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ML needs a concerted effort fostering integrated research @HCI-KDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

6 (2 1

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 6 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.holzinger@h(::i-kdd_org 0 I

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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Red thread through this lecture (NN=Neural Networks) @HcI-kpD:£-

= 00 Reflection

* 01 Fundamentals: From NN to Deep Learning
= 02 Representing and dealing with uncertainty
= 03 From Bayesian NN to Gaussian Processes

= 04 Stochastic Gradient Descent

= 05 Deep Autoencoders

= 06 Applications: Biomedical Examples

= 07 Future Challenges and Extravaganza Topics
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Biological Universe vs. Computational Universe @ HCI-KDD o5

NOTION BIOLOGICAL UNIVERSE COMPUTATIONAL UNIVERSE

Chromosome

Generation

Individual

Population

Holzinger, K., Palade, V., Rabadan, R. & Holzinger, A. 2014. Darwin or Lamarck? Future Challenges in Evolutionary Algorithms
for Knowledge Discovery and Data Mining. In: LNCS 8401. Heidelberg, Berlin: Springer, pp. 35-56.
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Tumor Growth Modeling @HCI-KDD 3

BiologicalScale  Tumor model categories

A
A
Tissue Behavior -+ : !
; | Continuum
) Models
Cell-cell Interactions | : :
(communities) : . | Agent-Based
i - [ Models
Cellular Function — — A '
Statistical
Functioning and L 1* Inference
Regulation of Pathways Path : Networks
~ Pathway W . | Stoichiometric
Enrichment Models | : Models Kinetic
. i A Models \ 4
Molecular Interactions -1 * 5
{Gene Expression ‘
) Models
Gene Expression 1 *
Biochemical A 4
. Reaction
Genetics, Genomics _|_ Networks
Statistical Models Network-based Models Tissue-level Models

Edelman, L. B., Eddy, J. A. & Price, N. D. 2010. In silico models of cancer. Wiley Interdisciplinary

Reviews: Systems Biology and Medicine, 2, (4), 438-459, doi:10.1002/wsbm.75.
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G HCI-KDD -

01 Fundamentals: from
Neural Networks to
Deep Learning

Holzinger Group, hci-kdd.org 7 Machine Learning Health 13



Advance Organizer (1) @ HCI-KDD o

" Deep Learning := ML method based on learning
representations of data. An observation (e.g., an
image) can be represented in many ways such as a
vector of intensity values per pixel, or in a more
abstract way as a set of edges, regions of particular
shape, etc.

" Feature:= specific measurable property of a
phenomenon being observed.

" Feature engineering:= using domain knowledge to
create features useful for ML. (“Applied ML is
basically feature engineering. Andrew Ng”).

" Feature learning:= transformation of raw data input
to a representation, which can be effectively
exploited in ML.

Holzinger Group, hci-kdd.org 8 Machine Learning Health 13



Key Challenges @ HCI-KDD -

" High variety of data in the life sciences —
= 3 key to deal with high variety is data
Integration;

" What levels in deep learning architectures are
appropriate for feature fusion with
heterogeneous data [1]7?

[1] Xue-Wen, C. & Xiaotong, L. 2014. Big Data Deep Learning: Challenges and Perspectives.
Access, IEEE, 2, 514-525.
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Le, Q. V. Building high-level features using large scale unsupervised learning. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013. IEEE, 8595-8598.
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] Perform a num. optimization to find optimal stimuli @ HCI-KDD =4

unsupervised learning. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013.

Le, Q. V. Building high-level features using large scale
IEEE, 8595-8598.

k

Holzinger Group, hci-kdd.org

One layer

<

t

Input to another layer above
(image with 8 channels)

Number of output
\ channels = 8

o

)

AN

_)(‘

Number
of maps =8

i 4 \ Number of input

channels =3

< >
Image Size = 200

r* = argmin f(x; W, H), subject to ||z]|2 = 1.

11 Machine Learning Health 13



Historical Issues of Deep Learning

G HCI-KDD =£-

Johann Carl Friedrich Gauss
(German, 1777-1855) o - 4 o~

Accomplishments:
*Disquisifiones Arithmeticae- book on the
number theory

*Wrote a dissertation on the fundamental % ] —_—
theory of algebra / ...

+Director of a observatory in Gottingen P L . :
*Theoria motus corporum coelestium in A -
sectionibus conicis Solem ambientium- book .D

on celestial bodies

*Disquisitiones generales circa superficies
curva- another book written on geography
*Bestimmung der Genauigkeit der
Beobachtungen— explained statistical

Gauss, C. F. (1809). Theoria
motus corporum coelestium in
sectionibus conicis solem
ambientium.

Hebb, D. 0. 1949. The
organization of
behavior: A
neuropsychological
approach, John Wiley

Gauss, C. F. (1821). Theoria
& Sons.

combinationis observationum
erroribus minimis obnoxiae
(Theory of the combination of
observations least subject to
error)

*
= -
\ y, u—*j. " -;!d
- . 8
. i-“- - P . L

estimators / \ ' 9
*Methodus nova integralium valores per N v 5 g . S
approximationem inveniendi - book on r= 1w - i
approximate integration ]

Perceptron: Neuron Model
i ingle layer feed forward)

first proposed by Rosenblatt (1958) is a
is used to classify its input into one of two

a step function that returns +1 if
input = 0 and -1 otherwise

[+ 1 if » =2 O

| = 1 if v 0

Rosenblatt, F. 1958. The
perceptron: a
probabilistic model for
information storage and
organization in the brain.
Psychological review, 65,
(6), 386.

