

185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS
Tutorial 02 - 04.04.2017

Tutorial on Probabilistic Programming with PyMC3

florian.endel@tuwien.ac.at

http://hci-kdd.org/machine-learning-for-health-informatics-course

- 01. Introduction to Probabilistic Programming
- 02. PyMC3
- 03. linear regression the Bayesian way
- 04. generalized linear models with PyMC3

- Probabilistic Programming (PP)
 - allows automatic Bayesian inference
 - on complex, user-defined probabilistic models
 - utilizing "Markov chain Monte Carlo" (MCMC) sampling
- PyMC3
 - a PP framework
 - compiles probabilistic programs on-the-fly to C
 - allows model specification in Python code

Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 https://doi.org/10.7717/peerj-cs.55

- IS NOT
 - Software that behaves probabilistically
 - General programming language
- |S
 - Toolset for statistical / Bayesian modeling
 - Framework to describe probabilistic models
 - Tool to perform (automatic) inference
 - Closely related to graphical models and Bayesian networks
 - Extension to basic language (e.g. PyMC3 for Python)

"does in 50 lines of code what used to take thousands"

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B. & Mansinghka, V. Picture: A probabilistic programming language for scene perception. in Proceedings of the ieee conference on computer vision and pattern recognition 4390–4399 (2015).

- Machine learning algorithms / models often a black box
 - → PP "open box"
- Simple approach
 - 1. Define and build model
 - 2. Automatic inference
 - 3. Interpretation of results
 - → not much equations anymore!
- "inference": guess latent variables based on observations, using e.g. MCMC

- Markov chain
 - Stochastic process
 - "memoryless" (Markov property)
 - Conditional probability distribution of future states depends only upon the present state
- Sampling from probability distributions
 - State of chain → sample of distribution
 - Quality improves with number of steps
- Class of algorithms / methods
- Numerical approximation of complex integrals

(animated)

- Metropolis-Hastings: random walk
- Gibbs-sampling: popular, complex, no tuning
- PyMC3
 - No-U-Turn Sampler (NUTS)
 - Hamiltonian Monte Carlo (HMC)
 - Metropolis
 - Slice
 - BinaryMetropolis

- Quantity of interest: θ (theta)
- Prior = probability distribution
 - Uncertainty **before** observation: $p(\theta)$
 - Belief in absence of data
- Posterior = probability distribution
 - Uncertainty **after** observation X: $p(\theta|X)$
- Likelihood: $p(X|\theta)$

 $Posterior \propto Likelihood \times Prior$

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

 Calculating posterior from observation and prior = updating beliefs

Coin toss example

- Python 3 package / framework
- Probabilistic machine learning
- specification and fitting of Bayesian models
- Inference by MCMC & variational fitting algorithms
- Performance enhancements: cross-compilation to C (Python numerical computation package "Theano")
- Accessible, natural syntax
- Various capabilities: GPU computing, sampling backends, object-oriented, extendable design

- PyMC3 syntax introduction
- linear regression the Bayesian way
- generalized linear models with PyMC3

Thank you!

- What is probabilistic programming? What type of problems can be solved?
- What are the typical steps in a probabilistic program?
- What is inference?
- What is PyMC3?
- What is the posterior distribution?

Main sources

- Salvatier J, Wiecki TV, Fonnesbeck C. (2016)
 Probabilistic programming in Python using PyMC3.
 PeerJ Computer Science 2:e55
 https://doi.org/10.7717/peerj-cs.55
- Davidson-Pilon, C. Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. (Addison-Wesley Professional, 2015).
- PyMC3's documentation
 http://pymc-devs.github.io/pymc3/index.html