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B8 ML needs a concerted effort fostering integrated research @HCI-KDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
© a_nolzinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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B Machine Learning Jungle Top-Level View @ HCI-KDD %

Cognition | [ Visualization ] Data fusion

Perception ’f.‘ Preprocessing

———_ccom —

/ Decision { Interaction J Integration \

CONCEPTS | THEORIES | PARADIGMS || MODELS || METHODS | TOOLS |

"

L™ i

[ Dimensiunality] {Cumplexity] [ UnsupEWiSEdJ [Gaussian P. ] [ Regularization ] [ Python

r

[ ReinfnrcementJ [ Bayesian p(x) ] [Supewised ] [Graphica| M.] [ Scaling J [ Church ;

[Representation J [ Entropw’KL} [ Semi-Superv. ] [ Neural Nets] [Aggregation ] [ Anglican |

{N&free-lunch”Vapnik-Chernnv.J [ iML ] [KerneI/SVMH Evolution J | Julia |

{ Multi-Task Learning] [Transfer Learning] [ Multi-Agent—Hvbrid-SystemsJ

{ Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) J

[ Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust J

Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0_1.
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B Red thread through the lecture today @ HCI-KDD 2%

= 01 Decision Making under uncertainty
= 02 Graphs — Networks

= 03 Example Medical Knowledge Representation
= 04 Graphical Models and Decision Making
= 05 Bayes Networks

= 06 Graphical Model Learning

= 07 Probabilistic Programming

= 08 Markov Chain Monte Carlo (MCMC()

= 09 Metropolis Hastings Algorithm
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01 Reflection
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m Pre-Knowledge Quiz: Which concepts can you identify? @HCO-KDD:E-

p(x) = 11; p(xi|Xpa)
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Graphical models are graphs where the nodes represent random
variables and the links represent statistical dependencies between
variables; This provides us with a tool for reasoning under uncertainty
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Bl Dgecision trees are coming from Clinical Practice @ HCI-KDD o

Death from cancer
o Probability 2%
W Decision node Utility 5%

@ Chance node

“q Qutcome Fertile survival
Probability 98%
No further Utility 100%
surgery

Surgical death

Microinvasive Probability 0-5%

cancer of the Utility 0%
cervix
Infertile survival
: Probability 98% Physician treating a patient
Radical Utility 95% approx. 480 B.C.

hysterectomy Beazley (1963), Attic Red-figured

Vase-Painters, 813, 96.
Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Infertile survival
Probability 5%
Utility 95%

Sunvives (p=99-5%)

Spread (p=2%)
Death from cancer
Probability 5%

Utility 5%

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281), 571-574.
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T G HCI-KDD 2%

01 Decision Making
under uncertainty

Laplace, P-S. 1781. Mémoire sur les
probabilités. Mémoires de I'’Académie
Royale des sciences de Paris, 1778, 227-332.
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B Medical action is ...

permarf}‘demsmn making
underuncertainty!
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B Human Decision Making: probabilistic reasoning @ HCI-KDD %

UNCERTAINTY
Cues
——
» DIAGNOSIS CHOICE
Working A
—-_’ . “"_’ . H1 1 .
Selectolve >Percept|on >+ H, Memory 4 Action » Outcome >
SIS Attention > A N Sepsznn > A,
_______
— > |4
\
Cz-; A i1*Possible |
H Long-Term | outcomes !
> H Memory \AJA '?4 | ® Likelihood and:
H A ! consequencesi
H (H) Hypothesis /(/..\)4 SHotiouisoim: &=
(A) Action
Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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m Predicting Pragmatic Reasoning in Language Games @ HCI-KDD %

Frank, M. C. & Goodman, N. D. 2012. Predicting pragmatic reasoning in language
games. Science, 336, (6084), 998-998, doi:10.1126/science.1218633.
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@ HCI-KDD o

A

Speaker: Imagine you are talking to
someone and you want to refer to the
middle object. Which word would you use,
“blue” or “circle”?

L

Listener/Salience: Imagine someone is

talking to you and uses [the word “blue’/a

word you don't know] to refer to one of

these objects. Which object are they

talking about?

|
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Frank, M. C. & Goodman, N. D. 2012. Predicting pragmatic reasoning in language
games. Science, 336, (6084), 998-998, doi:10.1126/science.1218633.
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Recursive reasoning: a case for probabilistic programming GHa-

var literallistener = function(property)({
Infer(function(){
var object = refPrior(context)
condition(object[property])
return object

_|lvar speaker = function(object) {
Infer (function(){
var property = propPrior()
condition (
object ==

var listener = function(property) {
Infer(function(){
var object = refPrior(context)
condition(utterance ==
sample(speaker(object)))
return object

P}

Goodman, N. D. & Frank, M. C. 2016. Pragmatic language interpretation as probabilistic inference. Trends in
Cognitive Sciences, 20, (11), 818-829.
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B Recommended Books

@ HCI-KDD o

Machlne Learnlng
& Probabilistic Pe Cive

avin P, Murphy

Murphy, K. P. 2012. Machine
learning: a probabilistic
perspective, MIT press.

Holzinger Group hci-kdd.org

BAYESIAN
REASONING

and =1 T thms

MACHINE
LEARNING

David Barber

Barber, D. 2012.
Bayesian reasoning and
machine learning,
Cambridge University
Press.

http://web4.cs.ucl.ac.uk/s
taff/D.Barber/textbook/18
1115.pdf

15

Koller, D. & Friedman, N.
2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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B Pattern Recognition and Machine Learning Chapter 8 @ HCI-KDD %

— SECOND EDITION -

MODELS, REASONING.
AND INFERENCE

JUDEA PEARL

http://bayes.cs.ucla.edu/BOOK-2K/

https://goo.gl/6a7rOC

Chapter 8 Graphical Models is as sample

chapter fully downloadable for free
Pearl, J. 2009. Causality: Models,

Bishop, C. M. 2006. Pattern Recognition and Reasoning, and Inference (2nd
Machine Learning, Heidelberg, Springer. Edition), Cambridge, Cambridge
University Press.
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B What are Probabilistic Graphical Models? G@HCI-KDD o2

PGM can be seen as a combination between

" Graph Theory + Probability Theory +

Machine Learning

One of the most exciting advancements ir
decades — with enormous future p9te i

Compact representation for exponenti | .
probability distributions ? _._r: AN

Example Question: L a A
“Is there a path connecting two p rote

- H

- I’_q..--
N AT

| iﬂ’ghdast

A
e

Path (X,Y) := edge (X,Y)
Path (X,Y):= edge (X,Y), path(Z Y)
This can NOT be expressed in first-order Ioglc & ; § WA
Need a Turing-complete fully-fledged language
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B Key Challenges @HCI-KDD

= Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

= Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

= Causality and Probabilistic Inference
= Uncertainties are present at all levels in health related systems
= Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.

