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B8 ML needs a concerted effort fostering integrated research @HCI-KDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
© a_nolzinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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B Machine Learning Jungle Top-Level View @ HCI-KDD %

Cognition | [ Visualization ] Data fusion

Perception ’f.‘ Preprocessing

———_ccom —

/ Decision { Interaction J Integration \

CONCEPTS | THEORIES | PARADIGMS || MODELS || METHODS | TOOLS |

"

L™ i

[ Dimensiunality] {Cumplexity] [ UnsupEWiSEdJ [Gaussian P. ] [ Regularization ] [ Python

r

[ ReinfnrcementJ [ Bayesian p(x) ] [Supewised ] [Graphica| M.] [ Scaling J [ Church ;

[Representation J [ Entropw’KL} [ Semi-Superv. ] [ Neural Nets] [Aggregation ] [ Anglican |

{N&free-lunch”Vapnik-Chernnv.J [ iML ] [KerneI/SVMH Evolution J | Julia |

{ Multi-Task Learning] [Transfer Learning] [ Multi-Agent—Hvbrid-SystemsJ

{ Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) J

[ Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust J

Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0_1.
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B Red thread through the lecture today @ HCI-KDD 2%

= 01 Probabilistic Decision Making
= 02 Probabilistic Topic Models

= 03 Knowledge Representation in Net Medicine
= 04 ML on Graphs Examples

= 05 Digression: Similarity

= 06 Graph Measures

= 07 Point Clouds from Natural Images
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G HCI-KDD o4
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B To reach a level of usable intelligence we need to ... @ HCI-KDD 2%

" 1) learn from prior data
= 2) extract knowledge

= 2) generalize,

" j.e. guessing where a probability mass
function concentrates

= 4) fight the curse of dimensionality

= 5) disentangle underlying explanatory
factors of data, i.e.

" 6) understand the data in the context of
an application domain
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B A fundamental problem first ... @ HCI-KDD 5%

E[f] = / f(2)p(2)dz
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B Medical Example: Breast cancer prognosis incl. Genetics @HEI-KDD -

Alcoholic & Skin Nipple Breast
Smoking Thickeni Discharge Pain
g
[ O
/ Lump
E
Menopause { Breast Cancer ‘
~
.
= 5 \\-“ O
Family Architectural Tissue Microcalci- F b
History Distortion Asymmetry fications O O

Gene 1
Plon 0.8
Pioft) 0.2
=,
Gene 2 Gene 1 Gena 1 Gene 2 Gene 1 Gane 1
on off on off
Pign) 03 0.6 @ e Flen) 03 0.6
Plolf) 0.7 0.4 Ploll) 0.7 0.4

P(Zl- 3 o zn) = H P(Zfl})ﬂ(é’i))
- j=1

Prognosis Gene2on Gene2on Gero2off  Gene 2 off
Genedon Gene3doff GeneZ2on Gene 3ol

Pigoad) 0.8 0.1 0.4 0.5
P{poar) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B.
D. (2006) Predicting the prognosis of breast cancer by
integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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B8 Inference in Bayes Nets is intractable (NP-complete!) G@HCI-KDD o

= For certain cases it is tractable if:
" Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

" Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem

Holzinger Group, hci-kdd.org 9 Machine Learning Health 06



m Sampling from big data is an important topic @ HCI-KDD o

Compute a; := ZJ- Jii s
Draw u from Uniform(0, 1)
If u < 1/(1+e™"%)

;== +1
Else
T ==1

Fre

s o
B T

A e
Tt T AT it

Markov chains

W T Propp, J. G. & Wilson, D. B.
5 1996. Exact sampling with

coupled Markov chains and
applications to statistical
mechanics. Random

_ lteration 1
| ) T T T . ! structures and Algorithms,
4 5 6 7 &8 9 10 9, (1-2), 223-252.
mu
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ﬂ Why is this sentence complex? What do | need? G HCI-KDD o

“| saw her duck”

Holzinger Group, hci-kdd.org 11 Machine Learning Health 06



B The medical report is the most important medium

G HC1-KDD o>

Kurzanamnese: St.p. SHT

Fragestellung:

Untersuchung: Thorax eine Ebene liegend

SB

Das Cor in der GréRennorm, keine akuten Stauungszeichen.
Fragliches Infiltrat parahilar li. im UF, RW-Erguss Ii.

Mit kollegialen Grifien

"** Elektronische Freigabe durch am 09.05.2006 ™

angelegt am 06.05.2006/20:26

= = geschr. von
Ra.d.l_o_l.o_g.ls.c_h.E.LB_e_fun.d ged[uck‘[ am 17.11.2006/08:24

Anfo: NCHIN

Special Words
Bewegungsartefakte. Zustand nach Schadelhimtrauma. La N g Uua ge M ix
Abbreviations

Zustand nach Anlage eines ET, die Spitze ca. 5cm cranial der Bifurkation, lieg. MS, orthotop
positioniert. ZVK Uber re., die Spitze in Proj. auf die VCS. Kein Hinweis auf Pneumothorax.

Der re. Rezessus frei. r ro rs
000

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in

medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.

Holzinger Group, hci-kdd.org 12

Machine Learning Health 06



B German Local Hospital Abbreviations ... (example) G@HCI-KDD o

= HWI =
= Harnwegsinfekt
= Hinterwandinfarkt
= Hinterwandischamie
= Hakenwurminfektion
= Halswirbelimmobilisation
= Hip Waist Index
= Height-Width Index
= Heart-Work Index
* Hemodynamically weighted imaging
= High Water Intake
= Hot water irrigation
= Hepatitic weight index
= Haufig wechselnder Intimpartner

= Leitung = Nervenleitung, Abteilungsleitung, Stromleitung,
Wasserleitung, Harnleitung, Ableitung, Vereinsleitung ©...

Holzinger Group, hci-kdd.org 13 Machine Learning Health 06



T G HCI-KDD 2%

01 Probabilistic
Decision Making

Laplace, P-S. 1781. Mémaoire sur les
probabilités. Memoires de '’Académie
Royale des sciences de Paris, 1778, 227-332.
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B Why is the topic “decision making” so important ...

IS permgnent
decisio Tgakmg under
uhcertainty....

Holzinger Group, hci-kdd.org Machine Learning Health 06




B Human learning vs. Machine Learning @ HCI-KDD o

= Example 1: Inverse Probability
= Example 2: Diagnhosis

= Example 3: Language understanding:
p(hld) o< p(DI|0) * p(h)

P(words|sounds) o< P(sounds|words) * P(words)

. ‘m‘ e W - S o U Recognize Speech
& i i e

~ Wreck a nice beach

" Learning ensures that new observations (d)
match our previous hypotheses (h)

Holzinger Group, hci-kdd.org 16 Machine Learning Health 06



Bl Cognition as probabilistic inference

@ ©

" VVisual perception, language understanding,
motor learning, associative learning,
categorization, concept learning, reasoning,
causal inference, ...

" Learning concepts from (few!) examples

" Learning and applying intuitive theories
(balancing complexity vs. fit optimality)

Holzinger Group, hci-kdd.org 17 Machine Learning Health 06



B Modeling basic cognitive capacities as intuitive Bayes @ HCI-KDD %

= Similarity
= Representativeness and evidential support
= Causal judgement

= Coincidences and causal discovery

= Diagnostic inference

. . L
Predicting the future ¢ l oprncples | )
e
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. E Abstract domain principles
2006. '.I'heory-b-ased Baye5|an.models of | l P(Siruchue | Princioiee)
inductive learning and reasoning. Trends in
cognitive sciences, 10, (7), 309-318. Structured probabilistic model

l P(Data | Structure)

Observable data
Holzinger Group, hci-kdd.org 18 Machine Learning Health 06



B8 Human brains as probabilistic reasoning machines @ HCI-KDD 2%

LTM: Prior knowledge H

Uncertain
world

Holzinger Group, hci-kdd.org 19 Machine Learning Health 06



B RL-Agent seeks to maximize rewards @HCI-KDD

for t— 1. ndo Intelligent behavior arises from the actions of an
The agent perceives state s;

The agent performs action 2. | INAiVidual seeking to maximize its received reward

The environment evolves to 5.,

The agent receives reward r; S|gnals |n a complex and Changing World

end for

Agent
> Representation
] Learning algorithm
P‘*‘T‘;;“'{l Action selection policy
State I Action
{,.{f} T,[f+]_] ”{”
: 1 |
I
I E . Pe——
. nvironment
I
0 . (t41)

£

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press
Holzinger Group, hci-kdd.org 20 Machine Learning Health 06



{a,b,c}

— decision that is
best for worst case

Non-deterministic model

~ Adversarial search

Holzinger Group, hci-kdd.org

Belief ' 'Z:.Desireﬂ:]

{a(pa),b(pb),c(pc)}

— decision that maximizes
expected utility value

Probabilistic model

21 Machine Learning Health 06



B Expected Utility Theory E (U|d) @HCI-KDD %

For a single decision variable an agent can select = i
D = dforanyd € dom(D). |
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax — E-Ll"g Imax E(U | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.

