

Dimensionality Reduction and Subspace Clustering: Example for the Doctor-in-the-Loop

a.holzinger@hci-kdd.org http://hci-kdd.org/machine-learning-for-health-informatics-course

Red thread through this lecture

QHCI-KDD 3€

- 01 Classification vs Clustering
- 02 Feature spaces, feature engineering
 - Feature selection, feature extraction
- 03 The curse of dimensionality
- 04 Dimensionality reduction
 - PCA, ICA, FA, MDS, LDA Isomap, LLE, Autoencoder
- 05 Subspace clustering and analysis
- 06 Projection Pursuit: "What is interesting?"

Holzinger Group, hci-kdd.org

QHCI-KDD-%

Classification VS. Clustering

QHCI-KDD -Reflection

Key Challenges

Holzinger Group, hci-kdd.org

QHCI-KDD-

Machine Learning Health 07

- Uncertainty, Validation, Curse of Dimensionality
- Large spaces gets sparse
- Distance Measures get useless
- Patterns occur in different subspaces
- Most pressing question "What is interesting?"

Always with a focus/application in health informatics

- Latent Dirichlet Allocation
- LDA = linear discriminant analysis (Attention!)

Holzinger Group, hci-kdd.org

QHCI-KDD=

- 2) Identify structure/patterns (A/C)?
- 3) Predicting an item set, identifying to which set of categories a new observation belongs (A/C)?
- 4) Assigning a set of objects into groups (A/C)?
- 5) Having many labelled data points (A/C)
- 6) Using the concept of supervised learning (A/C)?
- 7) Grouping data items close to each other (A/C)?
- 8) Used to explore data sets (A/C)?

Holzinger Group, hci-kdd.org Holzinger Group, hci-kdd.org

SUPERVISED LEARNING

Class Prediction

- x -- set of pixel intensities
- Typical questions include:
 - Is this protein functioning as an enzyme? Does this gene sequence contain a splice site?
 - Is this melanoma malign?
- Given object x predict the class label y
- If $y \in \{0,1\} \rightarrow$ binary classification problem
- If $y \in \{1, ..., n\}$ and is $n \in \mathbb{N} \to \text{multiclass problem}$
- If $y \in \mathbb{R} \to \text{regression problem}$

Holzinger Group, hci-kdd.org

W SVM - Vapnik, 1992

Uses a <u>nonlinear mapping</u> to

transform the original data

(input space) into a higher

dimension (feature space)

support vectors);

QHCI-KDD €

Classification (Supervised learning, Pattern Recogn., Prediction)

 Supervision = the training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations;

- New data is classified based on the training set
- Important for clinical decision making
- Example: Benign/Malign Classification of Tumors

Clustering (Unsupervised learning, class discovery,)

Holzinger Group, hci-kdd.org

Machine Learning Health 07

Learning Process: Algorithm selection is crucial

QHCI-KDD≤

QHCI-KDD-%

Holzinger Group, hci-kdd.org

SVM vs. ANN

SVM

Deterministic algorithm

· Hard to learn - learned in

quadratic programming

Using kernels can learn

very complex functions

Nice generalization

batch mode using

properties

techniques

Nondeterministic algorithm

mathematical foundation

functions—use multilayer

perceptron (nontrivial)

Generalizes well but

doesn't have strong

Can easily be learned in

incremental fashion

To learn complex

Classifiers Examples

Holzinger Group, hci-kdd.org

QHCI-KDD 3€

■ Naïve Bayes (NB) – see Bayes' theorem with independent assumptions (hence "naïve")

Ramaswamy, S. & Golub, T. R. (2002) DNA Microarrays in Clinical Oncology. Journal of Clinical Oncology, 20, 7, 1932-1941.

Decision Trees (e.g. C4.5)

Class Discovery

UNSUPERVISED LEARNING

Assign Class Labe

• NN – if x_1 is most similar to $x_2 \Rightarrow y_1 = y_2$

$$x_i = argmin_{x \in D} ||x - x_i||^2 \Rightarrow y_i = y_i$$

 SVM – a plane/hyperplane separates two classes of data very versatile for classification and clustering - also via the Kernel trick in high-dimensions

Finley, T. & Joachims, T. Supervised clustering with support vector machines. Proceedings of the 22nd international conference on Machine learning, 2005. ACM, 217-224.

Holzinger Group, hci-kdd.org

Clinical use: SVM are more accurate than ANN

nger Group, hci-kdd.org

Holzinger Group, hci-kdd.org

QHCI-KDD =

Machine Learning Health 07

Kim, S. Y., Moon, S. K., Jung, D. C., Hwang, S. I., Sung, C. K., Cho, J. Y., Kim, S. H., Lee, J. & Lee, H. J. (2011) Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network. Korean J Radiol, 12, 5, 588-594.