=  Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions in context and within reasonable time!

= |n theincreasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

= Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X., Janzing, D. & Schoélkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov
Kernels. ISAIM, 2006.
[2] Dagum, P. & Luby, M. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard.
Artificial intelligence, 60, (1), 141-153.
[3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-
the-loop? Springer Brain Informatics (BRIN), 3, 1-13, doi:10.1007/s40708-016-0042-6.
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v G HCI-KDD o

02 Graphs=Networks
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B Leonhard Euler 1736 ...

MONS RLEGIVS: PRVESLA
SIVE BORYVSSIA VRAS
MARTTIMA ELEGAN TI5Y

Image from https //people kth se/”carIofl/teachmg/FEL3250 2013/courseinfo.html
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B8 252 years later: Belief propagation algorithm

@ HCI-KDD o

Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.

Holzinger Group hci-kdd.org 21
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B 275 years later ... the “Nobel-prize in Computer Science” @HEI-DD -

neh TYPE HERE

A.M. YR RIRRIR S 5

TURING £'FEmTaae

AWARD E !'J‘% ‘t@

ALPHABETICAL LISTING YEAR OF THE AWARD RESEARCH SUBJECT

JUDEA PEARL

United States — 2011
For fundamental contributions to artificial intelligence through the
development of a calculus for probabilistic and causal reasoning.

= o = u) D

BT ARMETATED Vs Bl ACK TUHING Adianl HESEAHCH Sl L
LIk s LIATERLALS

B aOSR A P AUTHOR PROENE LECTUAE WibE
D Photo-Essay :
Judeq Pearl created the representational and computational foundation lor the processing of mormation wnder
uncariainty.
September 4. 1906, Tel Aviy, He ia crediied with the invanlion ol Sayesian nefworks, 8 mathematical lormalism for delining complex probability

modeds, as well as e F‘:rll‘ltq.'ﬁl'll .H|I'JI'II'I=|'|I11“':. weaiEd for nierence in ihage modela. Tz wark nol I.'II"I!',' revo|uiEnmred
the Bedd of artdicial inteligence bul slso became an iImponiant ool for many other branchas ol engenesnng and
I ralral sclences. He lalker cradlad & malhamabcal ramework 1o ¢ il irlerence Bhinl has had significant
impact in the social sclences

IS, Electiical Engriveeriig [Tecluimoi,
whak M5, Electrondes (Mewark Calbege
of Englneering tobik; M5, Phsics

(Rutgers University, 1965} Fh.D, Judea Paarl was born on September 4, 1836, in Tel Aviv, which was al thal time administered under ihe British
Hectrical Engineering (Polytechnic andate for Palestine. He grew up in Bnel Brak, a Biblical fown his grandisther went to reestablish in 1824 in
Institute of Brooklyn, 19465). 1056, aftar serving in the israel army and joining & Kibbutz, Judea decided 1o study engineering. He attanded he

Technion, whene ha met hig wile, Ruth, and received & B.5. degree in Electrical Enginearing in 1060, Recalling
e Technion facully members in a 2012 inlerdes In the Tachnion Magazine, he emphasgized he il of

htt5“77"5L'r"ﬁfﬂﬁ”ﬁlgm5'5m org/\ip/pearl_2658896.cfm
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Bl Nobel Prize in Chemistry 2013

Scientific Background on the Nobel Prize in Chemistry 2013

DEVELOPMENT OF MULTISCALE MODELS FOR

Photo: A. Mahmoud Photo: A. Mahmoud Photo: A. Mahmoud
. IPITEY 7 .
COMPLEX CHEMICAL SYSTEMS Martin Karplus Michael Levitt Arieh Warshel
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

http://news.harvard.edu/gazette/story/2013/10/nobel_prize_awarded_2013/
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B8 First Question: Where does graphs come from? G HCI-KDD o2

" Graphs as = Graphs as
models for networks nonparametric basis

= gjven as direct input = we learn the structure
(point cloud data sets) from samples and infer

" Given as properties of a = flat vector data, e.g.
structure similarity graphs

" Givenasa = encoding structural
representation of properties (e.g.
information (e.g. smoothness,
Facebook data, viral independence, ...)

marketing, etc., ...)

We skip this interesting chapter for now ...
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B Our World in Data (1/2) — Macroscopic Structures

- . SEE z : A - 3 - L.
R v z

- £
. -

_NGC 5139 Omega, Centauri by Edmund Halley in 1677, E

50, Atacama, Chile -
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ﬂ Two thematic mainstreams in dealing with data ... @ HCI-KDD -4

Dali, S. (1931) The persistence of memory Bagula & Bourke (2012) Klein-Bottle

Holzinger Group hci-kdd.org 26 MAKE Health Module 02



B Complexity Problem: Time versus Space @ HCI-KDD %

exponential cubic qguadratic

O(n™ O(nz) o(n) linear

O(Vn)

A

Time

g n) logarithmic

O(1)

constant

 /

Data Input (Space)

P versus NP and the Computational Complexity Zoo, please have a look at
https://www.youtube.com/watch?v=YX40hbAHx3s
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m Our World in Data — Microscopic Structures G HCI-KDD L

