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B8 ML needs a concerted effort fostering integrated research @HCI-KDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
© a_nolzinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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B ML-Jungle Top Level View G@HCI-KDD %

C] Cognition | Visualization | Data structure [Challenges}

( SR B . N
Perception | Eﬂﬁ_ £33

LPreprocessing
Decision M Interaction }[ Integration

~

J

Always with a focus/application in health informatics

CONCEPTS THEORIES ][ PARADIGMS M MODELS MMETHODSN TOOLS ]

‘ Curse of Dim | .. Bayesian p(x)] [unsupervised} [Gaussian P.} { Regularization} [ Python ]
| .
+ DR

‘. NfL-Theort!a*nr_— Complexity} [supervised ] [Graphical M. } [Validation ]

Overfitting ‘ ‘ E(L-Divergence} [Semi—supv.} m [Aggregation ] E
Non-Parametric  Info Theory J SVM

[ Nature Inspired ]

iML [ Linear Models ]

[ Exp. & Eval. J [ Privacy ML}

D. Trees
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B8 Red thread through this lecture GHCI-KDD %

= 01 Classification vs Clustering

= 02 Feature spaces, feature engineering
= Feature selection, feature extraction

" 03 The curse of dimensionality

= 04 Dimensionality reduction
= PCA, ICA, FA, MDS, LDA - Isomap, LLE, Autoencoder

= 05 Subspace clustering and analysis o
= 06 Projection Pursuit: “What is interesting?'il;;f

mem—
(v}
ROV A
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B LbA=? GHCI-KDD -

= |atent Dirichlet Allocation
" | DA = linear discriminant analysis (Attention!)

OO~

M
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v G HCI-KDD o

01
Classification
VS.
Clustering
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B Key Challenges G@HCI-KDD 5

" Uncertainty, Validation, Curse of Dimensionality
= Large spaces gets sparse
" Distance Measures get useless

= Patterns occur in different subspaces
" Most pressing question “What is interesting?”
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B Classification (A) vs. Clustering (C) — Intro Quiz

1) The data is not labeled (A/C)?
2) ldentify structure/patterns (A/C)?

3) Predicting an item set, identifying to which set
of categories a new observation belongs (A/C)?

4) Assigning a set of objects into groups (A/C)?

5) Having many labelled data points (A/C)

6) Using the concept of supervised learning (A/C)?
7) Grouping data items close to each other (A/C)?
8) Used to explore data sets (A/C)?

Holzinger Group, hci-kdd.org 9 Machine Learning Health 07



B Classification vs. Clustering on one slide @ HCI-KDD 2%

= (Classification (Supervised learning, Pattern Recogn., Prediction)

" Clustering (Unsupervised learning, class discovery, )

" The class labels of training data is unknown

L2

e, »
™ *®
" o @
\_\'
o
L

Supervision = the training data (observations,
measurements, etc.) are accompanied by labels ,
indicating the class of the observations; %

New data is classified based on the training set
Important for clinical decision making

Example: Benign/Malign Classification of Tumors

@ -

Lt}

= Given a set of measurements, observations, etc. with the

aim of establishing the existence of clusters in the data;
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B Discovery vs. Prediction

G HCI-KDD =

Holzinger Group, hci-kdd.org

UNSUPERVISED LEARNING

Dataset

Unknown
Classes

Cluster Samples

l Assign Class Labels

Class A Class B

Class Discovery

SUPERVISED LEARNING

Known
Classes
Class A® Training Set
Class Be
l [Train Model |

-

.

Independent

Test Set
(“Unknowns”)

Class A Class B
Class Prediction

Apply Model

i

11

Machine

Ramaswamy, S. & Golub, T. R. (2002) DNA Microarrays in Clinical Oncology. Journal of Clinical Oncology, 20, 7, 1932-1941.
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B Why do we need Classification? GHCI-KDD %

V. ol | | A | x: data points

" i C,: Cancer present

\- C,: Cancer absent

x -- set of pixel intensities
= Typical questions include:
" |s this protein functioning as an enzyme?
" Does this gene sequence contain a splice site?
" |s this melanoma malign?