Excellent Review Paper: Schmidhuber, J. 2015. Deep learning in neural networks: An

overview. Neural Networks, 61, 85-117.
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Cerebral cortex interconnections Hubel & Wiesel (1962) @Hci-kpD:£-

106 J. Physiol. (1962), 160, pp. 106-154
With 2 plates and 20 text-figures
Printed in Great Britain

RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL axp T. N. WIESEL

From the Neurophysioloy Laboratory, Department of Pharmacology
Harvard Medical School, Boston, Massachusetts, U.S.A.

Mesial segment

(Received 31 July 1961)

Hubel, D. H. & Wiesel, T. N. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual
cortex. The Journal of physiology, 160, (1), 106-154.
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Principles of human information processing ... @ HCI-KDD o5

1 Gb/sec
datastream

10 Mp camera R ..
(aways o) /7 AU W)

\é ,,, :

radiations wL O

Image credit to Bruno Olshausen, Redwood Center for Theoretical Neuroscience, UC Berkeley

Olshausen BA (2014) Perception as an inference problem.
In: The Cognitive Neurosciences V,M. Gazzaniga, R. Mangun, Eds. MIT Press.
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From Deep Neural Learning to Deep Learning @ HCI-KDD 3%

l Primary visual cortex (V1)

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
:[g::l’:JZT S i S2:f. maps i Ch:1
7 : layer A OUTPUT
6@14x14 120 F864' bayer K LTED

| ‘ Full conrllection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Le Cun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86, (11), 2278-2324.
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[} Deep Learning 1998 G HCI-KDD :5
"Script” "Script”
)
Viterbi Graph g s S Viterbi Graph g s S
___4 )
Beam Search Beam Search
Transformer Transfnnnar
)
Interpretation Graph @ Interpretation Graph Q%
Language
Model o' g {:nrn*pnsa | ﬁl]n é.:age oty —=| Eumpnsa
Recognition Graph @ Recognition Graph @
F-!amgnitinn Character
Transformer Model m‘_’l Eumpnsa
I
AMAP Graph SDNN Qutput %
N B SDNN
|AMAP Computation | Transformer
T ¥
Segmentation Graph crﬁgff%ﬂ AMAP m
Eagmantatinn =
Transformer [AMAP Computation |
Mormalized Word
MNormalized Word
[Word Normalization | [Word Normalization |
Ceript Seript

Le Cun, Y., Bottou, L., Bengio, Y. & Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, (11), 2278-2324.
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15 years later ... a kind of Cambrian explosion @ HCI-KDD -

Percentage of modern ocean
oxygen concentrations

Dickinsonia

* Could grow
to more than
1 metre

» May have been

a filter-feeding * Predator with eyes
animal and circular jaws -y
http://www.nature.com/news/what-sparked-the-cambrian-explosion-1.1937 Qs
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2015 ... @ HCI-KDD 3%
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Le Cun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444.
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Convolutional Neural Network in computer vision @ HCI-KDD o

U(f) = (Cywx)...oCue oCwm)(f)

Samoyed (16); Papillon (5.7); Pomeranian (

A A A LW W A B A LN S R S L S A e e A A I iR R R e R R IR R R S LN B S e G NN A R LN LE A G AN RS

Convolutions and RelU
""'f"""'ﬂ'f----"""‘"

LS L E L L SE U - - - - LA LA S

Convolutions and RelLU

LT - - - - M LT LT L L &

Le Cun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444.
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G HCI-KDD -

Vision Language
Deep CNN Generating RNN

.-x..‘_‘ A group of people
—. S shopping at an outdoor
@ [ market.
'__'_;. : —_— e
o ~® There are many
®

/. vegetables at the
fruit stand.

i :
. P e
T e, e S

A woman is throwing a frisbee in a park.

A stop sign is on a road with a
mountain in the background

A giraffe standing in a forest with
trees in the background.

Le Cun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444.
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Features are key for learning and understanding @ HCI-KDD %

= |nitial features
= Bio data -> DNA, RNA, Biomarker, Sequences, Genes, etc.

" |mages -> pixels, contours, textures, etc.

= Time series data -> trends, reversals, anomalies, ticks, etc.
= Signal data -> spectrograms, samples, etc.

= Text data -> words, grammar classes, relations, etc.

= Combined features
= Combinations that linear system cannot represent, e.g.:

" polynomial combinations, logical conjunctions, dec. trees.
= Total number of features then grows very quickly.
= Solutions

m Kernels
®» Feature selection

Holzinger Group, hci-kdd.org 21 Machine Learning Health 13



Limitations of Deep Learning approaches @ HCI-KDD +%

Computational resource intensive (supercomps,
cloud CPUs, federated learning, ...)

Data intensive (needs often millions of training
samples — “big data” is necessary!)

Black-Box approaches — lack transparency, do
not foster trust and acceptance among end-user,
however, legal aspects make it difficult!