1 A 1 44.542 51.034 101.284 0.01 27.20

2 A 1 45.640 50.230 100.38% 0.01 Z6.98

3 L 1 46.692 459.643 101.3058 0.01 Z6.80

4 A 1 46.395 S0.22ZZ 10Z2.381 0.01 Z6.91

5 jiN 4 47,283 45.516 100.951 1.00 Z6.:26

] A 2 45.277 47Y.860 101.761 1.00 Z6.17

7 jiN d 49,212 47.031 100.845 1.00 Z4.:21

&] A 2 49.060 47.195 93,830 1.00 19.77Y

=] ji} 2 47.435 47.021 10Z.300 1.00 Z6.31

10 o3 3ER A 2 46.270 46,350 102.404 1.00 27.98

ATON 11 N HI3 & 3 s0.147 46.186 101.370 1.00 Z3.83
ATOHM 12 <4 HI3 & 3 S51.122 45,389 100.60%  1.00 21.44
ATON 13 C HI3 & 3 s0.953 43.2905 100.845  1.00 Z0.3:2
ATOHM 14 @ HIZ &4 3 S0.530 43,595 101.5950 1.00 22.00
ATON 15 CBE HIZ & 3 S5Z.555 45.674 100.2590 1.00 19.68
ATOHM le <3 HIZ A 3 S52.940 47.090 100.611  1.00 21.44
ATON 17 ND1 HIS & 3 53.371 47.470 99,422 1.00 Z0.87
ATON 13 CDZ HIS & 3 S52.9586 45.17%5 101.433 1.00 Z21.65
A 3 53.8%76 458.730 93.47Y6 1.00 Z0.57

Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech
Technical University (CTU), 69-74
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B Getting Insight: Knowledge Discovery from Data @ HCI-KDD o

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular

Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New
York, Springer, 199-212.
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m First yeast protein-protein interaction network @ HCI-KDD o

Nodes = proteins

Links = physical interactions
(bindings)

Red Nodes = lethal

Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, S.
P., Barabasi, A. L. &

K !
| S e h\" ;‘{mi’jﬁ"@‘,“‘\gﬁ Olt\r/]a I|’- Z. N. (g 2001)
’ ] < "i( | Q}%&tﬂ}{*ﬂb& SN : Letha ity an |
< ./..a-v. ;;*"‘l\\, \‘ AN centrality in protein
7 . 1 ] AN TN networks. Nature,
ey 4 PR 411, 6833, 41-42.
B ' TERY
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B8 First human protein-protein interaction network @ HCI-KDD 2%

Light blue = known proteins
Orange = disease proteins

Stelzl, U. et al.
(2005) A Human
Protein-Protein
Interaction
Network: A
Resource for
Annotating the
Proteome. Cell,
122, 6, 957-968.
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B Non-Natural Network Example: Blogosphere @ HCI-KDD o

Hurst, M. (2007), Data
Mining: Text Mining,
Visualization and Social
Media. Online available:
http://datamining.typep
ad.com/data_mining/20
07/01/the_blogosphere.
html, last access: 2011-
09-24
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B8 Social Behavior Contagion Network @ HCI-KDD 2%

o
sl

Aral, S. (2011)
Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.

Information object I N Marketing Science, 30,
2,217-223.
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B Human Disease Network -> Network Medicine @ HCI-KDD 2%

Barabasi, A. L.,
Gulbahce, N. &
Loscalzo, J. 2011.
Network medicine: a
network-based
approach to human
disease. Nature Reviews
Genetics, 12, 56-68.
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B The Genetic Landscape of a cell @HCI-KDD o

Endosome &

vacuo]e sorting Cell polarity &
‘ morphogenesis

Amino acid . = \ , . ) .4 7.... IRNA
biosynthesis . " s : 3", . modification
& uptake ° g

o :’ % ',1 - - == Cell wall biosynthesis
& - & integrity

Protein folding &
glycosylation

ER-dependent
protein degradation

ER/Golgi

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L.,
Toufighi, K. & Mostafavi, S. 2010. The genetic landscape of a cell. science, 327, (5964), 425-431.
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B Example for a weakly structured data set - PPI

G HCI-KDD %

o o
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[+] e} 0 o o o
B
o o o
oo 58 &oa?ooao o % ‘.
0995 PR » P& oos o 59
[+ o o (2] 08 &b, o
o Q o o o 8 noo o
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o :
a o ‘ﬁozﬂaoab 5 @_mq
3 % oo °
o ¥ %d’ | eoas_*o o0
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o
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o
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s ° Kim, P. M., Korbel, J. O.

& Gerstein, M. B. 2007.
Positive selection at the
protein network
periphery: Evaluation in
terms of structural
constraints and cellular
context. Proceedings of
the National Academy of
Sciences, 104, (51),
20274-20279.
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v G HCI-KDD o

,, &:- . . M
04 Graphical Models
and fDeC|5|on Making
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B Classes of Graphical Models @HCI-KDD 5%

Y1

Ty L1

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press.
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B8 Naive Bayes classifier as DGM (single/nested plates) @ HCI-KDD +%

?
Y
%
g Y ™
X_UQ
NJ
O
9;‘; C
\. D,s

Tt ... multinomial parameter vector, Stationary distribution of Markov chain
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B Regulatory>Metabolic>Signaling>Protein>Co-expression @HEI-KDD -

Transcription factor ' Enzymes Receptors Protein
(TF)
=
—_—

Aw— =09 e O

Gene C Metabolites Jr

‘@

§ &S e

Directed, Signed, Undirected,
weighted weighted Directed Undirected Undirected

Image credit to Anna Goldenberg, Toronto
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Bl Decision Making: Learn good policy for selecting actions @He1-DD -

Goal: Learn an optimal policy for selecting best actions
within a given context

Fort=1,...,T

1) The world produces a
“context” x; € X

2) The learner selects an action
a, €{1,..., K}

]

3) The world reacts with

areward r;(a;) € 1[0,1]
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m GM are amongst the most important ML developments GHCI-kDD -

= Key ldea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

(Vi, 5, k) P(X = z;|Y = y;, Z = z;) = P(X = x;|Z = z)
can be abbr. with P(X|Y,Z) = P(X|Z)

" Graphical models express sets of conditional
independence assumptions via graph structure

" The graph structure plus associated parameters define
joint probability distribution over the set of variables

Holzinger Group hci-kdd.org 42 MAKE Health Module 02



B Remember @HCI-KDD

" Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks

with probabilistic graphical models

" |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop
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Bl Three types of Probabilistic Graphical Models @ HCI-KDD %

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

1 O
P(X)=Eexp(z  XiX; +be) @ '@
j '

Directed: Bayes Nets, useful for designing
models (Details: Murphy 10)

»
x) = | | p(xx|pay)
k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

I I €T3

fa Jo Je fd
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Bl Factor Graphs — learning at scale G@HCI-KDD 2%

" What is the advantage of factor graphs?