" Given object x — predict the class label y
= If y € {0,1} — binary classification problem
= Ify € {l,..,n}andisn € N — multiclass problem
" If y € R — regression problem

y: labels

features

decision
boundary

Holzinger Group, hci-kdd.org 12 Machine Learning Health 07



Bl Learning Process: Algorithm selection is crucial @ HCI-KDD %

Collect Select Select Train Evaluate
model classifier classmer

Identification
» of require
Kotsiantis, S. B. (2007) Supervised machine data
learning: A review of classification techniques. I !

Informatica, 31, 249-268. .
» Data pre-processing

Classifier

i ) Defimtion of
training set
i | Algorithm
selection
Wolpert, D. H. & Macready, W. G. 1997. No
free lunch theorems for optimization. Parameter tuning |- # Traming
Evolutionary Computation, IEEE Transactions t i _
on, 1, (1), 67-82 FEvaluation
P ATy ' with test set
>_P(dy|f,m,a1) = Y P(dy,|f, m,a2).
f

f
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B Classifiers Examples @HCI-KDD

= Naive Bayes (NB) — see Bayes’ theorem with
independent assumptions (hence “naive”)

= Decision Trees (e.g. C4.5)
" NN —if x; is most similartox, = y; =y,

T; = argmingep||T — -'F;H") = Yi = Y

" SVM -aplane/hyperplane e
3 repeat

separates two classes of data— ¢ fri=t..ndo )

: . e ) 5 H(y)=Alyey) +w! ¥xy) —w¥(xi, yi)
very versatile for classification 7 e ZrEe 1Y) )

. . 8: if H(¥) = & + ¢ then
and clustering — also via the o SeSU{F)

. . . . . 10: W optimize primal over § = | J; §;

Kernel trick in high-dimensions i _oax

13: until no 5; has changed during iteration

Finley, T. & Joachims, T. Supervised clustering with support vector machines. Proceedings of the 22nd

international conference on Machine learning, 2005. ACM, 217-224.
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B SVM - Vapnik, 1992

= Uses a nonlinear mapping to
transform the original data

o £
(input space) into a higher o ¢ :
dimension (feature space) .\"@

= = classification method for both linear and nonlinear data;

= Within the new dimension, it searches for the linear optimal
separating hyperplane (i.e., “decision boundary”);

= By nonlinear mapping to a sufficiently high dimension, data
from two classes can always be separated with a hyperplane;

= The SVM finds this hyperplane by using support vectors (these
are the “essential” training tuples) and margins (defined by the
support vectors);

Holzinger Group, hci-kdd.org 15 Machine Learning Health 07



B SVM vs. ANN

= Deterministic algorithm
= Nice generalization
properties

®" Hard to learn —learned in
batch mode using
quadratic programming
techniques

= Using kernels can learn
very complex functions

Holzinger Group, hci-kdd.org 16
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OUTRUT

INPUTS

Ix

ANN
= Nondeterministic algorithm

= Generalizes well but
doesn’t have strong
mathematical foundation

= Can easily be learned in
incremental fashion

= To learn complex
functions—use multilayer
perceptron (nontrivial)
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Kim, S. Y., Moon, S. K., Jung, D. C., Hwang, S. I., Sung, C. K., Cho, J. Y., Kim, S. H,, Lee, J. & Lee, H.
J. (2011) Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support
Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network.

Korean J Radiol, 12, 5, 588-594.
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B Example: Multiclass cancer diagnosis (for Exercise) @ HCI-KDD %

"lﬁﬁﬂﬁmlﬂlﬂi%ﬂﬂlﬂﬁWmeMﬂm .