Non-convex: difficult to set up, to train, to
optimize, needs a lot of expertise, error prone

Most of all: bad in dealing with uncertainty ...

Holzinger Group, hci-kdd.org 22 Machine Learning Health 13



Features! @ HCI-KDD o

Image courtesy of Leon Bottou (2010)
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Book Recommendations @ HCI-KDD 3
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G HCI-KDD -

02 Representing and
Dealing with
Uncertainty
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G HCI-KDD -

03 From Bayesian
Networks to
Gaussian Processes
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G HCI-KDD -

04 Stochastic
Gradient Descent
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Minimizing an objective function

f(6) =E[f(8,2)) 0 =

chl M

k
3o,
=1

Nemirovskii, A. & Yudin, D. 1978. Cezare convergence of gradient
method approximation of saddle points for convex-concave
functions. Doklady Akademii Nauk SSSR, 239, 1056-1059.

04

0.5

-1 000

200 0 500 1000 1500 2000
i

Algorithm 8.3: Stochastic gradient descent

1 Initialize 0, 7;

2 repeat

3 Randomly permute data;
4 fori=1:N do

: g = V/(8,2)

6 0 < projg (0 — ng);
7 Update 7;

8 until converged;

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press; Chapter 8.5.2

Holzinger Group, hci-kdd.org 32
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G HCI-KDD -

05
Deep Autoencoders
(unsupervised NN)

Holzinger Group, hci-kdd.org 33 Machine Learning Health 13



General Structure of an Autoencoder G HCI-KDD o5

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep Learning, Cambridge (MA), MIT Press, Chapter 14
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Pretraining a stack of restricted Boltzmann Machines @ HCI-KDD -

l

By
||!....I|I ill M
!
b
f

F 3 |
& W3

L1000 | paw;

D e A [30] Code layer

[_fo00 ] Bl el

Pretraining Unrolling Fine-tuning

Hinton, G. E. & Salakhutdinov, R. R. 2006. Reducing the Dimensionality of Data with Neural Networks.

Science, 313, (5786), 504-507, doi:10.1126/science.1127647.

35 Machine Learning Health 13
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What makes a good representation? Trad. Autoencoders @HCI-KDD:%-

* Encoder: Det. mapping fg that transforms an
Input vector x into a representation y

fo(x) = s(Wx+Db)

" Decoder: Resulting hidden representation y is
then mapped back to a reconstructed d-
dimensional vector z in input space, z=g 0’ (y).
This mapping g0 " is called the decoder

Vincent, P, Larochelle, H., Lajoie, 1.,

Bengio, Y. & Manzagol, P.-A. 2010.

Stacked denoising autoencoders: S W, b/
Learning useful representations in a ge/ y - S y _|_

deep network with a local denoising

criterion. The Journal of Machine
Learning Research, 11, 3371-3408.
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G HCI-KDD -

06 Deep Learning
Applications in
Biomedicine
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ML-Pipeline for Cell Phenotyping @ HCI-KDD 3%

Data preprocessing = Object detection = Feature extraction == Training =3  Classification

Feature values

M Interphase
O Metaphase

Noise reduction, Thresholding T Predict
background correction

Size

Learn

Intensity
Texture

Annotate examples

Sommer, C. & Gerlich, D. W. 2013. Machine learning in cell biology—teaching computers to
recognize phenotypes. Journal of Cell Science, 126, (24), 5529-5539.
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Supervised ML and classification of morphologies @ HCI-KDD -

Ainit

) b Inter Pro Prometa Meta Early ana Late ana Telo
Held, M., Schmitz, M. H., ]
Fischer, B., Walter, T., _ﬂ‘ \
Neumann, B., Olma, M. H.,

Peter, M., Ellenberg, J. &
Gerlich, D. W. 2010.
CellCognition: time-
resolved phenotype
annotation in high-
throughput live cell
imaging. Nature methods,
7,(9), 747-754.

4
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Classification @ HCI-KDD -

http://www.nature.com/nmeth/journal/v7/n9/extref/nmeth.1486-S3.mov

d Computer e
i Mitotic event
8 cf
E © =5 =
PpagELo0
EfE2882 8
B EEEEEN ?
Inter [ | =
Pro[ ] 3
S Prometa [ =
£ Meta [] =
< Earlyana [l D
Late ana [l =
Telo ]
Apopt [l
0% [ 100% R
Matching

Held, M., Schmitz, M. H., Fischer, B., Walter, T., Neumann, B., Olma, M. H., Peter, M., Ellenberg, J. & Gerlich, D. W. 2010.
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature methods, 7, (9), 747-754.
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Image Classification via supervised ML @ HCI-KDD o5

A Raw image Training by brush stroke Prediction of pixel classes

B Segmented image Training by object labeling Prediction of object classes

M Interphase M Metaphase
B Background

W Interphase M Metaphase

Sommer, C. & Gerlich, D. C Rasterized images Training by whole-image labeling Prediction of image class
W. 2013. Machine
learning in cell biology—
teaching computers to

L/ b T [dal
III--" J-=I=

recognize phenotypes. EEE W

. FEEL EEEET
Journal of Cell Science, E-n i
126, (24), 5529-5539. PeidEEy SNy

1 Experimental condition 1
B Experimental condition 2
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Object Representation in the feature space @ HCI-KDD %