Holzinger Group, hci-kdd.org

= classification method for both linear and nonlinear data:

separating hyperplane (i.e., "decision boundary");

Within the new dimension, it searches for the linear optimal

By nonlinear mapping to a sufficiently high dimension, data

from two classes can always be separated with a hyperplane;

The SVM finds this hyperplane by using support vectors (these

are the "essential" training tuples) and margins (defined by the

Example: Multiclass cancer diagnosis (for Exercise)

@HCI-KDD €

amaswarny, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe, E. & Mesirov, J. P. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences, 98, (26), 15149-15154, doi:10.1073/pnas.211566398

Wu et al. (2008) Top 10 algorithms in data mining. Knowledge & Information Systems, 14, 1, 1-37.

· for generation of decision trees used for classification, (statistical classifier, Quinlan (1993));

simple iterative method for partition of a dataset in a user-specified n of clusters, k (Lloyd

for finding frequent item sets using candidate generation and clustering (Agrawal & Srikant

Expectation-Maximization algorithm for finding maximum likelihood estimates of parameters n models (Dempster et al. (1977));

Adaptive Boost

· one of the most important ensemble methods (Freund & Shapire (1995));

a method for classifying objects based on closest training sets in the feature space (Fix &

can be trained efficiently in a supervised learning setting for classification (Domingos &

Holzinger Group, hci-kdd.org

Example K-means

Holzinger Group, hci-kdd.org

QHCI-KDD 3€

Partite a data set into k clusters so that intracluster variance is a minimum

Borgwardt, K., Gretton, A., Rasch, J., Kriegel, H.-P., Schölkopf, B. & Smola, A. 2006. Integrating

structured biological data by kernel max. mean discrepancy. Bioinformatics, 22, 14, e49-e57.

V ... variance (objective function)

S_i ... cluster

Y_i ... mean

D ... set of all points xi

k ... number of clusters

$$V(D) = \sum_{i=1}^{k} \sum_{x_i \in S_i} (x_j - \mu_i)^2$$

Holzinger Group, hci-kdd.org

Advantages of k-Means?

© HCI-KDD - %

What is the computational time of k-means?

 NP-hard in Euclidean space, however, if k and d can be fixed than it can be solved within:

> $\mathcal{O}(npkt)$ compute kn distances in p dimensions

number of iterations

Can be small if there's indeed a cluster structure in the data

Jain, A. K. 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters, 31, (8), 651-666.

a search ranking algorithm using hyperlinks on the Web (Brin & Page (1998));

 Classification And Regression Trees as predictive model mapping observations about items to conclusions about the goal (Breiman et al 1984);

SVM support vector machines offer one of the most robust and accurate methods among all wellknown algorithms (Vapnik (1995)).

Example

QHCI-KDD 3€

Algorithm 1: Example for a classical weight balanced k-means algorithm

Input: $d, k, n \in \mathbb{N}, X := \{x_1, ..., x_n\} \subset \mathbb{R}^d, S := \{s_1, ..., s_k\} \subset \mathbb{R}^d$ Output: Clustering $C = (C_1, \dots, C_k)$ of X and the arithmetic means c_1, \dots, c_k

1. Partition X into a clustering $C = (C_1, ..., C_k)$ by assigning $x_i \in X$ to a cluster C_i that is closest to site $s_i \in S$.

 Update each site s_i as the center of gravity of cluster C_i; if |C_i| = 0, choose $s_i = x_l$ for a random $l \le n$ with $x_l \ne s_j$ for all $j \le k$. If the sites change, go to

Merely an increase in awareness of physicians on risk factors for ARA in children can be sufficient to change their attitudes towards antibiotics prescription.

Our results can also be useful when preparing recommendations for antibiotics prescription and to guide the standardized health data record.

Yildirim, P., Majnarić, L., Ekmekci, O. I. & Holzinger, A. 2013. On the Prediction of Clusters for Adverse Reactions and Allergies on Antibiotics for Children to Improve Biomedical Decision Making. In: Lecture Notes in Computer Science LNCS 8127, 431-445

Holzinger Group, hci-kdd.org Machine Learning Health 07

The Basics: Centroid and Medoid

QHCI-KDD =

. Centroid: mean of the points in the cluster.

id: point in the cluster that is closest to the centroid. $m = \arg \min_{x \in C} d(x, \mu)$

Why do we need Clustering?

 Group similar objects into clusters together, e.g.

For image segmentation

Grouping genes similarly affected by a disease

Clustering patients with similar diseases

Cluster biological samples for category discovery

Finding subtypes of diseases

Visualizing protein families

• Inference: given x_i , predict y_i by learning f

■ No training data set – learn model and apply it

Holzinger Group, hci-kdd.org

GHCI-KDD 5€

Holzinger Group, hci-kdd.org

Q HCI-KDD - %

02 Feature **Engineering**

"Applied ML is basically feature engineering. Andrew Yan-Tak Ng"

tolzinger Group, hci-kdd.org

Holzinger Group, hci-kdd.org

- Feature:= specific measurable property of a phenomenon being observed.
- Feature engineering:= using domain knowledge to create features useful for ML. ("Applied ML is basically feature engineering. Andrew Na").
- Feature learning:= transformation of raw data input to a representation, which can be effectively exploited in ML.

