understanding

Holringer Groug, HO-KDD.orE a MUAKE Health 00 Holringer Groug, HO-KDD.org 5 MUAKE Health 00 Holringer Groug, HO-KDD.org 3 MUAKE Health 00
Y ... successful ML needs ... D HCI-KDD - Cognitive Science AND Computer Science @HCI-KDD -

without beundaries ...

http:/fwww.bach-cantatas.com
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= Cognitive Science — human intelligence

= Computer Science — computational intelligence

= Human-Computer Interaction — the bridge

Holzinger Groug, HO-KDD.org [ ]
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02 Solve
Intelligence
then solve

everything else

@HCI-HDD o4

@
“Solve intelligence -

then solve everything else”

Demis Hassabis, 22 May 2015

The Royal Society,
Future Directions of Machine Learning Part 2

Grand Goal: Understanding Intelligence

b Google
DeepMind

Holringer Groug, HO-KDD.org 1 BAKE Health 00

https:/fyoutu.be/XAbLnE6IHCOPt=1h28m54s

@HCI-HDD o4

To reach a level of usable intelligence we need to ...

= 1) extract knowledge
= 2) learn from prior data

= 3) generalize, i.e. guessing where a
probability measure concentrates

= 4) fight the curse of dimensionality

= 5) disentangle underlying explanatory
factors of data, i.e.

= 6) understand the data in the context of
an application domain

Holringer Groug, HO-KDD.org 12 BAKE Health 00

How far are we already ?

Compare
your best ML
algorithm with

a seven year old
child ...

Mnih, V., Kavukcuoghy, K., Silver, D., Rusu, A, A,
Veness, J., Bellemare, M. G, Graves, A,

{2 L
Petersen, 5., Beattie, C., Sa nton
1., King, H.. Kumaran, D., Wierstra

through deep reinfarcement learning A
518, (7540), 529-533,
doi:10.1038/nature 14236

Scientists who pleaded for “humanoid Al"”

= Alan Turing (1912 — 1954)

= Herbert Simon (1916 — 2001)
= John McCarthy (1927 — 2011)
= Marvin Minsky (1927 — 2016)
Allen Newell (1927 — 1992)

®» ... pleaded for building machines that can learn
similar to humans, e.g. like children

= None of them knew what they
were talking about ...
(Josh Tenenbaum)

@HCI-HDD o4

@HCI-HDD o4

Holringer Groug, HOLXDD.org 13 MAKE Hesith 00 Holringer Groug, HOLXDD.org 1 MAKE Hesith 00
Ty @HCKDD - Health is a complex area @HCKDD - Machine Learning and Health Informatics! @HCHKDD -
Why is thi
licati
comp lex :
https://royalsociety.org//events/2015/05/k hrough-science-tect
Holzinger Groug, HO-XDD.arg 16 BMUAKE Health 00 Holringer Groug, HO-XDD.arg 1w BAKE Health 00 Holringer Groug, HO-XDD.arg 15 MUAKE Health 00




Ul In medicine we have two different worlds ... GHCI-KDD

Our central hypothesis:
Information may bridge this gap

Holzinger, A. & Simonic, K.-M. (eds.} 2011. Information Quality in e-Health. Lecture Notes in Computer
Science LNCS 7058, Heidelberg, Berlin, New York: Springer.

The bridge ... @ HCI-KDD -

Holinger Groug, HOI-KDD.0rg m ARKE Health 00

Main problems ...

DGEWR ﬁ EQQN

@HCI-HDD o4

Hol:'rger, A, Dehmer, M. & Jurisica, I 2014. Knowledge Discovery and interactive Data inins in

ics - State-of-the-Art, future chall and research directions. BMC Bioinformatics, 15, (S6), 11.

Holringer Groug, HCI-KDD.org 19 MAKE Health 00 Holringer Groug, HO-KDD.org n MAAKE Health 00
T D HCI-KDD - Tu @HCI-KDD Repetition of Bayes - on the work of Laplace | @HCIKDD
What is the simplest mathematical operation for us? m

04 Probabilistic
Information p(x)

Probability theory
is nothing but
common sense
reduced to
calculation ...

plz) Z[pf.ﬂ'.y]] [
How do we call repeated adding?
plx,y) = plule) = ply) 2)
Laplace (1773) showed that we can write:
pla,y) » ply) = plylz) » plx) (3)
Now we introduce a third, more complicated operation:

ple.y) « ply) _ plylz) » plx)

£ (4
ply) Py
Pierre Simon de Laplace (1749-1827), 1812 ; " . 2
? { b We can reduce this fraction by p(y) and we receive what is called Bayes rule:
1) * plx " o(d|h)p(h)
pley) = Plyla J piz) plhld) = il ol (5)

ply) pld)
Holringer Groug, HCI-KDD.org n MAKE Health 00 Holringer Groug, HO-KDD.org n MAKE Health 00 Holringer Groug, HO-KDD.org E MAKE Health 00
The foundation for machine learning was laid in 1763 ... @Hci-400:% Analogies @ HCKDD -

Bayes, T. {1763). An Essay towards
sclving a Problem in the Dectrine of
Chances [Postum communicated by
Richard Price]. Philosophical
Transactions, 53, 370-418

Thomas Bayes Richard Price
1701 - 1761 1723-1791

plz;) = Z P(z;,y;) plxiy;) = plyjlzi) P(x;)

Bayes’ Rule is a corollary of the Sum Rule and Product Rule:

ol P(?fj[ii"f)P(-'??f)
p(l’:lyj) - ZP(-’E;'"L{;)IJ(E?;)

Barnard, G. A, & Bayes, T. (1958). Studies in the history of probability and statistics: I¥. Thomas Bayes's
essay towards solving a problem in the doctrine of chances. Biometrika, 45(3/4), 293-315.