Dependency | Efficient Usage
Inference

Bayesian Networks Yes Somewhat Ancestral
Generative
Process

Markov Networks Yes No Local Couplings
and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon

Holzinger Group hci-kdd.org 45 MAKE Health Module 02



B8 From structure to function prediction @HCI-KDD 5%

Topology

Taa ondary Structure Ty
Ql’redictiun RV _ NN NRAERS

e e At~ 3D Structure
PR - - — 3 i
Primary sequence i
AQSVFTGIEQ IKAFALNSOGYT TGSHYEYAY - - . - ] 4
INECIDESNFDLINVASCASFVPERTHIYOD . a ettt L :
GEEHGTHYAGT IAALMNET GVLGVEPEASL - o — - w
TAVEVLDSTGIGIT EW ] ING L EWAT S ! P 1L w
-
a
F 3

VIMMELCGFTCESTALETVWOKAVESCIVVA

AARGNEGSSGSTSTVGY PAKY PETIAVGAY
HEEHGRASFEEAGSELDVHAPFYVSIQSTLE
GETYGATRGTCMATFHVAGARALI LEKHFT
WTHADVRORLESTATYLOHSFYYCRCLINY
QAARD

~. Contacts and
Solvent Accessibility

I' II Prediction

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.
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B Protein Network Inference @HCI-KDD o

" Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

" |n this context, the problem of inferring a global
protein network for a given organism,

= - using all (genomic) data of the organism,

" is one of the main challenges in computational
biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.
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Borgwardt, K. M., Ong, C. S., Schénauer, S., e o
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. ¢ =,_ P R =
2005. Protein function prediction via graph (L& A
kernels. Bioinformatics, 21, (suppl 1), i47-i56.

protein secondary sequence structure
structure

" Important for health informatics: Discovering
relationships between biological components

» Unsolved problem in computer science:
= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |tis also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete
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B Example: Protein Network Inference @ HCI-KDD 2%

viol. 20 Suppi. 1 2004, pages 363370
DOl 10,7093 hiinformaticsbiha 10

Protein network inference from multiple

Y. Yamanishi'-*, J.-P. Vert? and M. Kanehisa'

L3
meﬁ genomic data: a supervised approach
1
2

" Bipinformatics Center, Instifute for Chemnical Research, Kyoto University, Gokasho,
Ui, Kyoto 611-0011, Japan and “Computational Biology group, Ecole des Mines de
RFanis, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Ko (Localization)

K phy (Phylogenetic profile)

Kexp + Kppi + J?'r';:']m: + Kphy
(Integration)
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B Example: Data fusion and Protein Annotation

@ HCI-KDD o

Vol 20na. 16 2004, peges HM6-2635
ool 10 1083 binimfarmatica/hih2 04

A statistical framework for genomic data fusion

Gert R. G. Lanckriet?, Tijl De Bie®, Neflo Cristianini®,
Michael I. Jordan® and William Stafford Noble™*

' Department of Blectrical Engineening and Computer Science, <Division of Computer

Scisnce, Department of Statistics, University of Calformia, Berkeley 94720, USA,

3Department of Blectrical Enginesring, ESAT-SCD, Katholieke Universiteit Leuven 3001,

Belgium, 4 Department of Statistics, University of California, Davis 95618, USA and
FDepartment of Genome Sciences, Linivers
1.0F

BL‘I.E :

Tos |

Kemel

Diata

Stmilarity measure

Kaw
Kn
Kl‘fﬂ.ﬂl
Kppr
Ku
Kp
Kg
Kpnp

profein sequences
profein sequences
prolein sequences
hvdropathy profile
profein interactions
profein interactions
DEne cXpression
random numbers

Smith-Waterman
BLAST

Pfam HMM

FFT

linear kernel
diffusion kernel
radial basis kemel
linear kernel
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ity of Washington, Seatfie 98195, USA

| — ]
B SW Pfam FFT LI E all
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(B} Membrane proteins

Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. |. & Noble, W. S. 2004. A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635.
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v G HCI-KDD o

05 Bayesian
Networks
“Bayes’ Nets”
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B Bayesian Network (BN) - Definition G@HCI-KDD 5

" is a probabilistic model, consisting of two parts:
" 1) a dependency structure and
= 2) local probability models.

pCes, ) = | | p0xi | Pa(x)
=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.
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B Example: Directed Bayesian Network with 7 nodes @ HCI-KDD o2

p(X1, ..., X7) =

p(X1)p(X2)p(X3)p(Xa| X1, X2, X3)-
p(X5| X1, X3)p(Xe|X4)p(X7| X4, X5)
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B Clinical Case Example GHCI-KDD -

Overmoyer, B. A,,
Lee, J. M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.
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= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information ! |

= Therefore valid prognostic
models can be of great benefit |
for clinical decision making and
of great value to the patient,
e.g., for notification and quallty
of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.
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B Predicting the future on past data and present status @ HCI-KDD %

current patient state next patient state
( Risk factors b i Risk factors A
Pathogenesis Pathogenesis
Disorders pmj"]' Disorders
Pathophysiology Pathophysiology
S Findings Y S Findings )

physician Tests
model Treatments
physician

—_—

past future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.
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m Example: Breast cancer - Probability Table @ HCI-KDD -4

Category Node description State description
Diagnosis Breast cancer Present. absent.
Clinical his- Habit of drinking alcoholic beverages and  Yes. no.
tory smoking
Taking female hormones Yes, no.
Have gone through menopause Yes, no.
Have ever been pregnant Yes, no.
Family member has breast cancer Yes. no.
Physical find- Nipple discharge Yes, no.
ings
Skin thickening Yes, no.
Breast pain Yes. no.
Have a lump(s) Yes. no.
Mammo- Architectural distortion Present. absent.
graphic
findings
Mass Score from one to three. score from four to five,
absent
Microcalcification cluster Score from one to three. score from four to five,
absent
Asymmetry Present. absent.