A B C Support vector machine
User-labeled objects in feature space Linear support vector machine with Gaussian kernel
O O O
g ¥ o © g =
0 O 0O
o| © o %o o| © 00 ol © 0 %o
- 0O O 5 0 0O 5 o) O
gl 8 3 I It 4 I 8
00 | A 00 [ X Q0 o0
< ‘ y % 5 ‘ y % . ‘ y %
p \ L 1] p \ e 9 \ o9
Feature 1 Feature 1 Feature 1
D E F
Objects in original feature space Principal component analysis Gausian mixture modelling
@
) o™ o™
@ E’ " ‘%‘
o« ¢ 2 ol . 8
P ° o % & ‘ande o g
=1 @ @ o
2 ® e? ° - ® po .ﬁ b
@ ® g 2 ] S 1 B T B a
L 'S e ® 5]
® o0 0' o 0° = £
o o %0 £ . . i
‘ ‘ L T
Feature 1 Principal component 1 Principal component 1

Sommer, C. & Gerlich, D. W. 2013. Machine learning in cell biology—teaching computers to recognize phenotypes. Journal of Cell Science, 126, (24), 5529-5539.
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Example for ML-pipeline in image-based screening

Sommer, C. & Gerlich, D.

W. 2013. Machine
learning in cell biology—
teaching computers to
recognize phenotypes.
Journal of Cell Science,
126, (24), 5529-5539.

Holzinger Group, hci-kdd.org

Automated microscopy

Y

Image pre-processing, segmentation (optional), feature extraction

'

Phenotype examples
available?

Supervised learning Unsupervised learning

l

Object annotation for
classifier training?

G HCI-KDD =£-

Straightforward

Difficult

Manual object labeling
for classifier training

Object labeling with
active learning

Accurate predictions
on test data?

Consistent clustering?

Extend training set and/or
optimize feature set

Optimize feature set
or reduce feature dimensions

Apply leaming method to large-scale data-set
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Examples of Open Source ML software for cell biologists @Heti1-kpp:%-

= Cell Profiler and Cell Profiler Analyst(Carpenter et al., 2006; Jones et al., 2008;
Kamentsky et al., 2011) (http://www.cellprofiler.org).

® |ncl. modular workflow design, which enables rapid development of analysis assays. It
provides a multi-class active learning interface based on boosting. CellProfiler runs on all
major operating systems and supports computing on clusters for largescale screening.

= Cell Cognition (Held et al., 2010) (http://www.cellcognition.org/)

= has been optimized for time-resolved imaging applications. It comprises a complete machine-
learning pipeline from cell segmentation and feature extraction to supervised and
unsupervised learning. Cell Cognition runs on all major operating systems and supports
computing on clusters for large-scale screening.

= |lastik (Sommer et al., 2011) (http://www.ilastik.org)

= js an interactive segmentation tool based on pixel classification, which facilitates more
complex image-segmentation tasks and provides real-time feedback.

= Bioconductor image HTS and EBImage (Gentleman et al., 2004; Pau et al.,
2010; Pau et al., 2013) (http://www.bioconductor.org)

= provides a versatile toolbox for statistical data analysis and image processing in the
programming language R.
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Example: Deep Learning in Drug Discovery @ HCI-KDD %>

Physicochemical Residue Correlated Pharmacophore
properties  frequency properties features

v ¥ ¥ v

SVM SVM MLP MLP

First-stage
models

Second stage

model
) aw® = g % TRRN=T
Prediction » ow') —pd™h) n£1
W OC E(og)a'().n =N
f}q ::—{n}

{ f Sln41) (1), , (n+1)
a(zq )erir w " n#EN

Gawehn, E., Hiss, J. A. & Schneider, G. 2016. Deep Learning in Drug Discovery. Molecular Informatics, 35, 3-14.
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Example: Deep Learning in Drug Discovery @ HCI-KDD %>

Forward mapping

for j #0: for k=0
5= win AP = uwdh = e
: i -
M =a(4)  hP=a(s?) o=a (o)
() 1) 3 p(2) (3)

ac ¢ (1) (2). (2) ac¢ v (2) (3, (3,0 8C (3)Y (2)
=a |z &y gy i = |z & wp hy’ —— =C'(0))d |2 hy.
St ( - )Zk: kk ﬁwﬁ" ( § )2 R 51::1{:} ( : ) .

6z, — PR — 5On®

Error back-propagation

Gawehn, E., Hiss, J. A. & Schneider, G. 2016. Deep Learning in Drug Discovery. Molecular Informatics, 35, 3-14.
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Example: Deep Learning in Drug Discovery @ HCI-KDD %>

Gawehn, E., Hiss, J. A. & Schneider, G. 2016. Deep Learning in Drug Discovery. Molecular Informatics, 35, 3-14.
Holzinger Group, hci-kdd.org 47 Machine Learning Health 13



Restricted Boltzmann Machine @ HCI-KDD %
A
. update
. @ weights
~(t+3k+2)
xbeiief
equilibrate
(t+2k-+2)
sample
i 4 Q update
visible . weights
layer : @
~(t4+2k+1)
Xbelief O
equilibrate
(t+k+1)
sample
A
. Q update
. weights
Gawehn, E., Hiss, J. A. & Schneider, G. 2016. Deep . @
Learning in Drug Discovery. Molecular Informatics, ”éi}tt} O
35, 3-14. : -
- equilibrate
N —
sample Q