Holringer Groug, HO-XDD.oFg B MAAKE Health 00

Cedalion standing on the shoulders of Orion @HCI-KDD &

1658, Qil on canvas, Metropalitan Museum of Art, New York

Holringer Groug, HO-XDD.oFg *® MAAKE Health 00

164244727 s4ehivic) » 011741 .
= Newton, Leibniz, ... developed calculus -

mathematical language for describing and
dealing with rates of change

= Bayes, Laplace, ... developed probability
theory - the mathematical language for
describing and dealing with uncertainty

= Gauss generalized those ideas

Holzinger Graug, HOL-KDD.org 7w MAAKE Health 00




Learning and Inference @HCIKDD A

d .. data m

H . {Hi Hein Hi}  Nhidi

h .. hypotheses

p({tld)=

Posterior Probability

Likelihood , Prior Probability
p[R)+p(h)

Lhen P(@ln) p(h’)

"Problem in R™ — complex

Bayesian Learning from data — Generalize QHCI-KDD

Di= 23— {15805 T} p(D|6)

p(D|0) = p(0)
p(D)

likelihood = prior

p(8|D) =

osterior = -
p evidence

The inverse probability allows to learn from

Scaling to high-dimensions is the holy grail in ML @HCIKDD 4
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No. of Iterations {r)

e b TS G data, infer unknowns, and make predictions
_ ire pa ’ ’ Wang, Z.. Hutter, F, Zoghi, M., Matheson, D. & De Feitas, N. 2016. Bayesian optimization in a billion dimensicns via
random Journal of Artificial Research, 55, 361-387, doi:10.1613,jair 4806,
Holringer Groug, HO-XDD.org n MAKE Health 00 Holringer Groug, HO-KDDuorE Fe MAKE Health 00 Holringer Groug, HO-KDDuorE E MAKE Health 00
WP = distribution, observations occur in a cont. domain, e.g. t or space @HCI-KDD - U @HCI-KDD o4 Bayesian Optimization 1 @HCHKDD 4

GP posterior Likelihood  GP prior

—_—t— ——
p(f(x)|D) o p(DIf(x)) p(f (x))

Pl(xy) —,

nlxs) +earlxy)

nixy) 2

ey )-mix; )

X X ' X3

Brochu, E,, Cora, V. M, & De Freitas, N. 2010. A tutarial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arkiv:1012.2599.

1(x)

E(x

| pred var s prodmean = = =truth @ evaluations|

Snoek, 1., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 2012. 2951-2959,

MAKE Health 00
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Bayesian Optimization 2 SHCI-KDD A Bayesian Optimization 3 SHCI-KDD A Bayesian Optimization 4 SHCI-KDD A
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El{x)
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f(x)

&
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Bayesian Optimization 5

@HCI-HDD o4

Bayesian Optimization 6

@HCI-HDD o4

Fully automatic — Goal: Taking the human out of the loop @Hci-xoD i
13

Algorithm 1 Bayesian optimization
- 1 forn=12... do
’ h 2 select new x4 by optimizing acquisition function o

{1 o \\ Xupt = Mg Ax afx: D, ) %
’ . . /)
N . % guery objective function to obtain g, L
! : augment data Dypq = { Do, (Xasr, Wasr )}

e ’ / : : update statistical model
= = o end for
=
— P| Probability of Improvement
— El Expected improvement
—— UCB vupper confidence Baund
— TS  Thompson Sampling
=—— PES rredictive Entropy Search
u—g, = Shahriari, B., Swersky, K, Wang, Z, Adams, R. P. & De Freitas, N. 2016.
B . . u A Taking the human out of the loop: A review of Bayesian optimization.
4 Proceedings of the IEEE, 104, (1), 148-175, doi:10.1109/JPROC.2015.2494218.
Holringer Groug, HO-KDD.org E7] BMUAKE Health 00 Holringer Groug, HO1-KDD.0rg 33 MUKE Heslth 00 Holringer Groug, HO-KDD.org £t BAAKE Health 00
TY @HCI-KDD Everything is machine learning ... @HCI-KDD - Ty @HCI-KDD -
= Today most ML-applications are using
automatic Machine Learning (aML) approaches
Best practice
= aML := algorithms which interact
05 aM I_ with agents and can optimize their examples of
learning behaviour trough this aML
. . see
interaction
Holringer Groug, HCI-KDD.org “0 MAKE Health 00 Holringer Groug, HO-KDD.org al MAKE Health 00 Holringer Groug, HO-KDD.org az MAKE Health 00
Recommender Systems @ HCI-KDD & Fully automatic autonomous vehicles (“Google car”) @HCI-KDD & Good example for Learning from big data @ HCI-KDD &
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Holinger Groug, HOI-KDD.org
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Guizzo, E. 2011, How google's self-driving car works. IEEE Spectrum Online, 10, 18.