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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Bl Breast cancer — big picture — state of 1999 @ HCI-KDD o
Alcoholic & Skin Nipple Breast
Smoking Thickening Discharge Pain

A
Hormones Have a

/ Lump

Menopause Breast Cancer
Pregnant Mass

A 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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B8 10 years later: Integration of microarray data @ HCI-KDD %

" |ntegrating microarray data from multiple studies to increase
sample size;

= =approach to the development of more robust prognostic tests

i 13141 15141 i
!'.In..iiﬁ.ﬁ.lll]ﬁ FRERERARERIRAEEE] 115 ] 33 3 1313331333333 13331333 13333135333 EEd FEEES 'Iﬁli].]-}l;ﬁﬂ% FEE|
i* Eiu!“zlll lhﬂh: !.]:Ii £a ik 11! Bik 11 LY BLksl 1his TEI H' Bkh Ak LG |.|. T

i 2 | ] L]

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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B Example: BN with four binary variables GHCI-KDD %

Gene 1
P(on) 0.8
P(off) 0.2

Gene 2 Gene 1 Gene 1 Gene 1 Gene 1

on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4

Prognosis Gene2on Gene2on Gene2o0ff Gene 2 off
Gene3on Gene3o0off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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B Concept Markov-Blanket GHCI-KDD %

Gevaert, O., Smet, F. D,,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian
networks.
Bioinformatics, 22, 14,
184-190.
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Bl Dependency Structure -> first step (1/2) @ HCI-KDD %

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

l

1

[

p(SID) « p(S) ]1[ f

/ Ty /
F(N'i) 1_[ [(N'ijk + Nijx)
[(N';j + Nyj) 1 1 I'(N'iji)

Nijk ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.
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Bl Dependency Structure - first step (2/2) @ HCI-KDD %

" Next, N;; is calculated by summing over all states of a variable:

= N = 7,}:1 Nijk - N'ijx and N';; have similar meanings but refer to prior
knowledge for the parameters.

= When no knowledge is available they are estimated using N;j, = N/(7iq;)

=  with N the equivalent sample size,

= 7; the number of states of variable i and

" g; the number of instantiations of the parents of variable i.
= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(S) is calculated by:

= p(8) =T 12, p(l — x) [T =y (M)
= with p; the number of parents of variable x; and o; all the variables that are

not a parent of x;.

= Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge froma to b
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B Parameter learning -> second step @ HCI-KDD 2%

* Estimating the parameters of the local probability models corresponding

with the dependency structure.
* CPTs are used to model these local probability models.
* For each variable and instantiation of its parents there exists a CPT that

consists of a set of parameters.
e Each set of parameters was given a uniform Dirichlet prior:

p(6l1|5) = Dir(@ij|N'ij1, ""N’ijk' ---»N,ijrl-)

Note: With 6;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 6;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N'ij1, ..., N';jr,) as parameters of this Dirichlet distribution. Parameter learning then consists of

updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(0U|D’S) = Dir(gile’ijl + Nijli "'JN,ijk + Nijki "'IN’ijTi + Nijrl-)
with N;j, defined as before.
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B Predicting the prognosis of breast cancer (integrated a.) @HE1-KDD

b ®

Gevaert, O., Smet, F. D,,
Timmerman, D., Moreau, Y. &
Moor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks. Bioinformatics, 22,

14, 184-190.
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B8 Inference in Bayes Nets is intractable (NP-complete!) G@HCI-KDD o

= For certain cases it is tractable if:
" Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

" Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem
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B My name is Andreas Holzinger ... @ HCI-KDD %

Often it is better to
have a good solution
within time — than an

perfect solution
(much) later ...
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B Finally a practical example @ HCI-KDD %

06 Graphical
Model Learning
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B8 Learning Graphical Models from data @ HCI-KDD %

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges
in the biomedical domain:

Uncertainty and complexity

" The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. |. 1998. Learning in graphical models, Springer
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B Learning the Structure of GM from data @ HCI-KDD 2%

1) Test if a distribution is decomposable with regard to a given graph.

= This is the most direct approach. It is not bound to a graphical
representation,

= |t can be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.

2) Find a suitable graph by measuring the strength of dependences.

= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.

3) Find an independence map by conditional independence tests.

= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.

= |t has the advantage that a single conditional independence test, if it fails,

can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.

Borgelt, C., Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for
learning, reasoning and data mining, John Wiley & Sons.
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B A Question GHCI-KDD -

Who of you is Who of you is
NON-Smoker ? Smoker ?

Air trappet
————  inalveoli

Relaxed

smooth
/ muscles

J—
| Tightened
— \ smooth

\ muscles
9

Wall inflamed
and thickened

Asthmatic airway

Asthmatic airway p .
uring attac

Normal airway

Beasley, R. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351, (9111), 1225-1232,

doi:http://dx.doi.org/10.1016/S0140-6736(97)07302-9.
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B Example for Graphical Model Learning @ HCI-KDD %

S ————  BaY€sian Network
I £ K

Florian Asthma Smokes
Tamas
Matthias
Benjamin
Dimitrios
Rows are independent
during learning and
Florian

inference!

Florian 0 0.3 0.2
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B8 Relational Representation Learning and Prediction @ HCI-KDD %

= Asthma can be hereditary
" Friends may have similar smoking habits

" Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

Smokes 2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)
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B Knowledge Representation > Reasoning > Learning

@ HCI-KDD o

>

= Probabilistic £ & Program
- — U .
© Programming = Induction
- o E O -
[ Statistical - Statistical :
O Relational Models s = Relational @
T © : 5
Probabilistic ® o & iR E
Databases = g = =
™ U
o :
Graphical — “E GEPE":IEI
Models Bayesian E Leacr}n;
Networks &
Knowledge Reasoning Machine
i I
Representation Learnin

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+
Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called
ProbLog, see: De Raedt, L., Dries, A., Thon, |., Van Den Broeck, G. & Verbeke, M. 2015. Inducing probabilistic relational rules
from probabilistic examples. International Joint Conference on Artificial Intelligence (1JCAI).
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v G HCI-KDD o

07 Probabilistic
Programming
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B Probabilistic-programming.org @ HCI-KDD o

= C — Probabilistic-C
= Scala — Figaro

= Scheme — Church
= EFxcel = Tabular

= Prolog — Problog
" Javascript — webPP

L e PYMC3

= Python — PyMC
PyMCF’yrh onic Markov chain Monte Carlo

MRV MRS O
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B8 Probabilistic programs vs. graphical models