BR BL CNS €0  LE LU LY ME ML OV PA PR RE UT
| ] 1| L

c1
b R i
CLUSTERING
— e i
R ARILES . cen
L]
esledl S0l | oou DATASET moLecuLAR |
< i b < (16,063 Genes, 218 Human Tumor Samples) ™ |
Ll | s |® L ‘ L
o [ [oed® (32 pnRERRRERE RRR N[>
L] a4l
T a6, ® b e BR PR LU COLY BL ML UT LE RE PA OV ME CNS i
"l ek l
o el B i
l P3A
<ER
P -
R -3 & L] #a + +3a
o= glanderd devistion from meen

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe, E. & Mesirov, J.
P. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of
Sciences, 98, (26), 15149-15154, doi:10.1073/pnas.211566398.
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B Counterexample: Move problem to a feature space H @ HCI-KDD %

Borgwardt, K., Gretton, A., Rasch, J., Kriegel, H.-P., Scholkopf, B. & Smola, A. 2006. Integrating
structured biological data by kernel max. mean discrepancy. Bioinformatics, 22, 14, e49-e57.
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B Summary: The 10 top algorithms - Quiz @ HCI-KDD %

CA.5 Wau et al. (2008) Top 10 algorithms in data mining. Knowledge & Information Systems, 14, 1, 1-37.

= for generation of decision trees used for classification, (statistical classifier, Quinlan (1993));
k-means
= simple iterative method for partition of a dataset in a user-specified n of clusters, k (Lloyd

(1957));
Apriori
= for finding frequent item sets using candidate generation and clustering (Agrawal & Srikant
(1994));

EM

= Expectation—Maximization algorithm for finding maximum likelihood estimates of parameters
in models (Dempster et al. (1977));

PageRank

= asearch ranking algorithm using hyperlinks on the Web (Brin & Page (1998));
Adaptive Boost

= one of the most important ensemble methods (Freund & Shapire (1995));
k-Nearest Neighbor

= a method for classifying objects based on closest training sets in the feature space (Fix &
Hodges (1951));

Naive Bayes

= can be trained efficiently in a supervised learning setting for classification (Domingos &
Pazzani (1997));

CART

= (Classification And Regression Trees as predictive model mapping observations about items to
conclusions about the goal (Breiman et al 1984);

SVM support vector machines offer one of the most robust and accurate methods among all well-
known algorithms (Vapnik (1995));

Holzinger Group, hci-kdd.org 20 Machine Learning Health 07



B Why do we need Clustering? GHCI-KDD

= Group similar objects into | wgg g |
clusters together, e.g. B SN E -

= For image segmentation L

= Grouping genes similarly affected by a dlsease

= Clustering patients with similar diseases

= Cluster biological samples for category discovery
" Finding subtypes of diseases

= Visualizing protein families

" |[nference: given x;, predict y; by learning f
" No training data set — learn model and apply it

Holzinger Group, hci-kdd.org 21 Machine Learning Health 07



B Example K-means GHCI-KDD

" Partite a data set into k clusters so that intra-
cluster variance is a minimum
= |/ ... variance (objective function)
" S; ... cluster
" ¥; ... mean
= D ...set of all points xj
= k... number of clusters

LL i — i)’

=1 z;€S5;

Holzinger Group, hci-kdd.org 22 Machine Learning Health 07



B Example G HCI-KDD o4

Algorithm 1: Example for a classical weight balanced A-means algorithm

Input: d, k,n € N, X := {x1,...,: ra} CR% S:= {s1,...,5:} C R
Output: Clustering C' = (('y,.... (')) of X and the arithmetic means ¢q.. .., Ck
as sites

I. Partition X into a clustering €' = (C',..., (') by assigning x; € X to a cluster
C'; that is closest to site s; € S.

2. Update each site s; as the center of gravity of cluster C;: if |C';| = 0, choose
s; = a7 for a random [ < n with a; # s; for all j < k. If the sites change, go to

(1)

Merely an increase in awareness of physicians on risk
factors for ARA in children can be sufficient to change their
attitudes towards antibiotics prescription.