“

MAKE Health 00

photonic
mixer device

ultrasonic

Mukhtar, A, Xia, L & Tang, T. B. 2015. Vehicke Detection Technigques for Collision Avoldance Systems: A Review. IEEE
ions on i ion Systems, 16, [5), 2318-2338, doi:10.1109/TIT5.2015.2409109,
Holzingar Group, HO-XDD.org 45 MAKE Health 00




il ... an old dream to make it automatic @HCI-KDD & il ... and thousands of industrial aML applications ... @HCI-KDD & Big Data is necessary for aML ! @HCI-KDD -

Cyber-Physical Systems [CPS): Trarsportation
t f (A trafic
oty 80}

E]

g

&

8

Classification Performance (in percent)
g

]

—#&— Area under the PRC

3

1000 10000 100000 1000000 10000000
Number of training examples

1960s Citroén DS driverless car test
Surday Temas Deieng

[a -] T . Sonnenburg, 5., Rétsch, G, Schafer, C. & Scholkopf, B. 2006. Large scale multiple kernel
e Seshia, 5. A, Juniwal, G., Sadigh, D., Donze, A, Li, W, Jensen, J, €., Jin, X,, Deshmukh, ., Lee, E. & Sastry, 5, 2015, learning. Journal of Machine Learning Research, 7, (7), 1531-1565.
Verification by, for, and of Humans: Formal Methods for Cyber-Physical Systems and Beyond. Illinois ECE Colloguium,
Holzinger Graug, HOI-XDD.oFg % BAAKE Heaith 00 Holzinger Graug, HOI-XDD.oFg 4 BAAKE Heaith 00 Holzinger Graug, HOI-XDD.oFg 4 BAAKE Heaith 00

When does aML fail ... @HCI-KDD Tu @HCI-KDD Definition of iML (Holzinger — 2016) @HCIKDD

= Sometimes we do not have “big data”,

B ——— = iML := algorithms which interact

with agents*) and can optimize

their learning behaviour through
= Small amount of data sets this interaction

= Rare Events — no training samples 06 [ M L *) where the agents can be human
= NP-hard problems, e.g.

= Sometimes we have

= Subspace Clustering,
= k-Anonymization,

= Protein- F0| di ng, .. Holzinger, A. 2016. Interactive Machine Learning (iML). Informatik Spektrum,
39, (1), 64-68, doi:10.1007/500287-015-0941-6.
Holzinger Groug, HO-KDD.Or as MUAKE Health 00 Holzinger Groug, HO-KDD.org 50 MAKE Health 00 Holringer Groug, HO-KDD.0rg 51 MAKE Health 00
Sometimes we need a doctor-in-the-loop @HCIKDD A group of experts-in-the-loop @HCIKDD A crowd of people-in-the-loop @HCIKDD

Holringer Group, HO-KDD.org 52 MAKE Health 00 Holringer Group, HO-KDD.org 53 MAKE Health 00 Holringer Group, HO-KDD.org 54 MAKE Health 00




Y aML: taking the human-out-of-the-loop @ HCIKDD

A) Unsupervised ML: Algorithm is applied on the raw data and learns fully
automatic = Human can check results at the end of the ML-pipeline

@ 4_..¢ Ry
P @ &

B) Supervised ML: Humans are providing the labels for the training data
and/or select features to feed the algorithm to learn — the more samples the
better — Human can check results at the end of the ML-pipeline

C) Semi-Supervised Machine Learning: A mixture of A and B — mixing labeled and
unlabeled data so that the algorithm can find labels according to a similarity
measure to one of the given groups

@ _# = v,.:_@. é—!ﬁﬁ‘e ,&;ﬁg’

Y iML: bringing the human-in-the-loop @ HCI-KDD

D) Interactive Machine Learning: Human is seen as an
agent involved in the actual learning phase, step-by-step
influencing measures such as distance, cost functions ...

&= .. ) €— :‘F e '5-%‘:
4, Check é T

2. Preprocessing

1. Input

3.iML

Constraints of humans: Robustness, subjectivity, transfer?
Open Questions: Evaluation, replicability, ...

Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the
human-in-the-loop? Brain informatics (BRIN, 3, (2), 119-131, doi:10.1007/540708-016-0042-6.

Three examples for the usefulness of the iML approach ~ @Hci-koo:t

= Example 1: Subspace Clusteringm
= Example 2: k-Anonymization
= Example 3: Protein Design

Hund, M., Bdhm, D., Sturm, W., Sedimair, M., Schreck, T., Ullrich, T, Keim, D. A,, Majnaric, L. &
Holzinger, A. 2016. Visual analytics for concept exploration in subspaces of patient groups: Making
sense of complex datasets with the Doctor-in-the-loop. Brain Informatics, 1-15,
doi:10.1007/540708-016-0043-5.

Kieseberg, P, Malle, B., Fruehwirt, P, Weippl, E. & Holzinger, A. 2016. A tamper-proof audit and
contral system far the doctor in the loop. Brain Informatics, 3, (4), 269-279, doi:10.1007/540708-
016-0046-2,

Lee, 5. & Holzinger, A. 2016. Knowledge Discovery from Complex High Dimensional Data. In:
Michaelis, 5., Piatkowski, N. & Stolpe, M. {eds.} Solving Large Scale Learning Tasks. Challenges and
Algorithms, Lecture Notes in Artificial Intelligence LNAI 9580. Springer, pp. 148-167,
doi:10.1007/978-3-319-41706-6_7.

Holringer Groug, HO-KDD.org 55 BAAKE Health 00 Holringer Groug, HO1-KDD.0rg 56 MIKE Health 00 Holringer Groug, HO-KDD.org 57 BAAKE Health 00
Project: iML @HCI-KDD 5 http://hci-kdd.org/projects/iml-experiment @HCI-KDD 5 Example: Discovery of causal relationships from data ... @HcikoD

Qe

iME

= From black-box to glass-box ML

= Exploit human intelligence for solving hard problems (e.g.
Subspace Clustering, k-Anonymization, Protein-Design)

= Towards multi-agent systems with humans-in-the-loop

Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2015 Towards interactive
Machine Learning (iML): Applying Ant Colony Algori to solve the T I Problem with
the Human-in-the-Loop approach. Springer Lecture Notes in Computer Science LNCS 9817,

Heidelberg, Berlin, New York: Springer, pp. 81-95, doi:10.1007/978-3-319-45507-56.