G HCI-KDD -

Probabilistic

Graphical
Model

Program

Variables

Variable nodes

Functions/operators
Fixed size loops/arrays

Factor nodes/edges

Plates

If statements

Gates (Minka & Winn)

Variable sized loops,
Complex indexing,
jagged arrays, mutation,
recursion, objects/
properties...
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B Medical Example

@ HCI-KDD o3

Sequence . Outcome |

Y

o= M

= Compute maximum a postenon esfimates ol
the probabilities:

Posterior Déstribution o
Ihe Mucleolides

|| —
\

P\D16)-P\6
Fop)-1210). P

P(D)

6

» Specily the value o maximize using numarical simulation,
as well as the expected lorm of the posterior distribution:

from pyme impon Calegorical

I_x = Categoricali'cal’, prob_dist, value=axp_data. obsanvad=Trua)

* Simple example: Nucleotide “A" may follow nucleotide “T" in the
sequences more frequently for outcome X than for outcome Y,

P(AIT,X)> P(AIT,Y) 2

+ Specify the prior distribution:

Impor numpy as np

from pyme impar Dérichiet 1
alpha = np.array([30.0,25.0,20.0 25.0[)
prob_dist = Dirichlet'peob_dist’, alpha)

P(D186)-

Prigr Distribubon |
the Mucleotides

!III ;

P(6

P(@1D)=

P(D)

Experimantal Data

» Specily the experimental data:
exp data = nparray([1,1,3,2,2,1,0, ...])

P(D16)-P(6)

/
16

Chmarsstmn § Fas motide
[ [

3 |
H L]

[
[]

- P(6)

s P@ID)=

P(@ID)= P@

Image Source: Dan Williams, Life Technologies, Austin TX
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B Finally a practical example @ HCI-KDD %

08 Markov Chain
Monte Carlo
(MCMC)
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Monte Carlo Method (MC)
Monte Carlo Sampling
Markov Chains (MC)
MCMC

Metropolis-Hastings

T T T T T
o B0 1000 1500 2000
ITERATION
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B In real-world systems you have observable data D @ HCI-KDD %

= often we want to calculate characteristics of a
high-dimensional probability distribution ...  p(D|)

p(hld) o< p(D|60) * p(h)

Posterior integration problem: (almost) all statistical
inference can be deduced from the posterior
distribution by calculating the appropriate sums,
which involves an integration:

J - / 7(6) * p(6|D)d6
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B Origin GHCI-KDD -

= Statistical physics: computing the partition
function — this is evaluating the posterior
probability of a hypothesis and this requires
summing over all hypotheses ... remember:

H = {HlaHZ:f"'aHn} v(h; d)

P(d|h) « P(h)
>_nen PUR)P(R)

P(h|d) =
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B Simulation of samples ... GHCI-KDD -

r— N e S N ﬂ
[} __f_. %
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B named after

‘,;.o SR !

'ﬁ@é‘.’sﬂ% EE‘-"E W-

Holzinger Group hci-kdd.org MAKE Health Module 02




B Summary: What are Monte Carlo methods? @ HCI-KDD 2%

= Class of algorithms that rely on repeated
random sampling

" Basic idea: using randomness to solve problems
with high uncertainty (Laplace, 1781)

" For solving multidimensional integrals which
would otherwise intractable

" For simulation of systems with many dof

= e.g. fluids, gases, particle collectives, cellular
structures - see our last tutorial on Tumor
growth simulation!
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m MC connects Computer Science with Cognitive Science  @HeI-KDD -

= for solving problems of probabilistic inference
involved in developing computational models

" 3s a source of hypotheses about how the human
mind might solve problems of inference

= For a function f(x) and distribution P(x), the
expectation of f with respect to P is generally
the average of f, when x is drawn from the
probability distribution P(x)

(o) (f(2) = ) f(a)P(x)dz
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B Mathematical simulation via MC GHCI-KDD %

" Solving intractable integrals

" Bayesian statistics: normalizing
constants, expectations, .t
marginalization 2

= Stochastic Optimization — -

" Generalization of simulated annealing

" Monte Carlo expectation maximization
(EM)
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B Physical simulation via MC

" Physical simulation
= estimating neutron diffusion time

= Computing expected utilities and best responses
toward Nash equilibria P

operators (e.g. Schrodinger) m

mg }
= Computing volumes in high- dlmer}smns,f"sg
= Computing eigen-functions and valu@a of
| 4 ;
= Statistical physics .-lg;_if-- @
= Counting many things as fast as p055|ble -
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B8 5,223 citations as of 26.03.2017

JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Nurmber 247 SEFTEMBER 1940 Volume £4

THE MONTE CARLO METHOD

Nicmoras MerrRorPoLIe axp B, Uram
Loz Alamos Loboratory

We shall present here the motivation and a general descrip-
tion of & method dealing with & class of problems in mathe-
matical physics. The method is, essentially, & statistical
approach to the study of differential equations, or more
generally, of integro-differential equations that oeccur in
various branches of the natural sciences.

LREADY in the nineteenth century a sharp distinetion began to ap- )
pear between two different mathematical methods of treating Image Source: ) )
physical phenomena. Problems involving only a few particles were http://www.manhattanprojectvoices.org/or
studied in classical mechanics, through the study of systems of ordinary al-histories/nicholas-metropolis-interview
differential equations. For the description of systems with very many
particles, an entirely different technique was used, namely, the method
of statistical mechanies. In this latter approach, one does not concen-
trate on the individual particles but studies the properties of sets of
particles. In pure mathematics an intensive study of the properties of
sets of points was the subject of & new field. This is the so-called theory
of sets, the basic theory of integration, and the twentieth century de-
velopment of the theory of probabilities prepared the formal apparatus
for the use of such models in theoretical physies, i.e., description of
properties of aggregates of points rather than of individual points and
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B 34,140 citations (as of 26.03.2017)

@ HCI-KDD -

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 21, MUMBER & JUNE, 19253

Equation of State Calculations by Fast Computing Machines

Wichoras MerroroLis, Arrawsa W, Rosewerure, Massuarr N, RosExerors, awe Avcosta H. TELiER,
Los Algwros Sciendific Loboralory, Log Alawmes, New Mexico

AND

Epwanp TerlEw,* Depariment of Plysics, University of Chicage, Chicage, Iinois
{Received March f, 1953)

A peneral method, suitable for fast computing machines, for investigating such properties as equations of
state for substances conaisting of interacting individual molecules is described. The method conaisis of a
madified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
svetem have been obtained on the Los Alamos MANTAC and are presented here. These reaulis are compired
to the free volume equation of state and to a four-term vidal coeficient expangion.

I INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of caleculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the shove assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Mow at the Radiation Laboratory of the University of Cali-
fornia, Livermore, Californis.

II. THE GENERAL METHOD FOR AN AREITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number A may be as high as
several hundred, Our system consists of a squaref con-
taining ¥ particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
img N particles in the same configuration. Thus we
define d g, the minimum distance between particles 4
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprize the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances 4B which
can make a substantial contribution; hence we need
consider only the minimum distance d s 5.

t We will use the two-dimensional nomenclature here since it
is cazier to visuuliz:, The extension to three dimensions is ohvious.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 1953. Equation of State Calculations
by Fast Computing Machines. The Journal of Chemical Physics, 21, (6), 1087-1092, doi:10.1063/1.1699114.
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Biometrika (1970}, 57, 1, p. 97 a7
Printed in Great Britain

Monte Carlo sampling methods using Markov
chains and their applications

By W. K. HASTINGS
University of Toronto

SUMMARY
A generalization of the sampling method introduced by Metropolis ef al. (1953) is pre-
semted along with an exposition of the relevant theory, technigues of application and
methods and difficulties of agsessing the error in Monte Carlo estimates. Examples of the
methods, including the generation of random orthogonal matrices and potential applica-
tions of the methods to numerical problems arising in statistics, are discussed.

1. INTRODUOTION

For numerical problems in a large number of dimensions, Monte Carlo methods are often
more efficient than conventional numerical methods. However, implementation of the
Monte Carlo methods requires sampling from high dimensional probability distributions
and this may be very difficult and expensive in analysis and computer time. General methods
for sampling from, or estimating expectations with respect to, such distributions are as
follows.

(i) If possible, factorize the distribution into the product of one-dimensional conditional
distributions from which samples may be obtained.

{ii} Use importance sampling, which may also be used for variance reduction. That iz, in
order to evaluate the integral
7 = [frpterdz = B0,

where p(z) i8 a probability density tunction, instead of obtaining independent samples
Ty oonn By from plx) and using the estimate J, = Ef{z.)/ N, we instead obtain the sample from
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B Remember GHCI-KDD -

= Expectation of a function f(x,y) with respect to
a random variable x is denoted by E,. [f(x,y)]

" |n situations where there is no ambiguity as to
which variable is being averaged over, this will be
simplified by omitting the suffix, for instance [Ex.

" |f the distribution of x is conditioned on another
variable z, then the corresponding conditional
expectation will be written Ex|f (x)|z]

= Similarly, the variance is denoted var|f(x)], and
for vector variables the covariance is written

cov|x,y]
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B Global optimization: What is the main problem? @ HCI-KDD 2%

argmax f(x)

Normalization: p(z|y) = IXZ((Z‘\?)?;((Z))M

Marginalization: p(gj):/p(aj,Z)dZ

Z
Expectation: K, (f(z)) = [ f(z)p(z)dx
X
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B Finally a practical example @ HCI-KDD %

09 Metropolis-
Hastings Algorithm
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B Metropolis, Rosenbluth et al. (1953), Hastings (1970) @ HCI-KDD

PSI1

Image Source: Peter Mueller,
Anderson Cancer Center
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ﬂ Metropolis Hastings MCMC sampling @ HCI-KDD %

1: Choose a starting point x'.

w -
T X 2: for: =2 to L do
© 5 3: Draw a candidate sample ¢ from the proposal §(z'|z!~1).
%‘0 E L é($I—1|$cand)p($cand)
= S 4: et a = g(zeand|zl=1)p(zI-1)
2 : l d
S0 5: if a > 1 then z' = "
an
35 6: else
C - . . -
© Q 7: draw a random value u uniformly from the unit interval [0, 1].
5 & 8 : [ cand J
L3 m 8: if u<athenz' =z
D o5 O 9: else
= _ R
N Z § 10: 3:. =
S © & 11: end if
N o
09 2 12: end if
5 S 5 13: end for
2 o 2
c @ c
o €D

Mag(x™

Reject region

W= gix) X
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B Importance sampling GHCI-KDD o2

" Importance sampling is a technique to
approximate averages with respect to an
intractable distribution p(x).

" The term ‘sampling’ is arguably a misnomer
since the method does not attempt to draw
samples from p(x).

= Rather the method draws samples from a
simpler importance distribution g(x) and then
reweights them

» such that averages with respect to p(x) can be
approximated using the samples from g (x).
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" The Gibbs Sampler is an
interesting special case of MH:

Image Source: Peter Mueller,

Anderson Cancer Center
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B Sample @HCI-KDD -
Node Variable Data (X)
a b : Mod
Model f bl sl for
(i i network data
- . Modular Structures Pal: Activator || |.-IPHI 5 Tlill |?
E ]
. BN Noge Variy M, § E
d M%.f bll'as i H"“"-A M % :
- - 2 E 1 (] a
a ) \ & £ T J'L'E: -
\ :
(=] ] L 2
Network Data (B) o ' 17
|
20 [ d e P
ad--:b O - W
"I. :..;': ll s mwﬂuiei NIJ M4 %; .
- - L} m o e
ol . .'L‘*e : ; ﬂ
L | '§ % -
L
<y “ -
d

Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014.
Learning Modular Structures from Network Data
and Node Variables. Proceedings of the 31st
International Conference on Machine Learning
(ICML). Beijing: JMLR. 1440-1448.
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TV @ HCI-KDD o

Algorithm 1 RIMCMC for sampling parameters E 1
Inputs: E
Node Variables Data X % o
Network Data B = 2000 4000|5000 800D 10,000
for iterations j = 1 to .J do 0z
Sample AU given AU) using Alg 2 in (Azizi et al., = O F/"‘*WWW F
2014) _ ) > oso 15,000 30,000
Sample SU+1) given SU) using Alg 3 in (Azizi et al., 1
2014)
for modules k = 1 to K do x
Propose wEH) ~ ..'"'u'r{ij'_-‘g ). 1) | A
Accept with probability F,,,;: update y(+1) ol ;
for parents r = 1 to R, do 10,000 oo 20,000
r(i+1) r(i) 1y, - e
Propose z, ~N (z,"", I); accept with P, 1
Propose LU ) .M(?r;{j ). I); accept with 09
P 0.8}
end for e 7T
end for % 0.6
for -:ﬂndumn r = 1 to C do % 0.5
Propose p ) A (e RU) . 1): accept with P,j, s 0.4
Propose ~. R+ ~N(ve R ], I'); accept with P,,,;, = 03 ot 1
0.2 —_— Egrated model |
end for ariables model
end for 0.1
% 02 04 06 08 1

False Positive Rate

Azlzl, E., Alroldl, E. M. & Galagan, J. E. 2014, Learning Modular Structures from Network Data and Node Variables.