Holzinger Group, hci-kdd.org 22 Machine Learning Health 06
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B Topic modelling — small topic but hot topic in ML @HCI-KDD o

S
.

MODELING

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING

DATA SCIENCE
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|Dia| Zse|BllDal2 || 2|6 || SBracs | & BidSenden  |[Labor | RFal | @ Disledo |
|Datum  |Zeit |OE | Kurzbez. | VMA | Status | Kiass. |erg. Bez. Dokur... | Fall
v (| SeeumeRE——T.)  17.11.1953 i
< 2010018065  ambulanter Fall13.01.2010 MKKARDIO MK KardioAmb
< [_J Leistungen (KAL, RAD, Therap
[B: EKG (12 Ableitungen) 123.01.2010 0800 MKKARDIO MK KardioAmb DUSLTIMO (8]4 2010018065
[ RR-Intervall-Untersuchung 12.01.2010 08:00 MKKARDIO MK KardioAmb  DUSLTIMO QK 2010018065
B schrittmacherkontrolle 13.01.2010 0800 MKKARDIO MK KardioAmb DUSLTIMO QK 2010018065
=~ 2010002197 ambulanter Fall04.01.2010 CKTRANSFCK Transpl.
[ Diagnosen Gesamt ( 3)
~ 2009494995 stationarer Fall 20.12.2009 MEDANGIO Med Angio
(] Diagnosen Gesamt {14)
1 Leistungen (KAL, RAD, Therap
E Becken-u. Beinanteriografie 22.12.2009 16:36 RKVIRADB RKVI Raum B STAMNMEL! (0] 4 PTA 2009494995
Eﬁ Laufbandergometer 21122009 0830 MEANGIO MK AngioAmb  SPARANDR 0K 2009494995
@ Erstuntersuchung/Status  21.12.2009 08:30 MKANGIO MK AngicAmb  SPARANDR oK 2009494995
=~ 2009453621 stationarer Fall 17.11.2009 CKTHIMC CKTXIMC
] Diagnosen Gesarmt (12)
(_J Leistungen (MEL) ( 2)
Eﬁ Physioth. i.R.1 stat. Aufenth 23.11.2009 08:05 CKPHYSIO CK Physio BEITWALT Ok 2009453621
ﬁ Organbiop., Bildwandlerge: 17.11.2009 0812 CKTXOP CKTXOP SCHWMICH 0K Organbiopsie - Bildwandlel 2009453621
1 Leistungen (KAL, RAD, Therap
~ 2009431136 ambulanter Fall 29.10.2009 MEKARDIO MK KardioAmb
1 Leistungen (KAL, RAD, Therap
Eﬁ Schrittmacherkontrolle 29102009 0915 MEKARDIO MK KardioAmb DUSLTIMO (8]34 2009431136
[ RR-Intervall-Untersuchung 29.10,2009 0815 MKKARDIO MK KardioAmb  DUSLTIMO QK 2009431136
& EKG {12 Ableitungen) 2910.2009 0915 MKKARDIO MK KardioAmb DUSLTIMO OK 2009431136
ﬁ Fotodokumentation, Videoc 29.10.2009 0915 MKKARDIO MK KardiocAmb DUSLTIMO OK 2009431136
~ 2009378733 ambulanter Fall 16.09.2009 MKMEPHR! MK NephroAmb
[ Diagnosen Gesamt( 8)
[ Leistungen (KAL, RAD, Therap
@ Blutdruck: Langzeit (24 Stur17.09.2009 10:59 MKMNEPHRiMK NephroAmb RUDRHELM (8]14 ab 2009378733
@ Blutdruck: Langzeit (24 Stur16.09.2009 12:02 MKMNEPHR(ME NephroAmb RUDRHELM (0] 4 an 2009378733
&~ 2009187546 stationdrer Fall 21.04.2009 CKGMIU CKGMIU
b [ Diagnosen Gesamt({ 5)
< {3 Leistungen (KAL, RAD, Therap
@ Fotodokumentation, Videoc 29.04.2009 08:49 MKKARDIO MK KardioAmb PITTHEID (0]14 2009187546
@ EKG {12 Ableitungen) 29.04.2009 08:49 MKKARDIO MK KardioAmb PITTHEID Ok 2009187546
@ RR-Intervall-Untersuchung 29.04.2009 08:49 MKKARDIO MK KardioAmb  PITTHEID (0] 4 2009187546
@ Schrittmacherkontrolle 29.04.2009 08:49 MKKARDIO MK KardioAmb PITTHEID 0K 2009187546
@. EKG {12 Ableitungen) 23.04.2009 10:43 MKKARDIO MK KardioAmb KOBEINGR 0K 2009187546
@ RR-Intervall-Untersuchung 23.04.2009 10:43 MEKKARDIO MK KardiocAmb KOBEINGR Ok 2009187546
@. Konsil FA 21.04.2009 10:22 NEKONS NEK FA Konsil LANMNMICH (0] 4 2009187546




Bl Example (1) GHEKDD

" D= <d11 dz, d”l’l)
" di =t1, tz, tk

b (011,01, 1)
Wi'j_O,tiﬁdj j=(0,1,1,01,...1)
( N .
C Wi,j = (1 + logfl,]) *logn_i; lffiJ > 0
0 otherwise

Holzinger Group, hci-kdd.org 26 Machine Learning Health 06



B Example (2)

G HCI-KDD %
e ™y
Wi Wio o Waa Wi
Ws Ws oo WH n-1 Wi
D, == : . : .
1'1“!;;3—1.1 lJ"jm—l.i 1rJl"!sr,is—l.ﬁr H’!m—l.u
H”:m N M’:m 2 e H’!m -1 M’Em.ﬂ
Holzinger Group, hci-kdd.org 27
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B Example (3) Q@ HCI-KDD o

leber

verdacht
- >

hepatitis

Holzinger Group, hci-kdd.org 28 Machine Learning Health 06



B Vector Space Model GHCI-KDD %

Ieber‘
cos($) =
. lglllld;ll
e 4 ®d, ! !
¢  verdacht
//'*:;; , >
<
O dq
'fﬁ.hepatitis Salton, G., Wong, A. & Yang, C. S. 1975.

Vector-Space Model for automatic

indexing. Communications of the ACM, 18,
(11), 613-620.
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B Geometry of Topic Models G@HCI-KDD 5

" Documents =

F'y
' L P(wordl) . categorical
= lopic . . .
o- distributions over a
0= stemdt large space of
ocumen .
o® predefined vocabulary
e ® = generated _ _
Q” document = Topics = categorical
Ig-." O . . .
distributions
0S| © i
gl . = Generative model =
' P(word2) each document can be
Seen as a convex
P(word3)

1

combination of the
topic distributions

Teh, Y. W,, Jordan, M. I., Beal, M. J. & Blei, D. M. 2006. Hierarchical dirichlet
processes. Journal of the american statistical association, 101, (476), 1566-1581.
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B Generative statistical model for natural language G HCI-KDD 2%

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— “are not all thar far apart,” cpecially in
Haww mamy genes Joes an EREEIMSI o s commiparison 1o the 73,000
sarv el Last week ar the cenoane msetimge WL e, nastes v Andersson
B here™ tao geniome researchers with radically University in S A T
Jifferent approaches presented complemen- SO0 number, Bat it
LAY view e basic pemes needed forlliRE alls STEWer iy by re tham ja
UIne pesd T, USInG COmpurer analy numbers game cularly s
\\‘_ srs L K4 emomies, congludel nusr wames are coaplenely n
thuat taw can b tained with T A=l may be o way of
just 230 thint the « a1 life formis 1y v a " | op
TS ! " ut - Y 1 ATy, A CONnpL
T irch . licular b psr ar the Mar
ima sim I 1, tor Bnotechnology Inform
[ ; il st ] weada, Marpland. ©
1
o 9 z w o =l
M o= lal
el R d g
-
Stripping dow MULeT ANANSE ol
mabd of tha m NCaT aind i 'g