Holzinger Group, hci-kdd.org
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2015 - the year of reinforcement learning © @ HCI-KDD %

Deep Q-networks (Q-Learning is a model-free RL
approach) have successfully played Atari 2600 games at
expert human levels

K+0O
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nature

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D.
2015. Human-level control through deep reinforcement learning. Nature, 518, (7540), 529-533, d0i:10.1038/nature14236
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To learn e.g. structural anomalies from such data ... @ HCI-KDD -

alle, B., Bloice, M., Wiltgen, M., Ferri, M., Stanganelli, |. & Hofmann-Wellenhof, R. 2014. On
n of Point Cloud Data Sets: Step One in the Knowledge Discovery Process. In: Lecture Notes in
Computer Science, LNCS 8401. Berlin Heidelberg: Springer, pp. 57-80, doi:10.1007/978-3-662-43968-5 4.
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Dermatologist-level classification of skin cancer with DL @HcI-kpD -

Epidermal lesions Melanocytic lesions Melanocytic lesions (dermoscopy)

Malignant

Esteva, A., Kuprel, B., Novoa, R. A,, Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, do0i:10.1038/nature21056.
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Skin cancer classification performance: Human vs. CNN  @HcI-kpD s

a Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images
1 L P 1 '
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1 1 1 '
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== Algorithm: AUC = 0.96
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== Algorithm: AUC = 0.96

== Algorithm: AUC = 0.94
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Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.
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Deep Convolutional Neural Network Pipeline

G HCI-KDD =£-
Esteva, A., Kuprel, B., Novoa, R. A, Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.

Skin lesion image

Deep convolutional neural network (Inception v3)
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Krizhevsky, A., Sutskever, |. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In:

Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q., eds. Advances in neural information processing systems
(NIPS 2012), 2012 Lake Tahoe. 1097-1105.
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Tree-structured taxonomy of skin cancer @ HCI-KDD o
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Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.
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Probabilities over the taxonomy @ HCI-KDD -

>

neoplastic

genodermatosis

P =01 skin disease
P=0.6

P =0.05 [, @ benign
P =0.05 gl
P =0.05

malignant dermal

merkel cell
carcinoma

@ Training Classes

. Inference Classes

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.
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Saliency maps for nine examples @ HCI-KDD :£-

a. Malignant Melanocytic Lesion d. Benign Melanocytic Lesion g. Inflammatory Condition

B

h. Genodermatosis

c. Malignant Dermal Lesion f. Benign Dermal Lesion i. Cutaneous Lymphoma

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.
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Sirinukunwattana, K., Raza, S. E. A,, Tsang, Y. W,, Snead, D. R. J., Cree, I. A. & Rajpoot, N. M. 2016. Locality Sensitive Deep
Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Transactions on
Medical Imaging, 35, (5), 1196-1206, doi:10.1109/TMI.2016.2525803.
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Madabhushi, A. & Lee, G. 2016. Image analysis and machine learning in digital pathology: Challenges and
opportunities. Medical Image Analysis, 33, 170-175, doi:10.1016/j.media.2016.06.037.
Holzinger Group, hci-kdd.org 57 Machine Learning Health 13




Image Guided Slicing Process - Towards Digital Pathology @Hci-kpD:-

Image-based Landmark-based
registration registration
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Nonrigid registration

Ward, A. D., Crukley, C., Mckenzie, C. A., Montreuil, J., Gibson, E., Romagnoli, C., Gomez, J. A., Moussa, M., Chin, J.,
Bauman, G. & Fenster, A. 2012. Prostate: Registration of Digital Histopathologic Images to in Vivo MR Images
Acquired by Using Endorectal Receive Coil. Radiology, 263, (3), 856-864, doi:10.1148/radiol.12102294.
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Mapping spatial heterogeneity tumor: Digital Pathology @Hec1-kpD:£-

(!

3

Heindl, A., Nawaz, S. & Yuan, Y. 2015. Mapping
spatial heterogeneity in the tumor
microenvironment: a new era for digital
pathology. Lab Invest, 95, (4), 377-384,
doi:10.1038/labinvest.2014.155.
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07 Future Challenges
and
Extravaganza *) Topics

*) Holzinger, A. 2014. Extravaganza Tutorial on Hot Ideas for Interactive Knowledge Discovery and Data Mining
in Biomedical Informatics. In: Slezak, D., Tan, A.-H., Peters, J. F. & Schwabe, L. (eds.) Brain Informatics and Health,
BIH 2014, Lecture Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 502-515,
doi:10.1007/978-3-319-09891-3_46.
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[}l Knowledge Extraction via Deep Learning @ HCI-KDD %
Document Embedding 22 A = 7
Vectorisation
[ Pooled representation 4 _‘L =

K-max pooling

Feature map

Stackable Layers

Wide convolution

Sentence Embedding - Document Matrix

Vectorisation

é Pooled representation 7 VA '
g K-max pooling //// \
Ej Feature map // V @ L7 \’\9/
c% | Wide convolution _ // 77 //; - \\
Word Embedding - Sentence Matrix © G // — / ’ -
QTR B B P - Q‘@%&‘b@ @%\:@\g@& :