Holzinger Group, hci-kdd.org

Let do a Quiz again: Similarities of feature vectors

QHCI-KDD≤

Look at the examples below, which distance measures would you select?

Holzinger Group, hci-kdd.org

QHCI-KDD-%

03 Curse of **Dimensionality** Intuitively: a domain with a distance function

- Formally: Feature Space \mathcal{F} = (\mathcal{D} , d)
 - D = ordered set of features
 - $d: D \times D \to \mathbb{R}_0^+$... a total distance function; true for
 - $\forall p, q \in \mathcal{D}, p \neq q : d(p,q) > 0$ (strict)

Feature Selection: Overview

QHCI-KDD-

Image credit to Chloe Azencott

Holzinger Group, hci-kdd.org

Bengio, S. & Bengio, Y.

on Neural Networks, 11, (3), 550-557.

Machine Learning Health 07

Remember: The curse of dimensionality

QHCI-KDD 3€

A Metric Space is a pair (X, d) where

- X is a set and $d: X \times X \to \mathbb{R}^+$, called the metric, s.t. 1. For all $x, y, z \in X$, $d(x, y) \le d(x, z) + d(z, y)$.
- 2. For all $x, y \in X$, d(x, y) = d(y, x).
- 3. d(x, y) = 0 if and only if x = y.

Remark 1. One example is \mathbb{R}^d with the Euclidean metric. Spheres S^n endowed with the spherical metric provide another example.

$$d:\mathcal{X}\to\mathbb{R}$$

$$d(x,x)=0$$

$$d(x^1,x^2)=d(x^2,x^1) \ \ \text{symmetry}$$

$$d(x^1,x^2)\leq d(x^1,x^3)+d(x^3,x^2) \ \text{triangle inequality}$$

Holzinger Group, hci-kdd.org

Feature Selection vs. Feature Extraction

QHCI-KDD-%

- Feature selection is just selecting a subset of the existing features without any transformation
- Feature extraction is transforming existing features into a lower dimensional space

Blum, A. L. & Langley, P. 1997. Selection of relevant features and examples in machine learning. Artificial intelligence, 97, (1), 245-271.

Holzinger Group, hci-kdd.org Machine Learning Health 07

Examples for High-Dimensional Biomedical Data

@HCI-KDD €

Medical Image Data (16 - 1000+ features)

Nature 508, 199-206 doi:10.1038/nature13185

Holzinger Group, hci-kdd.org inger Group, hci-kdd.org Biomedical Signal Data (10 - 1000+ features)

http://www.nature.com/articles/srep21471#f1

http://www.mdpi.com/1424-8220/14/4/6124/htm Holzinger Group, hcl-kdd.org http://www.clinicalgaitanalysis.com/data/

Machine Learning Health 0

Examples for High-Dimensional Biomedical Data

GHCI-KDD €

- Text > 10⁹ documents × 10⁶ words/n-grams features correspond to words or terms, between 5k to 20k features
- Text (Natural Language) is definitely very important for health:
 - Handwritten Notes, Drawings
 - Patient consent forms
 - Patient reports
 - Radiology reports
 - Voice dictations, annotations
 - Literature !!!

https://www.researchgate.net/publication/255723699_An_Answer_to_Who_Needs_a_Stylus_o
n_Handwriting_Recognition_on_Mobile_Devices
Hollanger Group, Leb4du.org.

Machine Learning Health 07

Complexity and really BIG DATA

Yugi, K. et al. 2014. Reconstruction of Insulin Signal Flow from Phosphoproteome and Metabolome Data. Cell Reports, 8, (4), 1171-1183, doi:10.1016/j.celrep.2014.07.021.

 Metabolome data (feature is the concentration of a specific metabolite; 50 – 2000+ features)

http://www.nature.com/ncomms/2015/151005/ncomms9524/fig_tab/ncomms9524_F5.html

Holzinger Group, hci-kdd.org 38 Machine Learning Healt

Complex Example: Non-Standardized Text

GHCI-KDD €

visual analytics, New York, IEEE Computer Society Press.

Thomas, J. J. & Cook, K. A.

development agenda for

Holzinger Group, hci-kdd.org

2005. Illuminating the path: The research and

Machine Learning Health 07

Why are many features problematic?

QHCI-KDD-

- Hyperspace is large all points are far apart
- Computationally challenging (in time and space)
- Complexity grows with n of features
- Complex models less robust more variance
- Statistically challenging hard to learn
- Hard to interpret and hard to visualize
- Problem with redundant features and noise
- Question: Which algorithms will provide worse results with increasing irrelevant features?
- Answer: Distance-based algorithms generally trust all features of equal importance

Microarray Data (features correspond to genes, up to 30k features)

Example: UMLS - Unified Medical Language System

PHCI-KDD %

Holzinger Group, hci-kdd.org 42 Machine Learning Health

Space and Time: Simple example on gait analysis

GHCI-KDD %

Dominici, N., Ivanenko, Y. P., Cappellini, G., Zampagni, M. L. & Lacquaniti, F. 2010. Kinematic Strategies in Newly Walking Toddlers Stepping Over Different Support Surfaces. Journal of Neurophysiology, 103, (3), 1673-1684, doi:10.1152/jn.00945.2009.