Given the parameters a and [5, the joint distribution of a
topic mixture 6, a set of N topics z, and a set of N words w

is given by: N
p(ejz,w | o B) : p(e | C{‘) Hp(zf? [ e)p(wf? |Zﬂa B)
=

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation.
The Journal of machine Learning research, 3, 993-1022.
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B Motivation: to get insight into unknown document sets

SQHISLQITIER IO

first
t‘x“n’O
Seems
time
evidence
fact

Holzinger Group, hci-kdd.org
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http://agoldst.github.io/dfr-browser/demo/#/model/scaled

Machine Learning Health 06
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B Example from Bioinformatics

@ HCI-KDD o

A

Functional module 1 Functional module 2
FD-I FD-A  P(FD)
\ 7 Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4
@ FD-A FD-X FD-W FD-P
FD-E— LD A = O = O - O - O
S g 3 i Educt Product
FD-J N
Topic 1 ;
FD-K k Topic 2
Protein complex Metabolic pathway P[WId}] = E P{w|t,] - P( Eildj]
i=1
i ¥ T e ot
B  Hidden generative process SOA BB FOE C P Statistical inference
Functional module 1 FD-Z FD-4 FD-K Genome Genom_a % 5 :
- annotation 1 annotation 1 | FD-2 FD-J FDK
/ FD-A FD-E FD-B FD-A FD-E FD-B
—""‘-..__‘ —“--___.
\ FD-E FD-A FD-X FD-E FD-A FD-X >//: farhien
Topic 1 o Genome ? functional
I FD-J FD-P FD-K Genomg annaotation2 | Fp.J FD-P FD-K . module 1
Functional madule 2 i3 o . annotation 2 \
/ FD-W FD-A FD-| FD-W FD-A FD-|
e e
\ FD-A FD-W FD-X . Genome FD-A FD-W FD-X /
1.0 enome i Potential
FDW FDV ED-p | annotation 3 annotation 3 | ep.w FDV FD-P functional
module 2

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional modules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.

Holzinger Group, hci-kdd.org
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B8 Eval. scheme for inferred potential functional modules  @He1-KDD -

{‘:"P' W % 3
XA

A
.‘ |41
]

i

Koni
functional modules of protein families with probabilistic

topic models. BMC bioinformatics, 12, (1), 1. - _
Holzinger Group, hci-kdd.org 34 Machine Learning Health 06



B Generative Probabilistic Model GHCI-KDD -

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-browser/demo/#/model/grid

Topic proportions and

Topics Documents :
assignments

gene 0.04

dna 0.02 . E_y . -

genetic .01 Seeking Life’s Bare (Genetic) Necessities

e COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
How many cenes does anerganism negd 0 comparison to the 73,000 genes in the hu

J survive! Last week at the genome meeling anizine, notes Siv Andersso ) BT
here,” two genome researchers with radically University i v — .
different approaches presented complemen- . S00 ~But coming up with wcome

life 0.082 tary views of the basic genes needed for IS sus answer may be more than just ag

evolve 0.01 One research team, using computer analy numbers icularly =T
ses to compare known cenomes, concluded IO CETOTIES ATE & T

orﬁn.‘ sm 0.61 that today's Grganisms can be sustained with sequenced. *It may be a way of organi-ime

snoime,” explains
required a mere 128 genes, The o Arcady Mushegian, a computational mo
\_///— vther researcher mapped genes 7 = lecular biologist at the Natisggl Cente
in a simple parasite and esti- / N B
. . " ! Hnemoptilus
mated that for this creanism, |
BO0 genes are plenty todo the |
job—but that anything shor

*22 just 250 genes, and that the earliestlife forms— any newly sequenced

'l

brain 0.04

neuron 0.02 of 100 wouldn't be enough.
nerve 0.01 Although the numbers don't ’ | \
march ["-I'('('I.\l‘]\‘ those P Jictions Mpcoplasma | { o as
re ! genome | /
AH0 genes h ey
* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modem and ancient genomes
data 8.42 SCIENCE o VOL. 272 % 24 MAY 1996
number  9.02 T St Tt
computer 0.01

f
Each doc is a random mix of corpus-wide topics

and each word is drawn from one of these topics
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@ HCI-KDD -

Topics

Topic proportions and

Documents :
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

Haow many genes Joes an organism gl o comparison to the 75,000 venes igghe hu

survive! Last week ot the genome mecring T nores Siv Apdersy el
VETSILY i1 Sl ‘M

y
Rer. But coming up with o conserts

here,® two gename researchers with swlically
different approoaches presented complemen-

tary views of the hasic genes needed for TfEY  sus answergmay be more thin

Uhne research ream, using computrer analy numbers -

ses to compare known genomes, concluded  more penomes are

thar today's organisms can be sustamed with sequenced. “le may be o way of organiime

yust 230 pepes, and that the earliest lifeforms any newly sequenced genome,” explains
required 1 mere 128 senes, The — Arcady Mushegian, a compurational mo
ather researcher mapped genes 7 o Jecular biologist ar the Natogal Center
i simple parasite and esti- -/ S for Biotechnolooy Tnformation

mated that for this GFgn =, !
800 genes are plenty to do the |,
jub—but that anything shorr

\ 2
of TOQ wouldn't be enough. ]
Although the numbers don't =
match precisely, those predicrions £
dBdgenns &
& =
* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 810 12, mate of the minimum medern and ancient genomes.

SCIENCE = VOL. 272 = 24 MAY 1996

h

J

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)

Holzinger Group, hci-kdd.org
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B Output Example: 4 learned topics @ HCI-KDD %
human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences COMIMon tuberculosis simulations

Holzinger Group, hci-kdd.org
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B8 LDA is an example for a probabilistic graphical model @ HCI-KDD o

Proportions

Per-word
topic assignment

parameter
Per-document Observed
topic proportions word

|

.

Topic

parameter

Topics

|

Q—H(H}H-Q—ooi

Zd.n Wd .n

N

D

Q._
Pk

K

S

" Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)

Holzinger Group, hci-kdd.org
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B Posterior inference @HCI-KDD

-Of-O-@— 1O

d.n Wd n

=

p(p.0.z,w)
A, =
p(B,0,z|w) Ts Jo 2o (B0 2. w)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;

However, this do not scale well ...

Holzinger Group, hci-kdd.org
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B For “big data” stochastic variational inference G HCI-KDD 2%

GLOBAL HIDDEN STRUCTURE
MASSIVE

DATA ——
" LR
Fd v

L
&

*

LY
i ey

,
&

y

Subsample \ _/ Infer local \ .| Update global

data 4 \ structure j structure
0O O e o
olie e 0

-
#
’
3

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Bl Stochastic variational inference GHCI-KDD %

1: Initialize A(”) randomly.

2. Set the step-size schedule p; appropriately.

3: repeat

4:  Sample a document wy uniformly from the data set.
5. Initialize v = 1, fork € {1,..., K}.
6:  repeat

T Forn e {1,..., N} set

¢k, x exp {E[log 0] + Eflog By, 1}, k€ {1.... K}

Set Td = & 1T Eﬂ Lt B,
. until local parameters ¢4, and 4 converge.
10: Forke {l...., K'} set intermediate topics
.

dp=n+D Z r,bﬁﬂ-u:dn.

=1

1: - Set A = (1 — p)At-D 4 p A,
12: until forever

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Bl Stochastic variational inference in LDA

@ HCI-KDD o3

Vd

;
‘| &%

‘;bd N

I

~O—@

Wd n

N

(e
Br

K

1. Sample a document

2. Estimate the local variational parameters using the current topics

3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.

Holzinger Group, hci-kdd.org
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B Approximate inference can be difficult to achieve @ HCI-KDD %

KNOWLEDGE

=

Make assumptions

DATA

=
1

Discover patterns

Predict & Explore

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.

Holzinger Group, hci-kdd.org
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Black Box Approach G HO-

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

CP BLACK BOX p(B.z|x)
VARIATIONAL

INFERENCE

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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B Conclusion: What is needed ... GHCI-KDD %

Flexible and expressive components for building
models

Scalable and generic inference algorithms

Easy to use software to stretch probabilistic
modeling into the health domain

Topic models are only one approach towards
detection of topics in text collections

More general: Identify re-occurring patterns in
data collections generally ...