Denil, M., Demiraj, A. & De Freitas, N. 2014. Extraction of salient
sentences from labelled documents. arXiv preprint arXiv:1412.6815.
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Deep Transfer Learning @ HCI-KDD :%-

<Output: Labels Exist

Output: No Labels

logistic classifier A
word embedding I

sentence model .

document model SN

< Document Sentiment

LLLL LT WLl ez |

senrence 1 sentence 2 sentence word

Document

Kotzias, D., Denil, M., Blunsom, P. & De Freitas, N. 2014. Deep multi-instance transfer learning.
arXiv preprint arXiv:1411.3128.
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Deep Multi-Instance Learning @ HCI-KDD -

Softmax

A Pocument model

Tiled sentence
models

Sentence 1 Sentence 2 Sentence 3

Kotzias, D., Denil, M., Blunsom, P. & De Freitas, N. 2014. Deep multi-instance transfer learning.
arXiv preprint arXiv:1411.3128.
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Learning from Deep vs. Flat Feature Representations @ HCI-KDD =£-
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Schuffler, P. J., Sarungbam, J., Muhammad, H.,
Reznik, E., Tickoo, S. & Fuchs, T. 2016.
Mitochondria-based Renal Cell Carcinoma
Subtyping: Learning from Deep vs. Flat Feature
Representations. In: Finale, D.-V., Jim, F., David,
K., Byron, W. & Jenna, W. (eds.) Proceedings of
the 1st Machine Learning for Healthcare
Conference. Proceedings of Machine Learning

Research: PMLR. 191--208.
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The grand question of cognitive science @ HCI-KDD +%

15b

" “How do humans generalize from very few
examples?”

" They transfer knowledge from previous learning:
" Representation learning (features!)
" Explanatory factors

" Previous learning from unlabeled data and
labels for other tasks

" Prior: shared underlying explanatory factors,
in particular between P(x) and P(Y|X),
with a causal link betweenY — X

Bengio, Y., Courville, A. & Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35, (8), 1798-1828, doi:10.1109/TPAMI.2013.50.
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Catastrophic Forgetting — cutting edge research @ HCI-KDD o5

= When trained on one task, then trained on a 2nd
task, many machine learning models (“deep
learning”!) forget how to perform the first task.

Overcoming catastrophic forgetting in neural
networks

James Kirkpatrick®, Razvan Pascanu®, Neil Rabinowitz", Joel Veness®, Guillaume Desjardins®,
ndrei A. Rusu®, Kieran Milan®, John Quan®, Tiago Ramalhe®, Agnieszka Grabska-Barwinska @,
Demis Hassabis*, Claudia Clopath®, Dharshan Kumaran®, and Raia Hadsell®

DeepMind. London. N1C 4AG, United Kingdom
‘Bioengineering department, Imperial College London, SW7 2AZ. London, United Kingdom

Abstract

The ability to leam tasks in a sequential fashion is crucial to the development of
artificial intelligence. Neural networks are not. in general, capable of this and it
has been widely thought that catastrophic forgetting is an inevitable feature of
connectionist models. We show that it is possible to overcome this limitation and
train networks that can maintain expertise on tasks which they have not expenienced
for a long ime. Our approach remembers old tasks by selectively slowing down
learning on the weights important for those tasks. We demonstrate our approach is
scalable and effective by solving a set of classification tasks based on the MNIST

. . i iz ; ing i 2 : i
Holzinger Group, hci-kdd.org hand written digit dataset and by leaming several Atari 2600 games sequentially. 13
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Overcoming catastrophic forgetting published in PNAS

G HCI-KDD =£-

Overcoming catastrophic forgetting in

neural networks

James Kirkpatrick®', Razvan Pascanu®, Neil Rabinowitz?®, Joel Veness®, Guillaume Desjardins®, Andrei A. Rusu?,
Kieran Milan?, John Quan?, Tiago Ramalho?, Agnieszka Grabska-Barwinska®, Demis Hassabis?, Claudia Clopath®,

Dharshan Kumaran®, and Raia Hadsell®

2DeepMind, London EC4 5TW, United Kingdom; and PBioengineering Department, Imperial College London, London SW7 2AZ, United Kingdom

Edited by James L. McClelland, Stanford University, Stanford, CA, and approved February 13, 2017 (received for review July 19, 2016)

The ability to learn tasks in a sequential fashion is crucial to the
development of artificial intelligence. Until now neural networks
have not been capable of this and it has been widely thought that
catastrophic forgetting is an inevitable feature of connectionist
models. We show that it is possible to overcome this limitation
and train networks that can maintain expertise on tasks that they
have not experienced for a long time. Our approach remembers
old tasks by selectively slowing down learning on the weights
important for those tasks. We demonstrate our approach is scal-
able and effective by solving a set of classification tasks based on
a hand-written digit dataset and by learning several Atari 2600
games sequentially.

synaptic consclidation | artificial intelligence | stability plasticity |
continual learning | deep learning

Overcoming catastrophic forgetting in neural networks
J Kirkpatrick, R Pascanu._. - Proceedings of the .., 2017 - National Acad Sciences