Holzinger Group, hci-kdd.org 43 Muchine Learning Health 07 Holzinger Group, hci-kdd.org 44 Machine Learning Health 07 Holzinger Group, hci-kdd.org 45 Machine Learning Health

- Aspect 2: Concentration Effect
- Aspect 3: Irrelevant Attributes
- Aspect 4: Correlated Attributes

Kriegel, H. P., Kröger, P. & Zimek, A. 2012. Subspace clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2, (4), 351-364, doi:10.1002/widm.1057.

QHCI-KDD 3€

04 Dimensionality Reduction

Holzinger Group, hci-kdd.org

Approaches

QHCI-KDD-%

- Linear methods (unsupervised):
 - PCA
 - = FA
 - MDS
- Supervised methods:
- Non-linear methods (unsupervised):
 - Isomap (Isometric feature mapping)
 - LLE (locally linear embedding)
 - Autoencoders

Zimek, A., Schubert, E. & Kriegel, H. P. 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387, doi:10.1002/sam.11161.

Why should we reduce the dimensionality?

Curse of Dimensionality

QHCI-KDD-

- Data visualization only possible in R2 (R3 cave)
- Human interpretability only in R2/R3 (visualization can help sometimes with parallel coordinates)
- Simpler (=less variance) models are more robust
- Computational complexity (time and space)
- Eliminate non-relevant attributes that can make it more difficult for algorithms to learn
- Bad results through (many) irrelevant attributes?
- Note again: Distance-based algorithms generally trust that all features are equally important.

Holzinger Group, hci-kdd.org Machine Learning Health 07

Example 1: PCA

QHCI-KDD-

- Subtract mean from data (center X)
- · (Typically) scale each dimension by its variance
- · Helps to pay less attention to magnitude of dim
- · Compute covariance matrix S
- · Compute k largest eigenvectors of S
- · These eigenvectors are the k principal components

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition, New York, Springer, doi:10.1007/978-0-387-84858-7. Example: Neonatal Screening (2/3)

Challenge

GHCI-KDD 5€

- Given n data points in d dimensions
- Conversion to m data points in r < d dimensions
- Challenge: minimal loss of information *)
- *) this is always a grand challenge, e.g. in k-Anonymization see later in this
- Very dangerous is the "modeling-of-artifacts"

Holzinger Group, hci-kdd.org

Example 2 ICA (Motivation: Blind Source Separation)

@HCI-KDD €

 Suppose that there are k unknown independent sources

$$\mathbf{s}(t) = [s_1(t), \dots, s_k(t)]^T$$
 with $E\mathbf{s}(t) = \mathbf{0}$

A data vector x(t) is observed at each time point t, such that x(t) = A s(t)

where **A** is a $n \times k$ full rank scalar matrix

Holzinger, A., Scherer, R., Seeber, M., Wagner, J. & Müller-Putz, G. 2012. Computational Sensemaking on Examples of Knowledge I Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L. & Renda, M. (eds.) Informa Bio- and Medical Informatics, Lecture Notes in Computer Science, LNCS 7451. Heidelberg, New York: Springer, pp. 166-168

- The factors explain the correlation between the var
- Variance can be explained by Gaussian noise (and can be calculated)
- Advantage: generative approach and models BOTH the noise of the observations and their correlation!
- You can make assumptions on the distributions of noise and factors

Holzinger Group, hci-kdd.org

55

Machine Learning Health 0

⊊на-кор-

Example 6: Isomap

A Global Geometric Framework for Nonlinear Dimensionality Reduction

Joshus B. Tenenbeum, 14 Vin de Silva,2 John C. Langford3

Scientin to entirely with leage redones of high-demonistral data, such as placed from the parameter of demonistration production floating resourced by the force the parameter of demonistration production floating resourced by the officers consider statement helium to the high-demonistral demonstration. This means that the production of the production of the production of the production of the high-demonistration streamy proptic—MADOS auditory severe filters or 10° optic production of the production of the production of the production of the third statement of the production of the production of the production of the third statement of the production of the productin of the production of the production of the production of the Goal: Find projection onto nonlinear manifold

- 1. Construct neighborhood graph G: For all x_i, x_j If distance $(x_i, x_j) < \epsilon$ Then add edge (x_i, x_j) to G
- 2. Compute shortest distances along graph $\delta_G(x_t,x_f)$ (e.g., by Floyd's algorithm)
- 3. Apply multidimensional scaling to $\delta_G(x_i, x_j)$

http://isomap.stanford.edu/

Tenenbaum, J. B., De Silva, V. & Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290, (5500), 2319-2323, doi:10.1126/science.290.5500.2319. Mathine teaming feeting for

Autoencoders -> Restricted Boltzmann Machines

CHCI-KDD

 Based on Information processing in dynamical systems: Foundations of harmony theory by Smolensky (1986): Stochastic neural networks where the unit activation i = probabilistic

Right: A restricted Boltzmann machine with binaryhidden units and softmax visible units

h Binary hidden features

V Stable movie ratings

V Stable movie ratings

Salakhutdinov, R., Mnih, A. & Hinton, G. (2007) Restricted Boltzmann machines for collaborative filtering. ICML, 791-798.