Much open work for you in the future ©
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B Please look at some toolkits @ HCI-KDD 2%

e Particular topic models

» Stanford topic model toolbox
http://nlp.stanford.edu/software/tmt

» Topic modeling at Princeton
http://www.cs.princeton.edu/"blei/topicmodeling.html

» MALLET (Java) http://mallet.cs.umass.edu

» Network topic models: Bayes-stack
https://github.com/bgamari/bayes-stack

» Gensim (Python) http://radimrehurek.com/gensim/

» R package for Topic models. http://epub.wu.ac.at/3987/

e Frameworks for generative models

» Variational inference: Infer.net
http:/ /research.microsoft.com/infernet/
» Gibbs sampling: OpenBUGS http://openbugs.net/
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v G HCI-KDD o

03 Knowledge
Representation in
Network Medicine
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B Network Science — Graph Theory @HCI-KDD 5%

Networks = Graphs

24 July XEE 30

Scienc

'MACHINE LEARNING
APPROACHES FOR

MATTHIAS DEHMER

. UMIT = The Health and Life Sciences University, Institute for Bioinformatics and
- Translational Research, Hall in Tyrol, Austria

SUBHASH C. BASAK

Natural Resources Research Institute
University of Minnesota. Duluth
Duluth, MN, USA

httb:/ .com/tag/

http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200907-24_Science-
Decade/200907-24 Science-Coverlmage.gif
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B New Book

G HC1-KDD o>

Edited by
Matthias Dehmer
Frank Emmert-Streib
: Stefan Pickl ==

Andreas Holzinger

Dehmer, M., Emmert-Streib, F.,, Pickl, S. & Holzinger, A. (eds.) 2016. Big Data of Complex
Networks, Boca Raton, London, New York: CRC Press Taylor & Francis Group.

Holzinger Group, hci-kdd.org
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B Network of Networks in Biology

Activate TFs

Form TF
complexes

Transcribe ,
Transcribe
enzymes _
roteins

Protein
interaction
networks

Image credit to Anna Goldenberg, Toronto

Holzinger Group, hci-kdd.org 50 Machine Learning Health 06
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B Genome-Phenome association in complex diseases @HCI-KDD 2%

Pleotropic effects

CTTCACTCGTGTCTATITTGAATTGCCTAT |
b ™ == c

Two subnetworks
for lung physiology

Epistatic effects

Image credit to Eric Xing, Carnegie Mellon University, Pittsburgh
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Bl From data sets to networks @HCI-KDD -

Existing biological knowledge

Nature Reviews | Molecular Cell Biology

Image description find here:

http://www.nature.com/nrm/journal/v6/n2/fig_tab/nrm1570 F1.html
Holzinger Group, hci-kdd.org 52 Machine Learning Health 06



B Regulatory>Metabolic>Signaling>Protein>Co-expression @HEI-KDD -

Transcription factor ' Enzymes Receptors Protein
(TF)
=
—_—

Aw— =09 e O

Gene C Metabolites Jr

‘@

§ &S e

Directed, Signed, Undirected,
weighted weighted Directed Undirected Undirected

Image credit to Anna Goldenberg, Toronto
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B Example for a Medical Knowledge Space @HCI-KDD o

# Nodes: 641
# Edges: 1250

UA)

‘\k&“‘ ;.c \

Agent
Condition

Average Degree: 3.888
Average Path Length: 4.683
il Network Diameter: 9

Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices:
State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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B Medical Details of the Graph GHCI-KDD

¥
" Nodes - J .
" drugs .:‘ .O. i s .:0.: ..}
o clinicalguidelilze.O . .

" patient conditions (indication, contrflndlcat‘ory)
= pharmacological grot;& . - \. » ...
= tables and calculations o?v.‘alical SCOresS i

= algorithms and other medf@fdoet:n Shy, ¥
. . : .
= Edges: 3 crucial types of relationsiinducing medical,
relevance between two active substances «
= pharmacological groups . b
" indications ""
2 T

= contra-indications " 4 h
i..
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B Example for the shortest path @ HCI-KDD 2%

8\

4
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BB xample for finding related structures

0O
O

Relationship between

Adrenaline (center black node) and
Dobutamine (top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light):

1. Application (one ore more indications +
corresponding dosages)

2. Single indication with additional details
(e. g. “VF after 37 Shock”)

3. Condition (e.g. VF, Ventricular
Fibrillation)

Holzinger Group, hci-kdd.org 57

Machine Learning Health 06



B Interactive Visual Data Mining @HCI-KDD o4

[ 2

http://ophid.utoronto.ca/navigator {0 Y

JURISICA LAB

[BM Life Sciences Discovery Center

@ HCI-KDD =£-

Otasek, D., Pastrello, C., Holzinger, A. & Jurisica, ., 2014, iIsual Data Ml‘fﬂngt:_Eﬁective Exploration of the Biological
Universe. In: Holzinger, A. & Jurisica, I. (eds.) Interactive KnowTedge Discovery and'[)a:a Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Notes in Computer Sgience LNCS 8401. Heidelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2.
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B Example: Graph Entropy Measures @ HCI-KDD %

# Engineering
B Computer Science &
8| Physics

I:J' )
B Humanities &
unkown
e S
D8 e
2e,
0.2 of oy
. )] {"IRI_}-_. :_‘\ T2l
T

Holzinger et al.
2013. On Graph
Entropy Measures
for Knowledge Q0
Discovery from ;

,_,,'lp-d!
Publication Network &
Data. In: LNCS 8127/, -
354-362.
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B Some selected open problems @ HCI-KDD %

Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known.

Problem: What is the structural interpretation of graph measures ? They are
mappings which maps graphs to the reals. Thus, they can be understood as
graph complexity measures and investigating their structural interpretation
relates to understand what kind of structural complexity they detect.

Problem: It is important to visualize large networks meaningfully. So far, there
has been a lack of interest to develop efficient software beyond the available
commercial software.

Problem: Are multi-touch interaction graphs structurally similar to other
graphs (from known graph classes)? This calls for a comparison of graph
classes and their structural characteristics.

Problem: Which graph measures are suitable to determine the complexity of
multi-touch interaction graphs? Does this lead to any meaningful classification
based on their topology?

Problem: What is interesting? Where to start the interaction?

Holzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 (pp. 241-254). Berlin, Heidelberg: Springer.
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B Example: The brain is a complex network @ HCI-KDD %

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010)
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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Bl Representative Examples of disease complexes @ HCI-KDD 2%

Atrial septal defect

Examples of

4 functional
networks
driving the
development of
different
anatomical
structures in
the human
heart of a
37-dayold  “—
human embryo

Abnormal atrioventricular valve morphology

Abnormal outflow tract development

related disorders. Molecular systems biology, 6, 1, 1-9.

Holzinger Group, hci-kdd.org 63 Machine Learning Health 06



B Example: Cell-based therapy GHCI-KDD %
A Early phenotypes
E1. Abnormal heart E2. Abnormal looping E3. Abnormal E4. Abnormal atrio- g Function of clusters )
tube morphology morphogenesis sinus venosus ventricular canal

morphology
2" i.b O e ¢

Intermediate phenotypes

Late phenotypes

60
40
20
0 T
E1 E2 E3 E4 I 12 13 14 L1 L2
Holzinger Group, hci-kdd.org 64

Transcription regulation

FGF/PDGFR signaling

Other function

Mo. of proteins in clusters

10 20 30 40 50
— Direct interaction

\ >

....... Indirect interaction

L3 L4
Lage et. al (2010)

Machine Learning Health 06



B Identifying Networks in Disease Research @ HCI-KDD 2%

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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B Three main types of biomedical networks @ HCI-KDD %

@

=)
-

Prot_pin A p Protein |

Protein B | Protein H

! Protein D / Protein G

: Protein E b

ot Pr:)tcin F @
Transcriptional regulatory Protein-Protein Metabolic network
network with two interaction network (constructed considering the
components: reactants, chemical reactions
TF = transcription factor and enzymes)
TG = target genes
(TF regulates the Costa, L. F., Rodrigues, F. A. & Cristino, A. S. (2008)
transcription of TG) Complex networks: the key to systems biology.