Our results can also be useful when preparing
recommendations for antibiotics prescription and to guide
the standardized health data record.

o ~ .
Yildirim, P., Majnari¢, L., Ekmekci, O. I. & Holzinger, A. 2013. On the Prediction of Clusters for Adverse
Reactions and Allergies on Antibiotics for Children to Improve Biomedical Decision Making. In:
Lecture Notes in Computer Science LNCS 8127. 431-445
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M G HCI-KDD %

10 10
9 9
3/—\ 8 O
7/ ‘ 7
6 /—\ 6 <>
5 _— 5
41 < L 2 4 <o
31 '3 3
2 A 2
H ~ (1) N_)
10 10
9 9
| 8
7 & 7
6 . f- <—6
5 o ¢ 0\ 5 > L 2
4 \ 4 *
3 } 3 ’
) / :
1 < 1 <
0 T 1 T 0 T
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
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B Advantages of k-Means? GHCI-KDD -

= What is the computational time of k-means?

= NP-hard in Euclidean space, however, if k and d
can be fixed than it can be solved within:

- “number of iterations
compute kn distances
in p dimensions Can be small if there's

indeed a cluster

structure in the data
Jain, A. K. 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters,
31, (8), 651-666.
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B The Basics: Centroid and Medoid

@ HCI-KDD o

a4l L Lt . ‘ S ] o = Eﬂ v & . % N
L] o o ° [+] o “
02t . o o ’ ) ' C aar 0w @ g CEE- & .
all ' . . B o " OQ o © ® o @ 2 o

e Centroid: mean of the points in the cluster.

e Medoid: point in the cluster that is closest to the

centroid. . _ arg min d(z, 1)
xeC
Holzinger Group, hci-kdd.org 26 Machine Learning Health 07



v G HCI-KDD o

02 Feature
Engineering

“Applied ML is basically feature engineering.
Andrew Yan-Tak Ng”

Holzinger Group, hci-kdd.org 27 Machine Learning Health 07



B Advance Organizer GHCI-KDD -

" Feature:= specific measurable property of a
phenomenon being observed.

" Feature engineering:= using domain knowledge
to create features useful for ML. (“Applied ML is
basically feature engineering. Andrew Ng”).

" Feature learning:= transformation of raw data
input to a representation, which can be
effectively exploited in ML.

Holzinger Group, hci-kdd.org 28 Machine Learning Health 07



Bl Feature Space Basic Definitions @ HCI-KDD 2

" |ntuitively: a domain with a distance function
= Formally: Feature Space ¥= (D, d)

= D = ordered set of features

= d: D XD - R{ ... atotal distance function; true for
"Vp,q €ED,p *q:d(p,q) > 0 (strict)

= and must be reflexive and syrpmettric Xz x € R?
. arge ;
Input (|abg,3|) 1
xeRY Y .
- A ~ * . :

L ]
X1 Xa | X3 | X4 5 ° ? .
0.32 | -0.27 | +1 0] 082 1 o o
-0.12 | 0.42 -1 1] 022 0 ] °
1 1
0 1

0.06 | 035 | -1 -0.37
091 | -0.72 | 41 -0.63 . °

n examples

Each example (row) is now a
d+1-dimensional vector

: . o X1
Each input is a point in

. . ‘a"‘
Image credit to Pascal Vincent X3, . %Xy a d-dimensional vector space
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m Digression: Metric Space (e.g. Euclidean Vector Space) @HCI-kDD %

A Metric Space is a pair (X, d) where
X isaset and d: X x X — RT, called the metric, s.t.

1. For all z,y,z € X, d(x,y) <d(z,z)+ d(z,y).
2. For all z,y € X, d(z,y) = d(y, z).

3. d(z,y) = 0 if and only if z = y.

Remark 1. One ezample is R? with the Euclidean metric. Spheres S™ endowed
with the spherical metric provide another example.

d: X - R

dlz,z) =0

d(z', 2?) = d(2?, ') symmetry

d(z!, 2?) < d(z',z°) + d(z?, 2*) triangle inequality

Holzinger Group, hci-kdd.org 30 Machine Learning Health 07



B Let do a Quiz again: Similarities of feature vectors @ HCI-KDD 2%

Look at the examples below, which distance measures would you select?