Tnput : ProblemSize, m, 0, p, @, g m

Output: Phest
Phest — Ci
Phestg. -

Pheromeone

{euristicSolution( ProblemSize);

Y T
Pheromome — Initia |||1r~ 1 |n|n|mr( Pﬁrrurmrm‘ mit )i
while —StopCondition() do
for i =1to m do
8~ ConstructSolution{ Pheromone, ProblemSize, 3, qu):
Sicane — Cost(8);
I Sicou < Phest
Phesteau *
Phext —
end
LocalUpdnte AndDecayPheromone{ Pheromone, 5, Staar, p)i
end
GlobalUpdateAndDecayPheromone{Pheromone, Pbest, Pbestoosr, o)
while ist/serinteraction|) do
| GlobalAddAndE Pl Pt , Pbest, Pbesteou, )
end
end
return P

Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2016, Towards interactive Machine Learning (iML]:
Applying Ant Colany Algarithms to solve the Traveling Salesman Prakilem with the Human-in-the-Laop approach, Springer
Lecture Notes in Computer Science LNCS 9817. 81-95, dod:10.1007/978-3-319-45507-56.

Hans Holbein d.1., 1533,
The Ambassadors,
London: National Gallery

Lopez-Paz, D., Muandet,
K., Scholkopf, B. &
Tolstikhin, 1. 2015.
Towards a learning theory
of cause-effect inference.
Proceedings of the 32nd
International Conference
on Machine Learning,
JMLR, Lille, France.

https://www.youtube.com/watch?v=8KiVNIUMmCe
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The grand question of cognitive science @HCI-KDD S Tu @HCI-KDD The grand question of cognitive science @HCIKDD

* How get our mind so much out of so little?
= Qur minds build rich models of the world
= make strong generalizations

= from input data that is sparse, noisy, and
ambiguous — in many ways far too limited
to support the inferences we make

* How do we do it?

.. we do not know yet ...

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statisties,
structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science. 1192788,
Holringer Groug, HO-KDD.0rg 5l MAKE Health 00

07 Active
Representation
Learning

Holzinger Graug, HOL-KDD.org 6 MAAKE Health 00

* “How do humans generalize from very few
examples?”

* They transfer knowledge from previous learning:
= Representation learning (features!)
= Explanatory factors
= Previous learning from unlabeled data and
labels for other tasks

= Prior: shared underlying explanatory factors,
in particular between P(x) and P(Y|X),
with a causal link betweenY — X
Bengio, Y., Courville, A_& Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE
transactions on pattern anatysis and machine intelfigence, 35, (8], 1798-1828, doi:10.110%/TPAMI.2013.50.

Holringer Groug, HO-XDD.oFg & MAAKE Health 00




What is this ... @HEI-KDD

Active Learning - study of ML that improve by asking ... @Hci-koo:t

= ML algorithm can perform better with less
training if it is allowed to choose the data from

Goal: Automating Inquiries (Settles: alien fruits) @HCI-KDD 5

= A classifier to determine objects as a function mapping
h: X — Y, parameterized by a threshold 8:

_ : s, @ safe ifx =6, and
which it |Earn5 i, = & noxious otherwise.
= “Active learner” may pose queries, usually in the ﬁ," o
form of unlabeled data instances to be labeled ‘
by an “oracle” (e.g., a human annotator) that . . . o “ . ‘
understands the context of the problem.
+ ) ?
= |t is useful, where unlabeled data is abundant or ® - : r i ® ) . c
easy to obtain, but training labels are difficult, ® 4 B— e : g~ -
time-consuming, or expensive to obtain ...
Settles, B. 2012. Active Learning, San Rafael {CA), Morgan & Claypool,
. doi:10.2200/500429ED1V01Y201207AIMO1E.
Holringer Group, HCI-KDD.org L] MAKE Health 00 Holringer Group, HCI-KDD.orR 65 MAKE Health 00 Holringer Group, HCI-KDD.org MAKE Health 00
Scenarios for active learning SHCI-KDD & 8] Uncertainty Sampling SHCI-KDD & From Active learning to Multi-Task Active learning @HCI-KDD 5
_ a7
£ ¢ — : = The typical active learning setting assumes a
a2 fi i ¥ i
@ —&- & ' - single machine learner trying to solve a single
I:ll:?
@ —& ::] ! ® =] - task.
b

d) " ..[;. ._'_J 0 :‘ -

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool,

= |n real-world problems, however, the same data
might be labeled in multiple ways for several
different subtasks.