 Find a set of points whose pairwise distances match a given distance matrix

- Given n x n matrix of pairwise distances between data points
- Compute n x k matrix X with coordinates of distances with some linear algebra magic
- Perform PCA on this matrix X

- x_i Point in d dimension
- y_i Corresponding point in r < d dimensions
- δ_{ij} Distance between x_i and x_j
- d_{ij} Distance between y_i and y_j
- Define (e.g.) $E(\mathbf{y}) = \sum_{i,j} \left(\frac{d_{ij} \delta_{ij}}{\delta_{ij}} \right)^2$
- \bullet Find y_i 's that minimize E by gradient descent
- Invariant to translations, rotations and scalings

Holzinger Group, hci-kdd.org 56 Machine Learning Health 07

Example 8: Autoencoders

QHCI-KDD 3€

- History: Dim-reduction with NN: Learning representations by back-propagating errors
- Goal: output matches input

Rumelhart, D. A., Hinton, G. E. & Williams, R. J. 1986. Learning representations by back-propagating errors. Nature, 323, 533-536.

Vincent, P., Larochelle, H., Lajoie, L., Bengio, Y. & Manzagol, P.-A. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research, 11, 3371-3408.

Holzinger Group, hci-kdd.org 59 Machine Learning Health 07

Summary

© HCI-KDD -

- Goal: Having m < p features
- Feature selection via
 - A) Filter approaches
 - B) Wrapper approaches
 - C) Embedded approaches (Lasso, Electric net, see Tibshirani, Hastie ...)
- Feature extraction
 - A) Linear: e.g. PCA
 - B) Non-linear: Autoencoders (map the input to the output via a smaller layer)

Seeking Life's Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
The many goes does not support to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the comparison to the 15XW goes in the harbor of the 15XW goes in the 15XW goes in the harbor of the 15XW goes in the 15XW goes in the harbor of the 15XW goes in the 15XW goes in the harbor of the 15XW goes in the 15XW goes in the harbor of the 15XW goes in the 15XW goes in the harbor of the 15XW goes in the 15XW goes in

SCIENCE • VOL. 272 • 24 MAY 1996

Holzinger Group, hci-kdd.org

Example 5: LDA

machine cearning realt

Autoencoders are "old"

GHCI-KDD %

QHCI-KDD %

Sigmoidal neurons and backpropagation: Rumelhart*), D. A., Hinton, G. E. & Williams, R. J. 1986. Learning representations by back-propagating errors. Nature, 323, 533-536.

 $\Delta(y,x) = ||y - x||_2^2$

• Linear autoencoders: Baldi, P. & Hornik, K. 1989. Neural networks and principal component analysis: Learning from examples without local minima. Neural networks, 2, (1), 53-58.

 $\min_{A,B} \sum_{x} ||ABx - x||_2^2$

*) David Rumelhart (1942-2011) was Cognitive Scientist working on math. Psychology

Holzinger Group, hci-kdd.org 60 Machine Learning Health G

TU

© HCI-KDD-%

05 Subspace Clustering* & Subspace Analysis

- * Two major issues
- (1) the algorithmic approach to clustering and
- (2) the definition and assessment of similarity versus dissimilarity.

Holzinger Group, hcl-kdd.org 61 Machine Learning Health 07 Holzinger Group, hcl-kdd.org 62 Machine Learning Health 07 Holzinger Group, hcl-kdd.org

K clusters

Holzinger Group, hci-kdd.org

- N data points
- D dimensions (original space)
- d dimensions (latent subspace)
- SC = clustering data whilst reducing the d of each cluster to a cluster-dependent subspace

Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec., 27, (2), 94-105, doi:10.1145/276305.276314.

High-Dimensional Data – The Curse of Dimensionality

GHCI-KDD ☆

- Irrelevant Dimensions
- Correlated and Redundant Dimensions
- Conflicting Dimensions
- Challenging Interpretation of data and analysis results

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor" meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540. Berlin: Springer, pp. 217-235.

Holzinger Group, hci-kdd.org 67 Machine Learning Health 07

Example: Full Space Clustering of High-Dimensional Data @HC-KDD-&

Visual Data Exploration

Keim, D., Kohlhammer, J., Ellis, G. & Mansmann, F. (eds.) 2010. Mastering the Information Age: Solving Problems with Visual Analytics. Goslar: Eurographics.

http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf

Holzinger Group, hci-kdd.ore 65 Machine Learning Health 9

High-Dimensional Data – The Curse of Dimensionality

HCI-KDD

- NN problem: Given n data points and a query point in an m —dimensional metric space
- find the data point closest to the query point.