() a2

Euclidian norm Manhattan norm Maximums norm
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Bl Feature Selection: Overview GHCI-KDD %

All features
| 2 ¥
o _ D ]
5255 52
R ® Y
| ¥
Filter Predictor Embedded
approaches ‘ approaches
|
y Wrapper . ‘/L—
Features Features | |Predictor
approaches |

Y /L_
| [Fuuturus Predictor LBSSC.U
e Elastic Net
Subset selection:
forward selection
backward selection
floating selection

Predictor

Image credit to Chloe Azencott
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B Feature Selection vs. Feature Extraction @ HCI-KDD o3

" Feature selection is just selecting a subset of the
existing features without any transformation

" Feature extraction is transforming existing
features into a lower dimensional space

X, - X, IR i £ &
X h Y1
2 X X5 XE‘
. feature selection | iz . feature extraction y? f

C . } —

X, Yy

| "M | I M |

Xy XN | Xy

Blum, A. L. & Langley, P. 1997. Selection of relevant features and examples in machine learning.
Artificial intelligence, 97, (1), 245-271.
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v G HCI-KDD o

03 Curse of
Dimensionality
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B Remember: The curse of dimensionality @ HCI-KDD 2%

1 dimension;
10 positions

2 dimensions:
100 positions
L

Bengio, S. & Bengio, Y.
2000. Taking on the curse
of dimensionality in joint
distributions using neural
networks. IEEE Transactions
on Neural Networks, 11,
(3), 550-557.

» 3 dimensions:
1000 positions!

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html
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B Examples for High-Dimensional Biomedical Data @ HCI-KDD o

= Medical Image Data (16 - 1000+ features)

Larvni | Loval 1l Lawwl 0 Lirval 1Y Lawvad ¥

—l

Papilimry-miculos -
aarmal intorface |

22 pow

Raticular darmis —
|
W
[E LI ._ I b i.

http://qgsota.com/melanoma/

MEG Brain Imaging R
120 locations x 500 time points e e

x 20 objects £ ] = -__ .

MEG0633

Nature 508, 199-206
do0i:10.1038/nature13185
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B Examples for High-Dimensional Biomedical Data @ HCI-KDD o

" Biomedical Signal Data (10 - 1000+ features)

w’l'{,"/ "‘.r.i‘-.‘l "l r"a 'J'rh.flll,’ﬂ"\ fﬁ ,q‘f “l..‘-u'l-rl ﬁ

.".) II F i

| 7 1 l.:l‘--' IH l 1 I-;‘\ 'I"' nJ; f;' ..-""" "..!"‘l,,r"l- '.Vﬁ‘-r]ll"-

A

L] h r-
;I"'l-' 'l-| | A 7 ‘,.L I M oy F \ I"“" ' v v | .q. 'I., LJ LAS k.i-.-ﬂ..ﬂbl 2
) Al o H !
o nAa ™ AL
| _L 1.-"'1 ol .I l.-""... 1'? 'k W J' "'.', ...' ‘* i"".-"q "h‘.""g‘.rl |

Ff"

Y I""ah- "'J" -H W 1 n'\:l‘ V M\ " l.r\- y -"‘I"'I II"w"rf"'..-r"' 'L"
" A
“ q’,'{.\' l‘||rl"-_l‘|'- ) 'l.l,i"' '-.N'nll. t"“,-‘r'-l'l|
A 'I"-n. A A r A\ A
o |."",f-’ ﬁhrl J\l,,_;.)}f nJ 'Ir'|I| \ r‘f’ll
a' VYW VYV UYY U

-m..l :Il‘\\: ."‘J"u '\rh.‘-" l'\.."r"n"" I"| I-.,.M'\.__h \‘ -*-.UH.M..IJ"-,

0 0.3 | 15 2

lime (9eC}

http://www.mdpi.com/1424-
8220/14/4/6124/htm
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@ HCI-KDD o

B Examples for High-Dimensional Biomedical Data

= Metabolome data (feature is the concentration

of a specific metabolite; 50 — 2000+ features)

=

FTTETTEIT]