Proceedings of the 31st Internatlonal Conference on Machlne Learning (ICML). Bel)ing: JMLR. 1440-1448,
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B Myobacterium tuberculosis Gene Regulatory Network  @He1-op -

M24
Rv0081 Rv0081
Do&lﬂ ngmv# :
M5
Postiranslational
modification

Hypoxic/Nitrasitive
shress re':pﬂnse

KsIR

990 RVO767

" y
4 Q - m
v 3124 :
g Ao .
Transcription )

p :
@_ M13 H“ .E
1] E E
2 k= =
- E
e E
E- -1}
@ g
e g <
Energy Production o =
s =
) Transeription . _ _
Cell motilit Lsr2 M2d '
motitry (8 Mza MG o context (a) (b) ()
M2T - M10 - . Cell wall

AA transport/metabolism

Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014. Learning Modular Structures from Network Data and Node Variables.
Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.
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B8 Electronic Health Record Analysis via Deep Poisson @HCI-KDD 5%

(3) (3)
- ) ? Zn Zn
~
Tkn

. K
A ?
IIlk \ Hkﬂ, hkﬂ. bk
Qo L L Q O Qa0
Tea ot

O O (PFACD) (PFA@D) (PFAGY)

Xn 1 B
| o I I l
BT O Ox)  Ox O
e J
(a) (b) (c)

Henao, R., Lu, J. T., Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep
poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.
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B MCMC based DPFM outperforms other approaches

@ HCI-KDD o

|- vkrps I Lasso DMPFAM :;-'
)
[ ’ ] |
Amputation 0.862
|
Coronary Artery Discase 0.852 -
|
Heart Failure 0.825 |
Kidney Disease D824
Death I= 0.803 =
Opthalmic S——— 0.792 -
— Aanpaitation
NL‘IJ.I‘UILI‘J;’EL‘II‘ ————— 0.755 _'(:ﬂﬁfl'lﬂl.l'_'n' .".I'TL‘T}' Disense
= Heart Failure
Unistalle A e ———— 0.748 # | = Kidney Disease
. . 1 —— Death
Acute Myocardial Infarction =e—————————— 0.734 ——— Opthalmic |
. ) = Neurological
Stroke I 0.733 ——— Unstahle Angina
Depression 0731 Acute Myocardial Infarction b
) [ Stroke
Cardiae Catheterization 0.723 Diepression
| v Cardiac Catheterization
Obesity 0.9 ’ Obesity
i I : u Fa L L L L
0.5 0.6 0.7 0.8 0.9 0.2 04 0.6 0.8 1
i FFPR
AUC

(a)

(b)

Henao, R., Lu, J. T,, Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep

poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.
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Still ... there are a lot of
open problems and
challenges to solve ...

no chance to retire!
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k you!
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Questions
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B Sample Questions GHCI-KDD -

What is the main difference between the ideas of Pierre
Simon de Laplace and Lady Lovelace?

What is medical action consiting most of the time?
How does a human make a decision - as far as we know?

What is the main idea of a probabilistic programming
language?

Why did Judea Pearl receive the Turing Award (Noble Prize
in Computer Science)?

What fields are coming together in PGM?

What are the challenges in network structures?

Give a classification of Graphical Models!

What are plates and nested plates?

Provide corresponding examples of metabolic networks!
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= What is a factored graph?

= Describe the protein structure prediction problem! Why is
it hard?

= Why are protein-protein interactions so important?

= Describe the problem of graph-isomorphism!

= How does a Bayes Net work?

= Why is predicting important in clincial medicine?

= What is a Markov-Blankett?

= Which two tasks do we have in Graphical Model Learning?

= Why would we need probabilistic programming
lanugages?

= Describe the main idea of MCMC!
= What is the main problem in marginalization?
= What is the benefit of the MH Algorithm?
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Appendix
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B Some more specialist literature

G HC1-KDD o>

Optimization, Mome-Carlo Simulation,
and Maching Learning

Rubinstein, R. Y. &
Kroese, D. P. 2013. The
cross-entropy method: a
unified approach to
combinatorial
optimization, Monte-
Carlo simulation and
machine learning,
Springer
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WILEY SERFES IH FROBABILITY AND STATISTICE

Simulation and
the Monte Carlo Method

Third Edition

Reuven Y. Rubinstein
Dirk P. Kroesea

WILEY

Rubinstein, R. Y. &
Kroese, D. P. 2013.
Simulation and the
Monte-Carlo Method,
Wiley
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Bl Basics and Background reading

@ HCI-KDD o

VI, Hn% LE»:: ~umc.

Bishop, C. M. 2007. Pattern
Recognition and Machine
Learning, Heidelberg, Springer.
Chapter 8 on graphical models
openly available:
http://research.microsoft.com/en-
us/um/people/cmbishop/prml/
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Kavin P Murphy

Murphy, K. P. 2012.
Machine learning: a
probabilistic
perspective, MIT

press. Chapter 26 (pp.

907) — Graphical
model structure
learning

111

Koller, D. & Friedman,
N. 2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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Stiller, A., Goodman, N. & Frank, M. C. Ad-hoc scalar implicature in
adults and children. CogSci, 2011.
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B Where do the data come from? @ HCI-KDD 2%

. v
DIRECT SUBMISSIONS & B "+

<

)

ik

(o

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http://www.ebi.ac.uk/intact/
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