In marked contrast to artificial neural networks, humans
and other animals appear to be able to learn in a continual
fashion (11). Recent evidence suggests that the mammalian
brain may avoid catastrophic forgetting by protecting previously
acquired knowledge in neocortical circuits (11-14). When a
mouse acquires a new skill, a proportion of excitatory synapses
are strengthened; this manifests as an increase in the volume
of individual dendritic spines of neurons (13). Critically, these
enlarged dendritic spines persist despite the subsequent learning
of other tasks, accounting for retention of performance several
months later (13). When these spines are selectively “erased,”
the corresponding skill is forgotten (11, 12). This provides causal
evidence that neural mechanisms supporting the protection of
these strengthened synapses are critical to retention of task per-
formance. These experimental findings—together with neurobi-
~l~gical models such as the cascade model (15, 16)—suggest that

l-..‘...-.l | [P S tan tln mmmncnatnrr malian ham tanls Al R A e

PNAS | March 28, 2017 | vol. 114 | no. 13 | 3521-3526

Abstract The ability to learn tasks in a sequential fashion is crucial to the development of
artificial intelligence. Until now neural networks have not been capable of this and it has

been widely thought that catastrophic forgetting is an inevitable feature of connectionist
Zitiert von: 22 Ahnliche Artikel Alle 4 Versionen In EndMote importieren Speichern  Mehr

22 citations as of 20.06.2017
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Elastic Weight Consolidation (EWC) @ HCI-KDD 5%

Kirkpatrick et al. (2017) demonstrate that task-specific
synaptic consolidation offers a unique solution to the
continual-learning problem for artificial intelligence.

Developed an algorithm analogous to synaptic
consolidation for artificial neural networks,

Elastic Weight Consolidation (EWC).

This algorithm slows down learning on certain weights
based on how important they are to previously seen
tasks.

They show how EWC can be used in supervised learning
and reinforcement learning problems to train several tasks
sequentially without forgetting older ones, in marked
contrast to previous deep-learning techniques.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D. & Hadsell, R. 2017.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 114, (13), 3521-3526, doi:10.1073/pnas.1611835114.

Holzinger Group, hci-kdd.org 68 Machine Learning Health 13



Overcoming Catastrophic Forgetting: Deep Learning Bayes @HCI-KDD

1 Low error for task B = EWC

== Low error for task A = L2
Parameter Space task A = 1 ey

Parameter Space task B

log p(0|D) = log p(D|0) + log p(#) — log p(D)
log p(0|D) = log p(Pp|0#) + log p(0|Da) — log p(Dp)

£(0) = £5(0) + 3 S0~ 03,

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D. & Hadsell, R. 2016. Overcoming

catastrophic forgetting in neural networks. arXiv preprint arXiv:1612.00796.
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Results on MNIST Data Sets @ HCI-KDD o%-
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Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T,,
Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D. & Hadsell, R. 2017. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114, (13), 3521-3526,
doi:10.1073/pnas.1611835114.
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Machine Learning inspires Human Learning and v.v. @ HCI-KDD =%

Trends in Cognitive Sciences

Volume 21, Issue 6, June 2017, Pages 407—408

Spotlight

Avoiding Catastrophic Forgetting

Michael E. Hasselmo'- . &
! Center for Systems Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA

Available online 23 April 2017
- Show less

https://doi.org/10.1016/j.tics.2017.04.001 Get rights and content

Humans regularly perform new learning without losing memory for previous information,
but neural network models suffer from the phenomenon of catastrophic forgetting in
which new learning impairs prior function. A recent article presents an algorithm that
spares learning at synapses important for previously learned function, reducing
catastrophic forgetting.

Hasselmo, M. E. 2017. Avoiding Catastrophic Forgetting. Trends in Cognitive Sciences, 21, (6), 407-408.
Holzinger Group, hci-kdd.org 71 Machine Learning Health 13



This experiment was done with Games ... @ HCI-KDD o

DON

Image convolutions

Hidden layers
Game controller action values ’

Output
_

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. 2015. Human-
level control through deep reinforcement learning. Nature, 518, (7540), 529-533,
doi:10.1038/naturel4236
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Transfer Learning for Deep Learning on Graphs @ HCI-KDD o

)
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................................................ i By transfer learning of intrinsic geometric information

Lee, J., Kim, H., Lee, J. & Yoon, S. 2016. Intrinsic Geometric Information Transfer Learning on
Multiple Graph-Structured Datasets. arXiv:1611.04687.
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Extravaganza: Going beyond Euclidean Data
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Holzin

1.08097v1 [cs.CV] 24 Nov 2016

Geometric deep learning:
going beyond Euclidean data

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst

Many signal processing problems involve data whose un-
derlying structure is non-Euclidean, but may be modeled as
a manifold or (combinatorial) graph. For instance, in social
networks, the characteristics of users can be modeled as
signals on the vertices of the social graph [1]]. Sensor net-
works are graph models of distributed interconnected sensors,
whose readings are modelled as time-dependent signals on
the vertices. In genetics, gene expression data are modeled
as signals defined on the regulatory network [2]. In neuro-
science, graph models are used to represent anatomical and
functional structures of the brain. In computer graphics and
vision, 3D objects are modeled as Riemannian manifolds
(surfaces) endowed with properties such as color texture. Even
more complex examples include networks of operators, e.g.,
functional correspondences [3] or difference operators in a
collection of 3D shapes, or orientations of overlapping cameras
in multi-view vision (“structure from motion™) problems [[3].