Genetics and Molecular Biology, 31, 3, 591-601.
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B Example Transcriptional Regulatory Network @ HCI-KDD o

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, S., Peralta-Gil,
M., Pefialoza-Spinola,
M. I., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7, (1), 5.
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Bl Network Representations of Protein Complexes @HCI-KDD 5%

B e A
) B

e True PPI topology

AN
Matrix-Mod;\ C @ Spoke-Model

Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks. PLoS Computational Biology, 3, 6, 1011-1021.
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B Correlated Motif Mining (CMM) GHCI-KDD o

Boyen, P., Van Dyck, D., Neven, F., van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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Bl Steepest Ascent Algorithm applied to CMM @ HCI-KDD o

Input: PPI-network G = (V,E,;)A), {,de N, d < ¢
Output: {X™*,Y™*} best correlated motif pair found in G
1: {X*,Y*} « randomMotifPair()
2: mazxsup — f{X*,Y*},G)
3: SuUp «+— —0o0
4: while maxsup > sup do
{X,Y} —{X*Y*}
SUP <— Marsup
for all {X'.Y'} € N{X,Y}) do
if f({X',Y'},G) > maxsup then
{)(#’};*} e {){fﬁ}/!}
10: maxsup — f{X",Y'}, G)

P eoSa S

Boyen et al. (2011)
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B Metabolic Network GHCI-KDD -

M1 M2
M1 M4
M1 M5
M2 M1
M2 M3
M2 M4
M4 M1
M5 M1

Hodgman, C. T., French, A. &

Matrix contains many sparse elements - In Westhead, D. R. (2010)

this case it is computationally more efficient Bioinformatics. Second

to represent the graph as an adjacency list Edition. New York, Taylor &
Francis.
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@ HCI-KDD o

12. parAB, VNG0473/4G

1. glkK YNG2EZ0G

13, ged, VNGD4.46G
2. pgl VNG1992G | 14, rspA, YNGD.442G
3. fbp, VNGOGB4G 15, kegk, VNGO'158G
4. VHNGOBBIC 16. dapi, VNGO444G*
5. gap, VNGO937G 17, glpk, VNG1967G

6. gapB, VNGO095G 18, VNGO308C, 18a. VNGO310C*

7. ppk, YNG12166G 10, arcE, VNGIEB2G

B, gpm, VNG1BETG 20, VNGA245C

B, eno, VNG1142G 21, pae, VNG12312G

10. ppah, VNGO330C3 22, aroC, VNG12130C

11, pykh, VNGO342G) 23, trpE2, 0384C5%; trpG2, VNGO386G*
24, manF, WMNE1083G

26, manD, YMGE1 081G

and putative opea ron menBACE*

26, acs2, VNGIITG

7. acd2, VNG 775G,

(indirect target acs3, VNG0940G).
acd? and divarggently transcribed aldy2

:kﬂiu-.
A 5-[-pluose s

Semi-phospherylitive E C
Entnar= DG

It
Doudoreff Mx
OFG

Fathway
i@n‘ﬂ.__:cmg = [ructo-G-F

e e o

i
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— -.v t..l._..__ A ATF
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B Metabolic networks are usually big ... big data ©

gilycanl ==+ B u n..a.__..__._.i_n_

Glycercl

: m___oma_.w_u RAAP
meatabolism =

L]

s Tal aa__.in___axm_
pherndataning

.%Kigf

= .m_:w_-

._. antnranilale

Glusaneogenesis
(4.B6x10°1)

phosphaserine

t..-.:ht.\.f

& BAnne

HaF
MADF
36 [f .w_o.qa-;sd..an

[ = i

—:.__.E_.___._m

M=

..D._u___u..ﬂ:u -L-Biamasaring

wr _.
car o)
** tryphaphan
FEAAQLInanES
acalaloahyd
hact e
Py
aiptate

Arnino-acid
metabolism (2.045%10-%)

Coh g L

i1 -.t.*- i
TCA oycla
‘citrata

o

_m_un:_.ny MADF.

_._Ea.ﬂs_j__..c -5 m.

s ,.um_h/a _LPRPP

LR

& BEDATAGING
KNP 2 PP ki

nuvn_du_n_
wrginirg-
h_._nn__._m.s

—_.-.._._Ennl

aamne

cinalin
A e m

- el ..n..:.: anpep L=

Peformyig kas nam ide

|

Faam 3 e

or e

AIR

-
amithine

Gltamire  pammpmoyl-F pyruavale D

GOGAT

Thiamine
metabalism

vm Puring (3.36x10-9)

biosymihesis
(2 5310-5)

cabiyriniato
a,c-damide

ndencayl cobyrinaby
11,0 dismica Ll
log 10 expression rafio I

Caobal amin
biosyrithesis
{3.36x%:10-%)

..r-u OWF CHMP, TRP
__...n_.

sulanceina. Guaning, Cylos ne, Thymidine

evolutionarily

transcription
diverse but

Pan, M., Koide
T. & Baliga, N.
S. (2009) A
single

factor
functionally

linked
availability.

Schmid, A. K.,
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Molecular
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are direct TrmB: targets.

28, citZ, VNG2102G
29, can, VNG2574G
30. icd, VNG1873G
31. gdhB, VNGO1615

32. korAB, VNG11258G

33. sucCD, VNG154G
and VNG1542G

34, sdhABCD

TRE
~axoglutarale ”_szm._uca.._u._.cm

35, fumC, VNG1356G
36. mdh, VNG1624G
37. mdhA, VNG2367G
38. aldY2, VNGO771G

139, gdhA1, VNG0624G

40. ginA, VNG2093G

41. carAB, VNG1814/5G

42, purF, VNG1493G
43, purD, VNG1305G
44, purU, VNG1946G
45, purL2, VNG1945G;
purL, VNG0864G;

46. purM, VNGOB76G

47, purk/E, VNGOB32AG

48, purC, VNG1939G
49, purB, VNG0415G
50. purH, VNG0414G
51, purQ, VNG2371C
52. ush, VNG1408G
53. thiC, VNG0715G
54, thiD, VNG2B0BG
55, thi1, VNG2604G
56. serA1, VNG2424G
57. serA3, VNG0104G
58, serB, VNG2423G
59, glyA, VNG1414G
60. thrC2, VNGO0541G
61. argH, VNG2436G
62, argG,VNG2437G
63, asnA, VNG0867G
64. aspC1, VNG24136G/
aspC2, VNG1121G
65. ocd2, VNG1364G
86, VNG1775C

67. cbiX, VNG1561C
68. cbilL, VNG1551G*
69. ebiH1/ebiH2,
VNG1555/7G*

70. cbiF, VNG1553G"
71. ebiT/ebld,
VNG1550G/1568G*
72. ebiC, VNG1567G*
73. cbiA, VNG1573G
74, cobN, VNG1566G
75. cobA, VNG1574G"
76. cbiP, VNG1576G*

Biology, 5, 1-9.

sb200940_F6.html

//www.nature.com/msb/journal/v5/n1/fig_tab/

http
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B8 Using EPRs to Discover Disease Correlations G HCI-KDD 2

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. S., Jensen, P.
B., Schmock, H.,
Dalgaard, M., ®
Andreatta, M., Hansen,
T., Seeby, K., Bredkjeer,
S., Juul, A., Werge, T.,
Jensen, L. J. & Brunak,
S.(2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts. PLoS
Computational Biology,
7,8, e1002141.
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Heatmap of disease-disease correlations (ICD) G HCI-KDD
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B Example: 6poloyéw (homologeo)

T0499

He, Y., Chen, Y.,
Alexander, P,,
Bryan, P. N. &
Orban, J. (2008)
NMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.

VDAGTAEKYFKLIANAKTVEGVWTYKDE IKTFTVTE
L irrregxXrrerererretenld trerrererteld
DAGTAEKY I|IKLIANAKTVEGVWT\ILKDE IKTFTVTE

T0499 TTYKLILNLKQAKEEAIKE
N O I O I
T0488 TTYKL ILNLKQAKEEAIKE
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B Conclusion GHCI-KDD -

= Homology modeling is a knowledge-based
prediction of protein structures.

" |n homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.