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor" meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540. Berlin: Springer, pp. 217-235.

Holzinger Group, hci-kdd.org 68 Machine Learning Health 07

Overview of (major?) Subspace Analysis Techniques

HCI-KDD =

- Patterns may be found in subspaces (dimension combinations)
- · Patterns may be complementary or redundant to each other

07

nensional Data

THE OFFICE OF SECONDARY AND ADDRESS OF SECONDA

Holzinger Group, hci-kdd.org 66 Machine Learning Health 07

Challenges in High-Dim Data – Curse of Dimensionality

GHCI-KDD ; €

Concentration Effect

- Discriminability of similarity gets lost
- Impact on usefulness of a similarity measure
- High-Dimensional Data is Sparse

Optimization Problem and Combinatorial Issues
Feature selection and dimension reduction
2^d-1 possible subsets of dimensions (-> subspaces)

Holzinger Group, hci-kdd.org 69 Machine Learning Health 07

Subspace Concept

GHCI-KDD %

objectiD	age	blood pres.	sportactiv	income	trav. freq.
1	ABC	ABC	ABC	ABC	ABC
2	ABC	ABC	ABC	ABC	ABC
3	ABC	ABC	ABC	ABC	ABC
4	ABC	ABC	ABC	ABC	ABC
5	ABC	ABC	ABC	ABC	ABC
6	ABC	ABC	ABC	ABC	ABC
7	ABC	ABC	ABC	ABC	ABC
8	ABC	ABC	ABC	ABC	ABC
0	ABC	ARC	ARC	ARC	ARC

Tatu, A., Maass, F., Faerber, I., Bertini, E., Schreck, T., Seidl, T. & Keim, D. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. IEEE Symposium on Visual Analytics Science and Technology (VAST), 2012 Seattle. IEEE, 63-72, doi:10.1109/VAST.2012.6400488. **Effects in High-Dimensional Spaces**

MCI-KDD 3€

- Attention: Similarity measures lose their discriminative ability
- Noise, irrelevant, redundant, and conflicting dimensions appear

Holzinger Group, hci-kdd.org 76 Machine Learning Health 07

Again: What is a Relevant Subspace for NN-Search?

©HCI-KDD-%

Subspace clustering aims at finding clusters in different axisparallel or arbitrarily-oriented subspaces [1]

Subspace Outlier Detection search for subspaces in which an arbitrary, or a user-defined object is considered as outlier [2].

[1] Kriegel, H. P., Kroger, P. & Zimek, A. 2009. Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transactions on Knowledge Discovery from Data (TKDD), 3, (1), 1-58, doi:10.1145/149577.1497578.

[2] Zimek, A., Schubert, E. & Kriegel, H. P. 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387.

Motivation ...

Hund, M., Behrisch, M., Färber, I., Sedlmair, M., Schreck, T., Seidl, T. & Keim, D. 2015. Subspace Nearest Neighbor Search-Problem Statement, Approaches, and Discussion. Similarity Search and Applications. Springer, pp. 307-313.

Holzinger Group, hci-kdd.org 74 Machine Learning Health

Application in a Clinical Scenario

QHCI-KDD 3€

GHCI-KDD 5€

Holzinger Group, hci-kdd.org 77 Machine Learning Health 07

Initial Subspace Model

neighbors (semantic meaning)

QHCI-KDD-%

Relevance of Nearest Neighbors

A set of objects a, b, c are NN of the query q in a subspace s, iff a, b, and c are similar to g in all dimensions of s.

Relevance of a Subspace

A subspace is considered *relevant*, iff it contains relevant nearest neighbors

Dimensionality

Hund, M., Behrisch, M., Färber, I., Sedlmair, M., Schreck, T., Seidl, T. & Keim, D. 2015. Subspace Nearest Neighbor Search-Problem Statement, Approaches, and Discussion. Similarity Search and Applications. Springer, pp. 307-313.

iroup, hcl-kdd.org 80 Machine Learning Health 07 Holzinger Group, hcl-kdd.org 81 Machine

k-Nearest Neighbor Query Object

k-Nearest Neighbors: Ranked list of most similar objects

Subspace NN-Search: Definition and Characteristics

GHCI-KDD %

GHCI-KDD €

- 1. Detect all previously unknown subspaces that are relevant for a NN-search
- 2. Determine the respective set of NN within each relevant subspace High-Dimensional

Characteristics:

Motivation

Holzinger Group, hci-kdd.org

- · Search for different NN's in different subspaces
- · Consider local similarity (instead of global)
- · Subspaces are query dependent
- Subspaces are not an abstract concept but helps to semantically interpret the nearest neighbors