=)
]
g LU= | of unlabeled inst eyl e 3
g % poot of unlabelec inatances {217,y . = |n such cases, it is more economical to label a
E 2 L = set of initial labeled instances {{x, y)'""'};Z
g b (45 ca single instance for all subtasks simultaneously, or
= 4 0 =train(L) 5 f: _
g 5. seleet x* € U, the most uncertain instance according to model § to choose instance-task query pairs that provide
6 uery the oracle to obtain label v* . . :
3 T ’ as much information as possible to all tasks.
E add (%, ¥*) 1o £
] % remove x° from If
) _ % end for
Settles, B, 2012, Active Learning, San Rafael (CA), Morgan & Claypool, doi:10,2200/5004 22ED1V01Y20120TAIMD1E,
Settles, B. 2012, Active Learning, San Rafael (CA, Muman&ﬂa\'ml doi:10.2200/500429ED1V01Y201207A1MDIE.
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Example for the Human-in-the-Loop @HCIKDD L Example for the Human-in-the-Loop @HCIKDD L i @HCIKDD L
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Automation g o]
Enity 6194 w3 40 =5 g afpose s « in the reaul of ak
Protein 513 s097 5305 g %E 1) Aunasmatic snggretma afio & m”hﬂﬁ
Expert g‘%ﬁ Over the past decade , chronic inflammasion in viscerl adipose tissue ( VAT | has gained accey
Entity 2.1 2290 2563 EE~ DL )
8
Protein T4 0% 6500 s.‘ g % a5 o lead promoter of insuln resistance in - cbesity
EEE E
dek A gruat doal of evisence has poited 10 the 1ok of Adokings and innate iMmune ceds , in part
imam, 5. M., Biemann, C., Majnaric, L, Sabanovi¢, 5. & Holzinger, A. 2016. An adaptive annotation approach E« 8= caniTiE, st et
for biomedical entity and relation recognition. Brain Informatics, 1-12, doi:10.1007/540708-016-0036-4. =8a adiposa lissue Macrophaes . in the reculation 2
Holringer Group, HO-KDD.org 0 MAKE Health 00 Holringer Group, HO-KDD.org 7 MAKE Health 00 Holringer Group, HO-KDD.org k3 MAKE Health 00




Catastrophic Forgetting @HCI-KDD

= When trained on one task, then trained on a 2nd
task, many machine learning models (“deep
learning”!) forget how to perform the first task.

Overcoming catastrophic forgetting in neural
networks

Nasmes Kirbputrich?, Basran Paca®, S ", Joe Vimens', 0
o R Mo M, o i, W vt &;.-nm.nnua.....u
Docasia Hanaabun, Clanslia Clopath, [iurahas Komararr, and Ruis Hadell*

“TieepMind, Landm, NIC 4A], Unied Kingdom
ssrngincering departrcns, Imperial College London, SWT 2AZ, Lordon, United Kingdom

Abstract

W el M e A s e o b i o

cremecanim meodels. Wa shos

otk whach they ke
fon a ko tome. Ot appreuach semermbers obd ks by sclocsmely sbewintg down

“Old” Phenomenon @HC-KDD -

Review L W—

Catastrophic forgetting
. in connectionist
) networks

Robert M. French

All natural cognitive systems, and, i our own,
learned information. Plausible models of human cognition should therefore exhibit
similar patterns of gradual f old as new s

acquired. Only rarely does new learning in natural cognitive systems completely disrupt

or eTasg learned that is, natural cognitive systems do not, in
general, forget - ¥, though, does
occur under certain i { The very
features that give these their abilities to to function

in the presence of degraded input, and so on, are found to be the root cause of

4 Overcoming Catastrophic Forgetting: Deep Learning Bayes @HCI-KDD

1 Low error for task B == Ew(C

= Low error for task A = L2
Parameter Space task A = no penalty

Parameter Space task B

G
log p(8|D) = log p(D|f) + log p(#) — log p(D)
log p(0|D) = log p(Dg|@) + log p(0|D4) — log p(Dg)
. A -
£(6) = £5(0) + 30 S Fi(0: — 03,7

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, )., Desjardins, G., Rusu, A, A, Milan, K., Quan, 1.,
ho, T., Grabsk; winska, A, Hi bis, D., Clopath, C., Kumaran, D. & Hadsell, R. 2016. Overcoming

e S L e S catastrophic forgeting nneurai ntuorks. ¥ preprnt ark: 1612 00796
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This experiment (2016) was done with Atari games ...  @HC-KDD & Example for Multi-Task Learning @HCIKDD L [} Representation Learning discovering explanatory factors @Hci-koo:i:

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A, Veness, |, Bellemare, M. G, Graves, A,
Rledmuller M., Fidjeland, A. K., Ostrovski, G., Petersen, 5., Beattie, C., Sadik, A.,

lou, I, King, H., K 1, D., Wierstra, D., Legg, S &Hassahls D. 2015 Human-
level control through deep reinforcement learning. Nature, 518, (7540), 529-533,
doi:10.1038/nature14236

Task | Task 2 Task 3 Task 4

I I '
b Gy Gy Gy

00000000 00000000 00000000 ooooD0000
13 1]

I 1
INPUTS INPUTS INPUTS INPUTS

V. Mrsh gt o€, “Flaying Atarl with Dees
Reinforcament Leamisg”, Hatore {1015}
Rich Canuana, "Ml task Leamisg”, WALI [1996)

Task A Task B Task C

output ( ) ( ) ( )

shared
subsets of
factors

input C )

on pattern analysis and machine intelligence, 35, (8), 1798-
1828, doi:10.1109/TPAMI.2013.50.

Bengio, Y., Courville, A. & Vincent, P. 2013. Representation
learning: A review and new perspectives. IEEE transactions
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@HCHKDD - Big Problem: Real-world data is on Curved Manifolds !  @Hci-koo:t- SCL Blitzer et al. (2006) of the Weinberger Group @HCHKDD -

= xandy ( hy = £, w)
represent different
modalities, e.g. text,
sound, images, ...

= Generalization to
new categories

= Larochelle et al. ;
= = (@, ) pairs in the training st
(2008) AAAI —— -represcutation (encoder) function

== = | -Tepresentat sder) function f,

e relntionship b 1 embedded pobuts

within o

" i

e mps hotween Teprescntation spoces

Goodfellow, 1., Bengio, Y. & Courville, A. 2016.
Deep Learning, Cambridge: MIT Press, p.542
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Bengio, Y., Monperrus, M. & Larochelle, H. 2006. Nonlocal estimation of manifold
structure. Neural Computation, 18, (10), 2509-2528, dei:10.1162/neco.2006.18.10.2509.
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a) Heuristically choose m pivot
features, which is task specific.