= Homology modeling will be extremely
important to personalized and molecular
medicine in the future.
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B Future Outlook

Holzinger Group, hci-kdd.org
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Personalized
Medicine
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v G HCI-KDD o

04 Machine Learning
on Graphs
Examples
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B Example: Lymphoma is the most common blood cancer  @He1-KDD -

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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B ML tasks on graphs

= Discover unexplored
Interactions in PPI-
networks and gene
regulatory networks

= | earn the structure

= Reconstruct the
structure

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar,
T. & Miller, T. 2008. Identifying functional modules in
protein—protein interaction networks: an integrated

exact approach. Bioinformatics, 24, (13), i223-i231. _ .
Holzinger Group, hci-kdd.org 80 Machine Learning Health 06




B From structure to function

@ HCI-KDD o

| Subscrbe i Recommend i Pubksh ]
jove

© A Protocol for Computer-Based Protein Structure and Function Prediction

Ambwish Hoyl2, Dong X, Jonathan Poissont, Yang fhang™

LCemter for Computational Madicine and Bicinlormatics. University of Michigan. “Center b Bioinfoematics and Departmeant of Molecular Bioscience, Unhversity of Kansas
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Gusdatines for computer based struchural and funcBonnl chnracterizalkon ol Prodesn using the -TASSER

pipeling s describad. Starting from query protain sequence, 30 models are genedaiad wsing multiple

throadinn allnoemantc and foratka otretniral sccambhs olmolatbnne Cimetbnnal Inforancroc ora thoroafor deman

http://www.jove.com/video/3259/a-protocol-for-computer-based-protein-structure-function
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B Interesting: Hubs tend to link to small degree nodes G@HCI-KDD 4

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability
that a node with degree k links to a

node with degree K’ is;
kk'

0 — —
P 57

k=50, k'=13, N=1,458, L=1746

Psoss =0.15  p,, =0.0004

Jeong, H., Mason, S. P,, Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in

protein networks. Nature, 411, (6833), 41-42.
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B Example: Subgraph Discovery @ HCI-KDD %

de Sitter \facm m Sh'ing Theroryr

HIGH ENERGY PHYSICS;) (/] 7""".; 7
THEORY S :

e O Y s Flrnt Year Wilkinson
Quasinormal Modes of N o — WH Anisotropy
Black Holes and Black Branes L a4 e S

S5 8 R ;J_:____{etumated bridgeness = 1276)

GENERAL RELATMVITY * .~ &

AND QUANTUM COSMOLOGY " - S
Gopalan, P. K. & Blei, D. M. 2013. W = -_ .'u-." i Rk et S
Efficient discovery of overlapping i = : B ki T ;
communities in massive ALargu Mm Hlammhy '. B . )
networks. Proceedings of the from aSmﬂI! Exh‘a Dlmannlnn P R HIGH ENERGY PHYSICS:
National Academy of Sciences, F4 . . ' 'PHENOMENOLOGY
110, (36), 14534-14539. =
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B Why do we want to apply ML to graphs

@ HCI-KDD o

Holzinger Group, hci-kdd.org

A)
B)
C)

Discovery of unexplored interactions
_earning and Predicting the structure

Reconstructing the structure

Which joint probability distributions does a
graphical model represent?

How can we learn the parameters and structure
of a graphical model?

52 months

The chemical space

1. Find a
target

3.Hit-to-lead:
»| characterize
hits

® 10 possible small or-
ganic molecules

.| 2. Identify
L hits

® 10?2 stars in the observ-
able universe

$500,000,000
to
$2,000,000,000
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[ ]

B Example Question: Predicting Function from Structure  @HEI-KDD s
a) A
B.cereus 1 - -MIVSFMVAMDENRVIGKDNNLPWR- LPSELQYVKKTTMGHP- - - - - - - LIMGRKNYEA
B.anthracis 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP- - - - - - - LIMGRKNYEA
E.coli 1  ---MISLIAALAVDRVIGMENAMPWN- LPADLAWFKRNTLNKP- - - - - - - VIMGRHTWES
H.sapiens 1 MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFS

2 2.k 2, 2%¥F ® 3 oz.oqz W » St 14 O B
B.cereus 51 I---GRPLPGRRNIIVTRNEGYHVEGCEVV-HSVEEVFEL- - - - - - CKNEEEIFIFGGAQ
B.anthracis 51 I---GRPLPGRRNIIVTRNEGYHVEGCEVA- HSVEEVFEL------ CKNEEEIFIFGGAQ
E.coli 50 I---GRPLPGRKNIILSSQPGTD-DRVTWV-KSVDEAIAA------ CGDVPEIMVIGGGR
H. Bapiens 61 IPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSS
* dhkk hk ha.ess s . sl e s s . s = k¥
B.cereus 101 IYDLFL- - PYVDKLYITKIHHAFEGDTFFPEIDMTNWKEIFVEKG- - - LTDEKNPYTYYY
B.anthracis 101 IYDLFL- - PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG- - - LTDEKNPYTYYY
E.coli 99 VYEQFL- - PKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFH- - - DADAQNSHSYCF
H. aap:i.ens 121 VYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKF
ik, 3 W LA SR AL Mk Ry ol B w3 5E %3
N NH, OMe NH, OMe
- OMe @
ol Ll
H.N" N OMe \, Sy -
19 OMe 20 | @’
(CHo)4COOH \
NH OMe
2 NH, OMe il cl
N7 /
g A g
H,N" N H,NT N o
O(CH,)4COOH (CHp)sCOOH  °
24

How si

milar are two graphs? How similar is their

structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate

reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.

Holzinger Group, hci

-kdd.org
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B Graph Comparison G@HCI-KDD 5

= Similar Property Principle: Molecules having
similar structures should have similar activities.

" Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

" Sets as sets: Measure similarity by the Jaccard
distance

» Sets as points: Measure similarity by Euclidean
distance

" Problems: Dimensionality, Non-Euclidean cases
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v G HCI-KDD o

05 Digression:
What is
similarity?
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What is Similar? @HO-

w4 ' "™ “"“!" Fegr 3N
& ' _ < B ”, : -
| . ‘r.- 5 f b ( "n ,' : ’n ‘*! _ !T

e

Image credit to Eamonn Keogh (2008)
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Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.
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v @HCI-KDD o4

Rock :
Scissors

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.
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B Similarity and Correspondence

Bronstein, A. M., Bronstein, M. M. & Kimmel, R. 2008. Numerical
geometry of non-rigid shapes, New York, Springer.

http://www.inf.usi.ch/bronstein/

Structure Structure

Correspondence quality = structure similarity

(distortion)

Minimum possible correspondence distortion

Holzinger Group, hci-kdd.org 91
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B Invariant Similarity GHCI-KDD

Similarity

Invariant similarity

sible correspo

—d(X,Y)

Holzinger Group, hci-kdd.org 92 Machine Learning Health 06



B Gromov-Hausdorff dist: finding the opt. correspondence @HC-KDD::

Gromov, M. (1984) Infinite groups as
geometric objects.

oy -
LN o
o IR

Felix Hausdorff

Michail Gromov (1868-1942)

(1943-) p—k \
5 AR W i A A%
¥ ik -
(X, 6X) Correspondence (YV, (SY)
Metric space Metric space
1
dgr(X,Y) = —min max |6x(z;,x;) — 6y (y;,v;)
G ’ 5 € (ria el | X\ 11 J] |
(z4,y5)€C

Ve, Jy; st.(zs ;) € C  Vy;dz; s.t.(z;, y;) € C

Discrete optimization over correspondences is NP hard !
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Bl Distinguish topological spaces @ HCI-KDD %

Counts the number of “i-dimensional holes”

bi is the “i-th Betti number”

y e
R J/ﬂd}

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)

Zomorodian, A. & Carlsson, G. 2005. Computing Persistent Homology. Discrete &
Computational Geometry, 33, (2), 249-274.
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B8 Structural Patterns are often hidden in weakly str. data  @He1-KDD -

= Statement of Vin de Silva (2003), Pomona College:

= |let M be atopological or metric space, known as the
hidden parameter space;

= et R? be a Euclidean space, the observation space,
= and let f: M — R% be a continuous embedding.

= Furthermore, let X € M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;,i € I} defined on a
probability space (Q, F, P), and denote Y = f(X) c R
the images of these points under the mapping f.

= \We refer to X as hidden data, and Y as the observed data.
= M, f and X are unknown, butY is - so can we identify M?
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B Topological Data Mining

" Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014. On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5 19.
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v G HCI-KDD o

06 Review of basic
concepts, metrics
and measures
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B Complex Biological Systems key concepts @ HCI-KDD %

In order to understand complex biological systems, the
three following key concepts need to be considered:

(i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

(ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

(iii) modularity, vertices sharing similar functions are
highly connected.