Holzinger Group, hci-kdd.org 78 Machine Learning Health 07

Advantages of Subspace Modelling

GHCI-KDD %

- Interpretability: reflects the semantic meaning
 - In which way are NN's similar to the query?
 - → In all dimensions of the subspace
- Fulfills the downward-closure property
 - Make use of Apriori-like algorithms for subspace search
- No global distance function necessary
 - Heterogeneous subspaces can be described
- Compute the nearest neighbors in every dimension separately (with an appropriate distance function)
- Compute subspace by intersection

query = gauda cheese

Non-Characteristic Dimension

Characteristic Dimension

Data Distribution

Holzinger Group, hci-kdd.org

Machine Learning Health 07

Discussion and Open Research Questions

QHCI-KDD €

GHCI-KDD 3€

Machine Learning Health 07

Subspace Clustering

Holzinger Group, hci-kdd.org

_ _ _ _ _ _

.

query = butter

_ _ _ _ _ _

(1) Determine Nearest Neighbors per Dimension

(2) Efficient Search Strategy

(3) Query-Based Interestingness for Dimensions

(4) Subspace Quality Criterion (Depends on Analysis Task)

(5) Evaluation Methods and Development of Benchmark Datasets

(6) Multi-input Subspace Nearest Neighbor Search

(7) Visualization and User Interaction

Holzinger Group, hci-kdd.org Machine Learning Health 07

Example Clust Nails Tatu et al (2012)

QHCI-KDD-%

Which dimensions occur more often in clusters? Which occur often together? Which values do records in a specific cluster have?

Tatu, A., Albuquerque, G., Eisemann, M., Schneidewind, J., Theisel, H., Magnor, M. & Keim, D. Combining automated analysis and visualization techniques for effective exploration of highdimensional data. Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on, 2009. IEEE, 59-66.

Tatu, A., Maass, F., Faerber, I., Bertini, E., Schreck, T., Seidl, T. & Keim, D. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. IEEE Symposium on Visual Analytics Science and Technology (VAST), 2012 Seattle. IEEE, 63-72, doi:10.1109/VAST.2012.6400488.

Holzinger Group, hci-kdd.org

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250. Cham: Springer International Publishing, pp. 358-368, doi:10.1007/978-3-319-23344-4_35.

Holzinger Group, hci-kdd.org Machine Learning Health 07

Further Subspace Cluster Visualization Techniques

- CoDa by Günnemann et al (2010)
- Morpheus by Müller et al. (2008)
- Visual Analytics Framework by Tatu et al. (2012), see before

Supplementary Material

http://files.dbvis.de/sisap2015

- USDA National Nutrition Database
- http://ndb.nal.usda.gov/

Experiment

- Full Space (Eucl. distance, 50 dim.)
- Subspaces (our model)

Holzinger Group, hci-kdd.org

Projected Clustering / Subspace Clustering / Alternative

QHCI-KDD-%

- Variety of different algorithms, e.g. PROCLUS [1], CLIQUE [2], RESCUE [3]
- Example CLIQUE:

- Challenges
- Exponential # of possible subspaces
- Result highly depend on parameters
- Highly redundant results (clusters + subspaces)

Holzinger Group, hci-kdd.org

Visual Analytics for Subspace Steering

QHCI-KDD-%

- Existing techniques: exploration of subspace clusters
- Visualizations to make sense of clusters and its subspaces

Is the parameter setting appropriate for the data? What happens if algorithms cannot scale with the #dimensions?

• We need methods to steer algorithms while computing relevant subspaces

Pruning of intermediate results

Adjust parameters to domain knowledge

tolzinger Group, hci-kdd.org

Fig. 3 A screenshot of our visual analytics tool SubVIS. It enables the a. A general overview of the similarities between the subspaces is given by an MDS projection (A). Small multiples (B to preview projections of different distance functions and a quick change of the MDS plot. On the very top (C) the unded with some distribution properties of the subspaces such as the #dimensions. A heatmap (D) provides more detail en the pair-wise distances. An aggregation table (E) shows the values of the aggregated cluster m

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of Patient Groups and Immunization Results Based on Subspace Clustering, In: Guo, Y., Friston. K., Aldo, F., Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250. Cham: Springer International Publishing, pp. 358-368, doi:10.1007/978-3-319-23344-4 35.

Holzinger Group, hci-kdd.org Machine Learning Health 07

Interesting Clusters may ONLY exist in subspaces!! Parsons, L., Haque, E. & Liu, H. 2004. Subspace clustering for high dimensional data: a review. SIGKDD Explorations 6, (1), 90-105. (c) Dimension e (h) Dimension h Dimension b (b) Dims b & c (c) Dims a & c

QHCI-KDD-%

06 "What is interesting?" **Projection Pursuit**

Data in only one dimension is relatively packed Adding a dimension "stretch" the points across that dimension, making them further apart

Adding more dimensions will make the points further apart—high dimensional data is extremely sparse

Distance measure becomes meaningless—due to equidistance

Holzinger Group, hci-kdd.org Machine Learning Health 07

Similar concept: Principal Component Analysis (PCA)

QHCI-KDD-%

Huber (1985): "What is interesting?"