Taput: Inbeled source data { (%, v,
unlabeled data from both domains Ix 1

| b) Transform each vector of the
pivot feature to a vector of binary
values and then create the
corresponding prediction

| problem.

Output:  predictor f : X — Y

W = argmin [ 5, Eiw -2 pelx,))+
Learn the parameters of

each prediction problem

)
I
1
r*
I
|

Do Eigen Decomposition
| on the matrix of

parameters and learn the

linear mapping function.

Use the learnt mapping function to
- construct new features and train
classifiers onto the new
representations.
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e @ HC-KDD -

09 Generalization
&
Transfer Learning

Transfer Learning is studied for more than 100 years @ HEI-KDD &

= Thorndike & Woodworth (1901) explored how
individuals would transfer in one context to another
context that share similar characteristics:

= or how "improvement in one mental function" could
influence a related one

= Their theory implied that transfer of learning depends
on how similar the learning task and transfer tasks are

= or where "identical elements are concerned in the
influencing and influenced function”, now known as the
identical element theory.

= Programming: C++ -> Java; Python -> Julia
= Mathematics -> Computer Science
= Physics -> Economics

Grand Challenge: Transfer Learning @HCI-KDD

i aa

learning o
Knowledge transfer Spont Iprovemat
Lawrng

o a=a

Exparance

= To design algorithms able to learn from
experience and to transfer knowledge
across different tasks and domains to
improve their learning performance
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Transfer Learning for Deep Learning on Graphs @HCHKDD - Overview @HCHKDD - Domain and Task @HCHKDD -
pe B Self-taugh
-+ Sell-taught
* Leaming
g o Feature space A" o Given X and label space Y;
H
g e P(x).wherexr e X. e Tolearn f: 2 — y, or estimate P(ylz),
- wherexre Xandy € V.
Pooling Mulni-task
1 ™ Learning
24 Two domains are different = Two tasks are different =
]
5
! > Duomain IR R () £ Py Jo s P r fo st fir (Pe ) £ P )
g. Lo = 7 2 i Xs # Xp, or Ps(z) # Pr(z). ) Yy, or fs # fr (Ps(ylx) # Pply|x)).
&) b areph Laplacian

_| By ransfer bearning of intrinsic geometrc information ;

Lee, J., Kim, H., Lee, J. & Yoon, 5, 2016. Intrinsic Geometric Information Transfer Learning on

Sample Selection Bias
Covariance Shifi

Pan, 5. ). & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on

. Knowledge and Data Engi ing, 22, (10}, 1345-1359, doi:10.1109/tkde.2009.191.
Multiple Graph-Structured Datasets. arXiv:1611.04687. Pan, S. ). & Yang, Q. A, 2010, A Survey on Transfer Learning. IEEE Transactions on
ledge and Data Engi ing, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.
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Transfer Learning Settings @HCI-KDD & TU @HCI-KDD & Three Main future challenges @HCI-KDD &
Heterogeneous Multi-Task Learni ng (MUTL}

Transfer Learning

i

| Hetorogeneous

Transfer Feature e

. MOEENeCnSs.

Learning space BEEEE =
 lgencal ,_ Difterent

Single-Task Transfer Learning

Inductive Transfer Learning

Damain difference i
caused by samale bias

ka4 | Focus on optimizing a target task |
| Damain difference is caused

Tasks ase learred simaltaneounly |

Sample Selection Bias |

/ Covariate Shift Multi-Task Learning
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Conclusion and
Future Outlook

Holringer Group, HO-KDD.org L] MAKE Health 00

for improving prediction performance, help to reduce
catastrophic forgetting
Transfer learning (TRAL)

is not easy: learning to perform a task by exploiting
knowledge acquired when solving previous tasks:

a solution to this problem would have major impact
to Al research generally and ML specifically.
Multi-Agent-Hybrid Systems (MAHS)

To include collective intelligence and crowdsourcing
and making use of discrete models — avoiding to seek
perfect solutions — better have a good solution < 5 min.
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Open Questions, future outlook, hot topics, challenges  @Hci-xoo &

= 1) Challenges include —omics data analysis, where
KL divergence and related concepts could provide
important measures for discovering biomarkers.

= 2) Hot topics are new entropy measures suitable for
computations in the context of complex/uncertain
data for ML algorithms.

= |nspiring is the abstract geometrical setting
underlying ML main problems, e.g. Kernel functions
can be completely understood in this perspective.
Future work may include entropic concepts and
geometrical settings
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Conclusion @HCHKDD -

= Big data with many training sets (this is good for ML!)

= Small number of data sets, rare events
= Very-high-dimensional problems

= Complex data — NP-hard problems

= Missing, dirty, wrong, noisy, ..., data

= GENERALISATION
= TRANSFER

Holringer Groug, HO-KDD.orR 52 MAKE Health 00

@HCI-HDD o4

Thank you!
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e @ HC-KDD -

Questions

Holzingar Groug, HCI-KDD.org a4 MAAKE Health 00

Questions (1/4) @HCI-KDD &

= What is the HCI-KDD approach?
= What is meat by “integrative ML"?

= Why is a direct integration of Al-solutions into the
workflow important?

= What are features?
= Why is understanding intelligence important?

= What are currently (state-of-the-art) the best
algorithms?

= What is the difference between Humanoid Al and
Human-Level Al?

= Why is the health domain probably the most
complex application domain for machine learning?