Network theory can largely be applied for biomedical
informatics, because many tools are already available
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B8 Network Basics on the Example of Bioinformatics @ HCI-KDD 2%

G(V,E) Graph
V..vertex
E ..edge{a,b}
abevV,a#b

_._..._ ink
Hodgman, C. T,, . Hub L

French, A. & . Critical node w— Critical link
Westhead, D. R.

(2010) Bioinformatics. O Bottle neck W Second order hub
Second Edition. New | Links comprisingan  «~ " Clique/module
York, Taylor & Francis. interaction cycle e
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B8 Baby Stuff: Computational Graph Representation @ HCI-KDD %

Adjacency (o-'ja-s°n(t)-sé) Matrix A = (a;y) ay, = { 1, if{jk} €E

0010107
000011
100010
000011
111100

010100

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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@ HCI-KDD o

B Example: Tool for Node-Link Visualization

Type

1 Data

HEE R E l- H = H HEE
WEN W NN L | HEN N
il il NN O EEEEEEENNBN]
HEEEEETEEEEEEEEREN
EEEE R EEEES S S SEE NN
HEEENENGEENEESENDEEDNN
WO e nE NN NE NN
HEEETEEEENEEEN
‘AT EEEEEEE
RN EEE NN

@1t

v||

O XS

Jean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit

101 Machine Learning Health 06

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. IEEE, 167-174.
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B Some Network Metrics (1/2) G@HCI-KDD 5

Order = total number of nodes n; Size = total number of links (a): @
adge / connection s
ZZ aij Y /
S ] -
@ -
® g ®

Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

C . Zti C _ 1 Z C b
“ok(k— 1) VA
l
¢ J _F..-"/’-,j
Path length (c) = is the arithmetical @”’T ©
3 mean of all the distances: '
1

| = —z d;,

2 nn—1) 4L Y
[#]

i

Costa, L. F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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B Some Network Metrics (2/2) G@HCI-KDD 5

= Centrality (d) = the level of “betweenness- centrality” of a node | (“hub-node
in Slide 28); d
@ k=2

_ 4@
k4 |
@3

= Nodal degree (e) = number of links connecting i to its neighbors: k; = },; a;;

f
! ]
Modularity (f) = describes the possible .\ /.
- o formation of communities in the network,
@ ) indicating how strong groups of nodes . pu &

@ form relative isolated sub-networks within
o 9 the full network (refer also to Slide 5-8).
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B Network Topologies GHCI-KDD -
a
regular small-world random
™ o <
o3| ok | c|
(% [ L4 o @ L] o ® |
@ @ o & & -
® o ® ® 9 ® ® 9 ®
randomness g
b
o
Scale-free network
- -
O -
® 9 ®

Van Heuvel & Hulshoff (2010)
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B Small-World Networks

Regular Small-world
p=1
p=0 p=0.0001

Increasing randomness

/ 29.000 citations ..

Watts, D. J. & Strogatz, S. (1998) Collective dynamics of small-world networks. Nature, 393, 6684, 440-442.

Milgram, S. 1967. The small world problem. Psychology today, 2, (1), 60-67.
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Bl Slide 5-15 Graphs from Point Cloud Data Sets

G HC1-KDD o>

-

-\, N~ Nl

RNOEY 7L S
NS~ NN AR 7
{ = L A ~
5
Soe oL e J!#\}FJ
(a) Initial set of points. (b) 1-ball Graph. (c) 1-Nearest-Neighbor Graph.

(e) 3-Nearest-Neighbor Graph. (f) Relative Neighborhood Graph.

(g) Gabriel Graph.

(d) Euclidean Minimum Spanning
Tree.

(h) 3-Skeleton Graph, 5 = 1.1:
black edges, 3 = 0.9: grey edges.

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:

Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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B Finally a practical example @ HCI-KDD %

07 How do you get
point cloud data
from natural
images?
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B Graphs from Images G@HCI-KDD 5

et
%
N .

Tl

el &

c) Watershed Algorithm d) SLIC superpixels

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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B Example Watershed Algorithm

@ HCI-KDD o

Algorithm 4.2 Watershed transform w.r.t. topographical distance based on image integration
via the Dijkstra-Moore shortest paths algorithm.

1:

= e AN o

procedure ShortestPathWatershed;

INPUT: lower complete digital grey scale image G = (V, E, im) with cost function cost.
OUTPUT: labelled image lab on V.

#define WSHED 0 (*label of the watershed pixels *)

(+ Uses distance image dist. On output, distfv] = im[v], for all v € V. #)

for all v £ V do (+ Imitialize =)
lablv] «— 0 ; dist|v| — oo
end for
for all local mmima m, do
for all v = m,; do
lablv) — i ; dist[v] — im[v] (* mitialize distance with values of minima )
end for

4: end for

. while V' £ (1 do
16:
17:
18:
19:
20:
21:
22:
23:
24:
2h:

26:

u— GetMinDist(V) (+find u € V with smallest distance value dist|u] )
V — ¥\ {u}
for all v £ V with (u,v) £ E do
if dist|u] + cost[u,v] < dist[v] then
dist|v] — dist[u] + cost(u,v)
lablv| — lab|u]
else if labv| # WSHED and dist|u] + cost|u,v| = dist[v] and lablv| # lablu| then
lablv] = WSHED
end if
end for
end while

Meijster, A. & Roerdink, J. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 1995. Springer, 790-795.
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B Graphs from Images: Watershed + Centroid @ HCI-KDD 2
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B Slide 5-20 Graphs from Images: Voronoi <> Delaunay G@HCI-KDD o

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, J. F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
Machine Learning Health 06

Holzinger Group, hci-kdd.org 112



B8 Are graphs better than feature vectors ? @ HCI-KDD %

" More expressive data structures
" Find novel connections between data objects

= Fit for applying graph based machine learning
techniques

= New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, P,,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin) 7-19

Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014), IEEE (2014) in print
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B Watershed methods @Ha-mngin

.. .
" Topographic maps => .

landscapes with height structures . : __

= Segmentation into regions of pixels

" Assuming drops of water raining on the map

" Following paths of descent

= |Lakes called catchment basins

" Also possible: Flooding based

" Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6), 583-598.
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B Watershed 4 Steps GHCI-KDD -

= 1) Transformation into a topographic map
= Convert gray values into height information

= 2) Finding local minima
" |nspecting small regions in sequence

= 3) Finding catchment basins
= Algorithm simulating flooding
= Graph algorithms such as Minimum Spanning Trees

= 4) Erecting watersheds
= Artificial divide between catchment basins
= Final segmentation lines
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B Watershed Algo based on connected components @ HCI-KDD 2%

714 |8 12|11} 3 —fm| |« | =m0 0|0 |0 1 L

T |7 |8 [12] 117 1IN« AT O(0]|]0 (0|1 |1

13] 13 15(16|16] 13| [T |+ | ~|~| It 1[0 oo o011

1901918171157 | [T [T 1T =1 ~IL [0 ]0 0222

200 181 17| 16| 15| & =S| =222 —-pN | 2 (2 |2 |2 |2 B2

(a) The original image (b) Each pixel connect to lowest  (c¢) The Image with labels
minimum

Connects each pixel to the lowest neighbor pixel, all pixel connected to same lowest
neighbor pixel form a segment
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B Region Merging (from here see Tutorial Bernd Malle) @ HCI-KDD %

= Region Merging
= Based on Kruskals MST algorithm

=  Takes input image as natural graph with vertices := pixels and
edges := pixel neighborhoods

= Visits edges in ascending order of weight and merges regions
if they satisfy a certain criterion

= Flexible as merging criterion can be adapted as desired (for
amount, size, or shape of resulting regions)

Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59 (2004) 167-181
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B Challenges

@ HCI-KDD o

= We want to find “interesting” novel patterns
(rules, anoma

Prob
Prob

Prob

Prob

em #1: H

em #2: H

ies, outliers, similarities, ...)
ow to get a graph?
ow do graphs evolve?

em #3: What tools to apply?
em #4: Scalability to TB, PB, EB ...
Success is in repeatability and scalability

Holzinger Group, hci-kdd.org
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Bl State-of-the-Art Facts GHCI-KDD -

= Study of complex networks started in the 1990s with the
insight that real networks contain properties not present
in random (Erdos-Renyi) networks.

= Meanwhile networks and network-based approaches
form an integral part of many studies throughout the
sciences.

= Graph-Theory provides powerful tools to organize data
structurally and in combination with statistical and
machine learning methods allows a meaningful analysis of
underlying processes.