Histidine

| Threonine/homoserine
Glutamine

Thiamine
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L gy |
B diied

dTMP
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1111
>
=
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H £ 7 uanine
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L-carnitine
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http://www.nature.com/ncomms/2015/151005/ncomms9524/fig_tab/ncomms9524 F5.html
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B Examples for High-Dimensional Biomedical Data @ HCI-KDD %

Microarray Data (features correspond to genes, up to 30k features)

g s . sample annaotation
raw data quantification gene expression samples
matrices data matrix

quantifications samplas gene expression
i matrix

gene axprassion lavels

spots

genes
genes
B -

\ gane
expression
lewvel

quantification daturm

gena annotation

publications
extarnal links {0 PubiMed)

experiment Brazma, A., Hingamp, P., Quackenbush, J., Sherlock,
G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W.,
souce _“ _“_ gene Ball, C. A. & Causton, H. C. 2001. Minimum
(.. Laxenarry) i2.g GENEAME] . . ] .
information about a microarray experiment
(MIAME)—toward standards for microarray data.

normalization “ Nature genetics, 29, (4), 365-371.
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B Examples for High-Dimensional Biomedical Data @ HCI-KDD o

» Text > 10° documents X 10° words/n-grams
features correspond to words or terms, between
5k to 20k features

= Text (Natural Language) is definitely very
important for health: :

= Handwritten Notes, Drawings
= Patient consent forms

= Patient reports

= Radiology reports

= \/oice dictations, annotations

= |iterature !!!

https://www.researchgate.net/publication/255723699 An_Answer_to_Who_Needs_a_Stylus_o

n_Handwriting_Recognition_on_Mobile_Devices
Holzinger Group, hci-kdd.org 40 Machine Learning Health 07




B Complex Example: Non-Standardized Text @HCI-KDD 4

eRAGMATICS

Thomas, J. J. & Cook, K. A.
2005. llluminating the path:
The research and
development agenda for
visual analytics, New York,
IEEE Computer Society Press.
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B Example: UMLS — Unified Medical Language System

G HCI-KDD =4

'b| Organism

of'l_._u':

o) o)

evaluation of

......... Propery
Parfof:'“‘_._. ----------
Atz [Arehaeen] [Fungus] [erus] Rickettsia [Baeteﬁum]
Chlairrlydia

[Invertebrate ] [Vertrate]

2422

Function

Embryonic Anatomical .
Structure Abnormality disrgpts : =
4 CO”?:”Q""_"_. Body
Congenital Acuired Fully Formed substance =,
Abnormality | | Abnormality | e Anatomical e
’ Structure w, conegphaal 5 B

l . partaf 3
Y Eody Space
y or Junction

parfaf

Anatomical
Structure )
Laboratory ot S1zn or T T e,
‘ Test Result ‘ Sytaptormn ‘ e T
Injury or

[Reptile ] [Mammal ]

Hutnan

conceplual
partef | :
Body Location
Body Part, Organ or | | Tissue Cell Cene or or Region
Organ Component Y F Component | | Genotne Physialogic Pathologic
» R A Function Function
R partaf .. T /
partof partof parfof
Organistm | | Organ or Cell Molecular Cell or Disease or | | Ezperimental
Function Tissue Function Function Iolecular Syndrome o del
Function Dzfunction of Dizease
Iental Cenetic Ifental or Meoplastic
iza links Process Function Behavioral Process
----------------- » non-15a relations Dysfunction
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Complexity and really BIG DATA G HO-

Signaling Pathway s DINAROISEE
13 responsible « Carries genetic information

protein kinases * Human DNA:
—310° Base pairs

8 phosphorylated - 4" Combinations
responsible protein kinases

—

Metabolic Enzymes g — _ | 71 phosphorylation
Thought Experiment:

198 responsible 94 allosterically

metabolic enzymes . :
ALl ¥ - 1080 Elementary particles S regulated responsible
26 phsphorylated - - in the universe _ : metabolic enzymes

responsible metabolic™ : 1040 Time steps since 198 226
enzymes big bang" - enzymatic allosteric

N . ~-.regulation regulation
10'20 Possible ,computations” .