Holzinger Group, hci-kdd.org

QHCI-KDD =

Machine Learning Health 07

• Projection pursuit : Find a subset of coordinates of the data which display "interesting" features. Often the selection of the subset of coordinates is manual, but there are automated algorithms which can find these subsets automatically also. Finally one has to inspect each projection and decide if its "interesting".

Huber P.J.: Projection pursuit. Ann. Statist. 13, 2 (1985), 435-525.

 Dataset - consists of a matrix of data values, rows represent individual instances and columns represent dimensions.

- Instance refers to a vector of d measurements.
- Cluster group of instances in a dataset that are more similar to each other than to other instances. Often, similarity is measured using a distance metric over some or all of the dimensions in the dataset.
- Subspace is a subset of the d dimensions of a given dataset.
- Subspace Clustering seek to find clusters in a dataset by selecting the most relevant dimensions for each cluster
- Feature Selection process of determining and selecting the dimensions (features) that are most relevant to the data mining

Holzinger Group, hci-kdd.org

Black-Box approach

GHCI-KDD 5€

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples

Nicolas Papernot and Patrick McDaniel The Pennsylvania State University University Park, PA (ngp5056,mcdaniel)@cse.psu.edu

any machine learning models are vulnerable to adversarial implex; inputs that are specially crafted to cause a ma-ne learning model to produce an incorrect output. Ad-sarial examples that affect one model often affect another slet, even if the two models have different architectures or tim model, with very little information about the victim cent work has further developed a technique that uses th tim model as an oracle to label a synthetic training as for the substitute, so the attacker need not even collect a training set to mount the attack. We extend these recent iques using reservoir sampling to greatly enhance the ney of the training procedure for the substitute model explored (substitute, victim) pairs of machine learning odel clauses, most notably SVMs and decision trees. We onstrate our attacks on two commercial machine learn-lassification systems from Amason (96.19% misclassi-on rate) and Google (88.94%) using only 800 queries e victim model, thereby showing that existing machine

Holzinger Group, hci-kdd.org

Least Gaussian projections of the data (interesting?)

@HCI-KDD €

how to define non-Gaussianity?

covariance and mean given: Gaussian distribution maximizes the entropy

Objective: minimize H(t) for $t = \boldsymbol{w}^T \boldsymbol{x}$ t is normalized to zero mean and unit variance

This is difficult to optimize

- → finding unimodal super-Gaussians
- → finding multimodal distributions

Other criteria are given for ICA: kurtosis and different contrast functions which measure non-Gaussianity

Holzinger Group, hci-kdd.org Holzinger Group, hci-kdd.org

QHCI-KDD €

- 6 dimensional data set:
 - 1) age,
 - 2) relative weight,
 - 3) fasting plasma glucose,
 - 4) area under the plasma glucose curve for the three hour glucose tolerance test (OGTT),
 - 5) area under the plasma insulin curve for the OGTT,
 - 6) steady state plasma glucose response.
- Method: Projection Pursuit (PP)
- $\mathbb{R}^6 \longrightarrow \mathbb{R}^3$ Result:

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a multidimensional analysis. Diabetologia, 16, 1, 17-24.

Topology based data analysis

QHCI-KDD 3€

Nicolau, M., Levine, A. J. & Carlsson, G. (2011) Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of the National Academy of Sciences, 108, 17, 7265-7270. tzinger Group, hci-kdd.org

Sample Questions

© HCI-KDD - %

- Why would we wish at all to reduce the dimensionality of a data set?
- Why is feature selection so important? What is the difference between feature selection and feature extraction?
- What types of feature selection do you know?
- Can Neural Networks also be used to select features?
- Why do we need a human expert in the loop in subspace clustering?
- What is the advantage of the Projection Pursuit method?
- Why is algorithm selection so critical?

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a multidimensional analysis. Diabetologia, 16, 1, 17-24.

Future Outlook

QHCI-KDD-%

- Time (e.g. entropy) and Space (e.g. topology)
- Knowledge Discovery from "unstructured" :-) (Forrester: >80%) data and applications of structured components as methods to index and organize data -> Content Analytics
- Open data, Big data, sometimes: small data
- Integration in "real-world" (e.g. Hospital), mobile
- How can we measure the benefits of visual analysis as compared to traditional methods?
- Can (and how can) we develop powerful visual analytics tools for the non-expert end user?

Holzinger Group, hci-kdd.org

Sample Questions

QHCI-KDD-

- What are the problems in high-dimensional spaces?
- When is the human-in-the-loop beneficial?
- What is a Autoencoder and when would you use it?
- When would you use PCA?
- What did the authors of the Miller-Reavens study do?
- Why is the question "what is interesting?" a hard question?

 \square Mapping the data from \mathbb{R}^6 to \mathbb{R}^2

Given a point cloud data set X and a covering U ⇒ simplicial complex

Holzinger Group, hci-kdd.org

Graphics, Euro Graphics Society, 91-100.

Thank you!

tolzinger Group, hci-kdd.org

Holzinger Group, hci-kdd.org