The complexity of geometric data and the availability of
very large datasets (in the case of social networks, on the scale
of billions) suggest the use of machine learning techniques.
In particular, deep learning has recently proven to be a
powerful tool for problems with large datasets with underlying
Euclidean structure.

The purpose of this paper is to overview the problems
arising in relation to geometric deep learning and present

Constructions that leverage the statistical properties of the
data, in particular stationarity and compositionality through
local statistics, which are present in natural images, video, and
speech [1R], [19], are one of the key reasons for the success
of deep neural networks in these domains. These statistical
properties have been related to physics [20] and formalized
in specific classes of convolutional neural networks (CNNs)
[211, [22], [23]. For example, one can think of images as
functions on the Euclidean space (plane), sampled on a grid. In
this setting, stationarity is owed to shift-invariance, locality is
due to the local connectivity, and compositionality stems from
the multi-resolution structure of the grid. These properties
are exploited by convolutional architectures [24], which are
built of alternating convolutional and downsampling (pooling)
layers. The use of convolutions has a two-fold effect. First,
it allows extracting local features that are shared across the
image domain and greatly reduces the number of parameters
in the network with respect to generic deep architectures
(and thus also the risk of overfitting), without sacrificing
the expressive capacity of the network. Second, as we will
show in the following, the convolutional architecture itself
imposes some priors about the data, which appear very suitable
especially for natural images [23]]. [22].

While deep learning models have been particularly success-
ful when dealing with signals such as speech, images, or video,

alth 13



Extravaganza: Going beyond Euclidean Data ... @ HCI-KDD o5

Bronstein, M. M., Bruna, J., Lecun, Y., Szlam, A. & Vandergheynst, P. 2016. Geometric
deep learning: going beyond Euclidean data. arXiv preprint arXiv:1611.08097.
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Bronstein, M. M., Bruna, J., Lecun, Y., Szlam, A. & Vandergheynst, P. 2016. Geometric deep
learning: going beyond Euclidean data. arXiv preprint arXiv:1611.08097.
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Book recommendations @ HCI-KDD

ArtiFicial Intelligence

For Humans

Volume 3. Deep Learning
and Neural Networks

Deep Learning for
Medical Image Analysis

Jeff Heaton

Goodfellow, I., Bengio, V. &
Courville, A. 2016. Deep
Learning, Cambridge (MA),
MIT Press.

https://mitpress.mit.edu/books/deep-learning
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More books on Deep learning and related topics
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| Studies in Computational Intelligence 723

| Ken Choi Editor

et ce— e ——————— e

Smart Sensors and
Deep Learning

Solutions for Future
Intelligent Systems

New Requirements from Softwareto
Silicon

@ Springer

Holzinger Group, hci-kdd.org

The Sringer Sries on Challenges in Machine Leaming

Demian Battagli yon
Vincent Lemaire - Javier Orlandi
Bisakha Ray - Jordi Soriano Editors

Neural
Connectomics
Challenge
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Tensorflow Playground @ HCI-KDD o

o Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000 ’ 000 0.03 - Tanh * None v 0 * Classification '

DATA FEATURES + — 4 HIDDEN LAYERS QUTPUT

Which dataset do Which properties do Test loss 0.517

you want to use? you want to feed in? 3 3 = o 3= Training loss 0.508
6 neurons 5 neurons 4 neurons 3 neurons

A o
<O D
Ratio of training to N X =
test data: 50% > S - . .
_. ‘I 3 D D D = _D I
Noise: 0 . < i
. D D 'D o ;
7 3 4
Batch size: 10 il \ The outputs are =
—e o mixed with varying |
L'f'e-'g."HS , S0OWN Dy 0
the thickness of
sin(X1 the lir
REGENERATE e D the lines
]
/ Colors shows
\ I -
. N S data, neuronand | |
sin(Xz) This is the output ] 0 1
from one neuron weight values
Hover to see it
Lt [ showtestdata [] Discretize output

http://playground.tensorflow.org
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Remember: Many problems in health informatics are hard @Hci1-kpp:£-

= P:algorithm can solve the problem in polynomial time (worst-
case running-time for problem size n is less than F(n))

= NP: problem can be solved and any solution can be verified
within polynomial time (P € NP)

= NP-complete: problem belongs to class NP and any other
problem in NP can be reduced to this problem

= NP-hard: problem is at least as hard as any other problem in
NP-complete but solution cannot necessarily be verified within
polynomial time

P#NP P=NP

NP-complete
P=NP
NP-complete
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Artificial Intelligence > Machine Learning > Deep Learning @HCI-KDD:%-

Deep learning Example:

Shallow
s Example: Example:

Logistic
regression

Example: antoencoders
MLPs

Representation learning

Machine learning

Goodfellow, |., Bengio, Y. & Courville, A. 2016. Deep Learning, Cambridge (MA), MIT Press, Chapter 1, p.9
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G HCI-KDD -

Open Problem:
How to avoid
negative transfer?
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