Holringer Groug, HO-KD0.0rg 5 MAKE Health 00

Questions (2/4) @HCI-KDD -

= Why are we speaking about “two different worlds”
in the medical domain?

= Where is the problem in building the bridge
between those two worlds?

= Why is the work of Bayes so important for machine
learning?

= Why are Newton/Leibniz, Bayes/Laplace and Gauss
so important for machine learning?

= What is learning and inference?
= What is the inverse probability?
= How does Bayesian optimization in principle work?

Holringer Groug, HO-KD0.0rg 9% MAKE Health 00

Questions (3/4) @HCHKDD -

= What is the definition of aML?

= What is the best practice of aML?

= Why is “big data” necessary for aML?
= Provide examples for rare events!

= Give examples for NP-hard problems relevant for
health informatics!

= Give the definition of iML?

= What is the benefit of a “human-in-the-loop”?

= Explain the differences of iML in contrast to
supervised and semi-supervised learning!

Holringer Groug, HO-KD0.0rg 7 MAKE Health 00

Questions (4/4) @HCI-KDD &

= What is causal relationship from purely
observational data and why is it important?

= What is generalization?

= Why is understanding the context so important?
= What does the oracle in Active learning do?

= Explain catastrophic forgetting!

= Give an example for multi-task learning!

= What is the goal of transfer learning and why is this
important for machine learning?

= Why would a contribution to a solution to transfer
learning be a major breakthrough for artificial
intelligence in general — and machine learning
specifically?

Holringer Groug, HCI-KDO0.0rg L] MAKE Health 00

e @ HC-KDD -

Appendix
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Keywords @HCI-KDD -

= Active Learning

= Bayesian inference, Bayesian Learning
= Gaussian Processes

= Graphical Models

= Multi-Task Learning

= Reinforcement Learning

= Statistical Learning

= Transfer Learning

= Multi-Agent Hybrid Systems

I} Henri Poincare in Sciences et Methods (1908) @HCI-KDD &

= “The most interesting facts are

= those which can be used several
times, those which have a chance
of recurring ...

» which, then, are the facts that
have a chance of recurring?

= |n the first place, simple facts.”

dues Hoori Prancant (1854-1513)

Henri Poincare, Sciences et Methods (1908)

e @ HC-KDD -

Humanoid Al
+
Human-level Al
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Scientists recognizing this ... (totally incomplete list!) @HCI-KDD 5 Ty @ HCI-KDD & Goal @HCI-KDD &

= Bernhard Schélkopf (MPI Tibingen)
https://is.tuebingen.mpg.de/person/bs

= Leslie Valiant (Harvard)
https://people.seas.harvard.edu/~valiant

= Joshua Tenenbaum (MIT)
http://web.mit.edu/cocoscifjosh.html

= Andrew G. Wilson Cornell (Eric P. Xing, CMU)
https://people.orie.cornell.edu/andrew

= Nando de Freitas (Oxford)
https://www.cs.ox.ac.uk/people/nando.defreitas

= Yoshua Bengio (Montreal)
http://www.iro.umontreal.ca/~bengioy/yoshua en

= David Blei (Columbia)

g~
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Multi-Task Feature Selection
on Multiple Networks
via Maximum Flows

Mahito Sugiyama' %, Chloé-Agathe Azencott®, Dominik

= Given multiple graphs

= Find features (=vertices), which are associated
with the target response and tend to be
connected to each other

EE@J%M@ Grimm?*, Yoshinobu Kawahara', Karsten Borgwardt®# = ].\j:\‘:
2 ﬁ?tm?m Glhahramam {Cambrld%g} ! Osaka University, “Max Planck Institutes Tibingen, *Mines ParisTech, o
i/ ITE. ENE.CAM.AC. L%/ ZOUTN Institut Curie, INSERM, *Eberhard Karls Universitat Tabingen
= Noah Goodman (Stanford)
http://cocolab.stanford.edu/ndg.html }
Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task
Feature Selection on Multiple Networks via Maximum Flows. SDM, 2014. 199-207.
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Result: New formulation of MTF-Selection @HCI-KDD 5 Remember: Graphs are everywhere! @HCI-KDD 5 Selecting Connected Explanatory SNPs SConES @HCI-KDD 5
K . N}gtwor? (graphs) are everywhere in health = Single task feature selection on a network
Iinformatics
ar maxz (S —gi(S; —ZhS-,S-, s ' ; ; -
51.,,g.,SKCV : 1( ﬁ.i)« 9:(5)) -~ (50.5;) = Biological pathways (KEGG), chemical compounds, * Given a weighted graph G = (V, E)
ki gl t i :
K tasks R l I: (PubChem), social networks, ... = —Each v € V has a relevance score q(v)
\ flalll; = Question often: Which part of the network is . : . Nx|V|
responsible for performing a particular function? —If you have a design matrixX € R
fi(Si) = Z qi(v), gi(S) =4 Z wi(e) + n|Si|, » -5 Feature selection on networks = and a response vectory € RV, q(v) is the
veH TR e NN = —Features = vertices (nodes) association of y and each feature of X

connectivity

h(SuS)) = ulSiAS;| =l (SUSH\ (SN S|

= efficiently solved by max-flow algorithms
= performance is superior to Lasso-based methods

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task Feature

Selection on Multifle Networks via Maximum Flows. SDM, 2014, 199-207.
1-ED0.5rg 106
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= — Network topology = a priori knowledge of
relationships between features