Metabolites N in the universe...
' . ,"n 35

-\ 10" s faaaaaar larger!
44 changed metabolites . <" 4 g allosteric

effectors

Yugi, K. et al. 2014. Reconstruction of Insulin Signal Flow from Phosphoproteome
and Metabolome Data. Cell Reports, 8, (4), 1171-1183,
doi:10.1016/j.celrep.2014.07.021.
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B Why are many features problematic? @ HCI-KDD %

= Hyperspace is large — all points are far apart

= Computationally challenging (in time and space)
= Complexity grows with n of features

= Complex models less robust — more variance

= Statistically challenging — hard to learn

"= Hard to interpret and hard to visualize

" Problem with redundant features and noise

= Question: Which algorithms will provide worse
results with increasing irrelevant features?

= Answer: Distance-based algorithms generally trust
all features of equal importance
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B Space and Time: Simple example on gait analysis G@HCI-KDD o

P,
] j .
. PG(l PV, = B7.2%
- P'ﬂ-_".' _\/, Iy"u = 1F 15
A B £ PC.IK) . P, = 0.T% (rosicoal)
- i, T
' - anglas = W * PCs + residual

1

C normal walking obstacle staircase inclined surface

¥

Dominici, N., lvanenko, Y. P., Cappellini, G., Zampagni, M. L. & Lacquaniti, F. 2010. Kinematic
Strategies in Newly Walking Toddlers Stepping Over Different Support Surfaces. Journal of
Neurophysiology, 103, (3), 1673-1684, doi:10.1152/jn.00945.2009.

%
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B8 Problems of the CoD in relation to subspace clustering  @HE1-KDD -

= Aspect 1: Optimization Problem
= Aspect 2: Concentration Effect
= Aspect 3: Irrelevant Attributes
= Aspect 4: Correlated Attributes

Kriegel, H. P., Kroger, P. & Zimek, A. 2012. Subspace clustering. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2, (4), 351-364, doi:10.1002/widm.1057.
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B Curse of Dimensionality

G HC1-KDD o>

Normalized vector length

0.3
0.2
0.1

~T Mean +- stddev —
— e Actual min —— —
— /“*«’r Actual max - -
| e | '#I L1 11 I 1 1 | L1 11 I 1 1 1 | L1 11
1 10 100

Dimensionality

1000

Zimek, A., Schubert, E. & Kriegel, H. P. 2012. A survey on unsupervised outlier detection in high-dimensional
numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387, d0i:10.1002/sam.11161.

Holzinger Group, hci-kdd.org

Machine Learning Health 07



B Example: Neonatal Screening (2/3)

@ HCI-KDD o

Amino acids (symbols)

Fatty acids (symbols)

Fatty acids (symbols)

Alanine (Ala)

Arginine (Arg)
Argininosuccinate (Argsuc)
Citrulline (Cit)

Glutamate (Glu)

Glyeine (Gly)

Methionine (Met)
Ornitine (Orn)
Phenylalanine (Phe)
Pyroglutamate (Pyrglt)
Serine (Ser)

Tyrosine (Tyr)

Valine (Val)

Leucine + Isoleucine (Xle)

Free carnitine (C0)
Acetyl-carnitine (C2)
Propionyl-carnitine (C3)
Butyryl-carnitine (C4)
Isovaleryl-carnitine (C5)
Hexanoyl-carnitine (C6)
QOctanyl-carnitine (C8)
Decanoyl-carnitine (C10)
Dodecanoyl-carnitine (C12)
Myristoyl-carnitine (C14)
Hexadecanoyl-carnitine (C16)
Octadecanoyl-carnitine (C18)
Tiglyl-carnitine (C5:1)
Decenoyl-carnitine (C10:1)
Myristoleyl-carnitine (C14:1)