= For instance, a mapping of causal disease genes and
disorders as made available by the OMIM database
provided novel insights into disease patterns, as recently
demonstrated by investigating the diseasome
(http://diseasome.eu).
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@ HCI-KDD -

k you!
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v G HCI-KDD o

Questions
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B Sample Questions (1/3) G@HCI-KDD 5

= Describe the clinical decision making process!

= Which type of graph is particularly useful for
inference and learning?

= What is the key challenge in the application of
graphical models for health informatics?

= What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

= What main difficulties arise during breast cancer
Prognosis?

= What can be done to increase the robustness of
prognostic cancer tests?

= Inference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?
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B Sample Questions (2/3) G@HCI-KDD 5

= Why do we want to apply ML to graphs?

Describe typical ML tasks on the example of
olood cancer cells!

f you have a set of points — which similarity
measures are useful?

Why is graph comparison in the medical domain
useful?

Why is the Gromov-Hausdorff distance useful?

What is the central goal of a generative
probabilistic model?

Describe the LDA-model and its application for
topic modelling!
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B Sample Questions (2/3) G@HCI-KDD 5

Briefly describe the stochastic variational inference
algorithms!

What is the principle of a bandit?
How does a multi-armed bandit (MAB) work?
In which ways can a MAB represent knowledge?

What is the main problem of a clinical trail — and
maybe the main problem in clinical medicine?

Why are rare diseases both important and relevant?
Describe an example disease!

What is the big problem in clinical trials for rare
diseases?

What did Richard Bellman (1956) describe with
dynamic programming?
Why are graph bandits a hot topic for ML research?
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B Solutions of the Quiz GHCI-KDD -

= 1=this is a factor graph of an undirected graph — we have seen this in protein networks (refer to slide
Nr. 70 in lecture 5). Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For example, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A,B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
information please consult: http://deepdive.stanford.edu/inference

= 2=thisis the decomposition of a tree, rooted at nodes into subtrees
= 3=an example for machine translation, Image credit to Kevin Gimpel, Carnegie Mellon University

= 4=the famous expectation-utility theory according to von Neumann and Morgenstern (1954): a
decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he is
maximizing the expected value of some function defined over the potential outcomes at some
specified point in the future.

= 5= MYCIN —expert system that used early Al (rule-based) to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for
patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have
the suffix "-mycin".

= 6= metabolic and physical processes that determine the physiological and biochemical properties of a
cell. These networks comprise the chemical reactions of metabolism, the metabolic pathways, as well
as the regulatory interactions that guide these reactions.

= 7= W.ith the sequencing of complete genomes, it is now possible to reconstruct the network of
biochemical reactions in many organisms, from bacteria to human. Several of these networks are
available online, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG), EcoCyc, BioCyc etc.
Metabolic networks are powerful tools for studying and modelling metabolism.
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v G HCI-KDD o

Appendix
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v G HCI-KDD o

1) Reasoning under
Uncertainty
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Bl Remember: Taxonomy of Decision Support Models @HCI-KDD

Decision Model

Quantitative (statistical) Qualitative (heuristic)

W : Truth tabl Decision Reasoning
supervise Bayesian ru ables trees models
W . Boolean Expert
unsupervise uzzy sets Logic Non- systems

parametric

Partitioning Critiquing
systems

Neural

Logistic
network &

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer.
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B Dealing with uncertainty in the real world @ HCI-KDD %

= The information available to humans is often
imperfect — imprecise - uncertain.

" This is especially in the medical domain the case.
= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Ais true THEN A is non-false and
IF B is false THEN B is non-true

" Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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B MYCIN - rule based system - certainty factors @ HCI-KDD %

MYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

Goal oriented strategy (“Ruckwartsverkettung”)

To every rule and every entry a certainty factor (CF) is
assigned, which is between O und 1

Two measures are derived:
MB: measure of belief
MD: measure of disbelief

Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] —MD[h]

CF is positive, if more evidence is given for a hypothesis,
otherwise CF is negative

CF[h] =+1->his 100 % true
CF[h] =—1 -> h is 100% false
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Original Example from MYCIN QHCI-KDD -

h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 is febrile
h, = The name of PATIENT-1 is John Jones

CF[h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febriie

CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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B MYCIN was no success in the clinical practice @ HCI-KDD 2%

https://www.youtube.com/watch?v=IVGWMOCKNWA (“real nurse triage”)
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B8 Gamuts: Triangulation to find diagnoses @HCI-KDD -4

Gamut F-137

PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. latrogenic (eg, surgical injury; chest tube; therapeu-
tic avulsion or injection; subclavian vein puncture)
2. Infection (eg, tuberculosis; fungus disease; abscess)
3. Neoplastic invasion or compression (esp. carcinoma
of lung)

UNCOMMON

Aneurysmg, aortic or other

Birth trauma (Erb’s palsy)

Herpes zoster

Neuritis, peripheral (eg, diabetic neuropathy)
Neurologic dis:aas.eE (eg. hemiplegia: encephalitis;
polio; Guillain-Barré S.)

Correlation of radiographic findings
and Gamut with patients' clinical
and lab findings to arrive at the
most likely diagnosis

Al S

Reeder, M. M. & Felson, B. 2003.

6. Pneumonia
Reeder and Felson's gamuts in 7. Trauma
radiology: comprehensive lists of Reference
roentgen differential diagnOSIS/ New 1. Prasad S, Athreya BH: Transient paralysis of the phrenic
i nerve associated with head injury. JAMA 1976:236:2532-
York, Springer Verlag. 7en3
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B Example - Gamuts in Radiology @HCI-KDD o

REEDER AND FELSON'S

GAMUTS IN RADIOLOGY

GAMUT G-25

ERCSIVE GASTRITIS*

COMMON Reeder, M. M. & Felson, B. (2003) Reeder
1. Acute gastritis (eg, alcohol abuse) f . . )

I S = and Felson’s gamuts in radiology:

3. Drugs (eg, aspirin il £ll; NSAID H; steroids) comprehensive lists of roentgen

- Ef;’;ﬁm”’”” Lo differential diagnosis. New York, Springer
6_[Normal areae gastricae ] Verl ag.

T. Peptic ulcer; hyperacidity

UNCOMMON

1. Corrosive gastritis £l

2. Cryplosporndium antritis

3. [Lymphoma]

4. Opportunistic infection (eg, candidiasis {moniliasis} Ell; herpes simplex; cytomegalovirus)
5. Postoperative gastritis

6. Radiation therapy

7. Zollinger-Ellison S. Ell: multiple endocrine neoplasia (MEM) 5.

* Superficial erosions or aphthoid ulcerations seen especially with double contrast technigue.

[ ] This condition does not actually cause the gamuted imaging finding, but can produce imaging changes that simulate it.
http://rfs.acr.org/gamuts/data/G-25.htm
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m Reasoning under uncertainty @ HCI-KDD %

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned
" Prior = belief before making a particular observation

= Posterio elief after making the observation and is
the\prior for t ext observation — intrinsically
increxgental

p(y;|z:)p(x;)

— 3l Y, )p(T;)

p(zi|y;)
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B Remember: 2 types of decisions (Diagnosis vs. Therapy) @He1-DD 4

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:

= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks vy, if an
obstruction of more than z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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B Future Outlook

@ HCI-KDD o

The future is in integrative ML, i.e. combining relational databases,
ontologies and logic with probabilistic reasoning models and
statistical learning — and algorithms that have good scalability

Run Time [s]

i 2o |

Holzinger Group, hci-kdd.org

w Smokes(x) A Friends(x,y) = Smokes(y) I

5000 10000 15000 20000
Domain Size (Number of People)

|
25000

0 30000

Learns a model over
900,030,000 random variables

Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J. & De Raedt, L.
Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2011. AAAI Press, 2178-
2185.
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G HCI-KDD -

. $=2 a0 oyl a3 a4 o=2 a=h
i ® = brngen sie bitte das  auto  urikk

’ T S S

y = please rmetum the cur

s T | U205+ » s Eriyl)

= The identitly of ORGANISM-1 is streptococcus O
h, = PATIENT-1 is febrile ‘
hs = The name of PATIENT-1 is John Jones

CF[h,.E] = .8 . There is strongly suggestive evidence (.8) thal
the identity of ORGANISM-1 is sirepltococcus /
'

CF[h,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[h,E] = +1 : Itis definite (1) that the name of PATIENT-1 is 6
John Jones

5
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