Multi-task feature selection should be
considered for more effectiveness

Holringer Groug, HO-XDD.oFg 107 MAAKE Health 00

Goal: Find a subset S < V which maximizes

)= qw)

e while S is small and vertices are connected

Azencott, C-A., Grimm, D., Sugly M., hara, Y. & Borgwardt, K. M. 2013, Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, {13),1171-i179.
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Formulation of SConES @HCI-KDD -

« argmax._,, f(S) —g(S)
)= q@), g(S) = AT epw(e) + niS|
VES connectivity sparsity

- B={{v,u}eE|veV\S, ueS}(boundary)
- w: E = R* is a weighting function

Solution of SConES via Maximum Flow @HC-KDD -

« The s/t-network M(G) = (V U {s, t}, E U S U T) with
S={{s,v}Ivev,q@)>n} T ={{t.v} I veV, qv) <n}
and set the capacity ¢ : E' —» R* to

1 f ' d V,
et = ({0 Ghenwie "<

- The minimum s/t cut of M(G) = the solution of SConES

Better performance is always convincing! @ HCI-KDD 4
'.‘::.)
10000
21000 /
] :
-
o
£ 1004 -
= Ay
& @ ~
010, & S lavo
-~ {5 - Grace
—&— SConES
0.01-
T T T T T T T
1 2 5 10 20 50 100
Number of tasks
Azencott, C.-A., Grimm, D, Sugiyama, M., | | Y. & Borgwardt, K. M. 2013,

Efficient network-guided multi-locus association mapping with graph cuts.

Azencott, C-A., Grimm, D., Sugly M., hara, Y. & Borgwardt, K. M. 2013, Efficient network- Azencott, C-A., Grimm, D., Sugly M., hara, Y. & Borgwardt, K. M. 2013, Efficient network- : 5
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13}, i171-i179. guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13}, i171-i179. Bioinformatics, 29, (13), 1171-i179.
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Example: Disease-Disease Relationship @ HCIKDD & TY @ HCIKDD & Domain Adaptation: Structural Correspondence Learning @HCI-KDD %
136 A Holsinger e s, = Motivation: If two domains are related to each other, then

Let two words, w, and w,, have probabilities P(w)) and P(w,).
Then their mutual information PM/ (w, w)) is defined as:
e P(“’J-WI) )
PM.F(\\-',,W,) = log (7”(“'1} Pw)

For w, denoting rheumatoid arthritis and w, representing diffuse scleritis the following
simple calculation yields:

Gout
4834 T4 v
PV) = monew POW) = s 12 :I ' I
Plwiwy) = ﬁ PMI(w,wy) = 7.7. i = I l ll ' ' l fresuancy

G

Holzinger, A, Simanic, K. M, & Yildirim, P. Disease-Disease Relationships for Rheumatic Diseases: Web-Based Biomedical
Textmining an Knowledge Discovery to Assist Medical Decision Making. 36th Annual IEEE Computer Software and
Applications Conference (COMPSAC), 16-20 July 2012 2012 lemir, IEEE, 573-580, doi:10.110%/COMPSAC.2012.77.

Table 4 Comparison of FACTAs rasking of related concepes from the category Symptom
for the query “theumasaid antbeitia™ cresed by the methods co-ocesrrence fregaency, PMI

and SCP
Frogency i EEd
SCP(x,y) = plxly) - plylx) = — ol e B T
plxy) plxy) _ plxy)? A - 78 | (i
. WL i e——— g | Epmechic 18 | Ambealgia o
pl¥)  plx)  plx)-p(¥) P—
— o e T T
=== T | T T er— T
o~ R o |
Hack P ) Nemrmmc s oot a2 | Hack P nmn
Tl b TR | Reviless sy TA | permeipe T
o e T
o m vy A8 | ot wemdermrs e
g TIR | Panedie T3 | pp— [
e T = T —
== I Whvma's st S| Shin Mt [T
e i e e i
e bk puim [ Pabrma erythwma. A3 | Ere Manslotmuoms o
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Helzinger, A., Yildirim, P, Geier, M, & Simanic, K.-M. 2013, Quality-Based Knowledge Discovery from Medical Text on the
Web. In: Pasl, G., Bordegna, G. & Jain, L. C. (eds.) Quality Issues in the of web
Systems Reference Library, ISRL 50. Berlin Heldelberg: Springer, pp. 145-158, doi:10.1007/978-3-642-37688-7_7.

there may exist some “pivot” features across both domain.

= Pivot features are features that behave in the same way for
discriminative learning in both domains.

= Main Idea: To identify correspondences among features from
different domains by modeling their correlations with pivot
features.

= Non-pivot features form different domains that are correlated
with many of the same pivot features are assumed to
correspond, and they are treated similarly in a discriminative
learner.

= Blitzer, J., Mcdonald, R. & Pereira, F. Domain adaptation with
structural correspondence learning. Proceedings of the 2006
conference on empirical methods in natural language
processing, 2006. Association for Computational Linguistics,
120-128.

Blitzer, I, Mcdonald, R. & Pereira, F. Domain adaptation with structural & learning. of
the 2006 conference on empirical methods in natural language ing, 2006. iation for i
Linguistics, 120-128.

Holringer Group, HO-KDD.org u MAKE Health 00 Holringer Groug, HO-KDD.org n3 MAKE Health 00 Holringer Groug, HO-KDD.org n4 MAKE Health 00
Identical Tasks @HCIKDD & TU @HCHKDD &

Single-Task Transfer Learning

______________ e Vo=Jr.

by featiare repeesentations.

o Pslulx) = Priulz).

e But, As # Ay or Ps(x) # Pr(x).

Sample Selection Bias

/ Covariate Shift DT Acspton
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Open Problem:
How to avoid
negative transfer?
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