Hexadecenoyl-carnitine (C16:1)
Octadecenoyl-carnitine (C18:1)
Decenoyl-carnitine (C10:2)
Tetradecadienoyl-carnitine (C14:2)
Octadecadienoyl-camitine (C18:2)
Hydroxy-isovaleryl-carnitine (C5-OH)
Hydroxytetradecadienoyl-carnitine (C14-OH)
Hydroxypalmitoyl-carnitine (C16-OH)
Hydroxypalmitoleyl-carnitine (C16:1-OH)
Hydroxyoleyl-carnitine (C18:1-OH)
Dicarboxyl-butyryl-carnitine (C4-DC)
Glutaryl-carnitine (C5-DC)
Methylglutaryl-carnitine (C6-DC)
Methylmalonyl-carnitine (C12-DC)

Yao, Y., Bowen, B. P., Baron, D. & Poznanski, D. 2015.
SciDB for High-Performance Array-Structured Science
Data at NERSC. Computing in Science & Engineering, 17,
(3), 44-52, doi:10.1109/MCSE.2015.43.

Holzinger Group, hci-kdd.org
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Fourteen amino acids and 29 fatty acids are analyzed from a single blood spot using MS/MS. The concentrations are given in pmol/L.

Agpregate

operations

g
E A=temtian time (min)

TICAXIC

Machine Learning Health 07



v G HCI-KDD o

04 Dimensionality
Reduction
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B Why should we reduce the dimensionality? @ HCI-KDD 2%

" Data visualization only possible in R2 (R3 cave)

* Human interpretability only in R2/R3
(visualization can help sometimes with parallel
coordinates)

= Simpler (=less variance) models are more robust
= Computational complexity (time and space)

" Eliminate non-relevant attributes that can make
it more difficult for algorithms to learn

" Bad results through (many) irrelevant attributes?

= Note again: Distance-based algorithms generally
trust that all features are equally important.
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B Challenge GHCI-KDD -

" Given n data points in d dimensions
= Conversion to m data points in r < d dimensions
" Challenge: minimal loss of information *)

= *)this is always a grand challenge, e.g. in k-Anonymization —
see later in this

= Very dangerous is the “modeling-of-artifacts”
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B Approaches G@HCI-KDD 5

" Linear methods (unsupervised):
= PCA
" FA
= MDS
= Supervised methods:
= | DA

" Non-linear methods (unsupervised):
" [somap (Isometric feature mapping)
" LLE (locally linear embedding)
= Autoencoders
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B Example 1: PCA @HCI-KDD -4

SN i3
Ll ; i,
] :
£ 9 S ¥ B °
// f A % %
® Subtract mean from data (center X) P e i
® (Typically) scale each dimension by its variance
® Helps to pay less attention to magnitude of dimensions
y ; 1
® Compute covariance matrix S S=—-XTX

N
® Compute k largest eigenvectors of S

® These eigenvectors are the k principal components

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Second Edition, New York, Springer, doi:10.1007/978-0-387-84858-7.

Holzinger Group, hci-kdd.org 53 Machine Learning Health 07



B Example 2 ICA (Motivation: Blind Source Separation) G@HCI-KDD %

" Suppose that there are k unknown
independent sources
s(t) = [s1(1),...,s ()] with Es(t) =0

= A data vector x(t) is observed at each time
point t, such that X(t) = A s(t)

where A is a n X k full rank scalar matrix

I‘",i"‘

L
&l

gn:s
o

s D IO

EESESEESAIBESL EEL SRS

B SRR I FESA N

FEr i 45 dintai

AR AR R

P EEREE A BN X

e i ISEEREEE s

ESSESSEESNNENNE X i P

5'-“-?::::: E ::III':IJ.;I..-:.I-...” lI = _.jrr_ ':t_f‘_:_% ¥ __E .5 j_ l. !_g i‘f -}‘- % %% .
I\ lyfwwﬂm ~EE T I T
| ,,,._,_,,., - 3 ? i -i Etﬁimﬁa*:;ngiﬁi g{._

s | o

,\

ke o P R R JEEEI LSS 1]
I1H‘| LU : 5 =
%&E) % ) ® @ @ O

Holzinger, A., Scherer, R., Seeber, M., Wagner, J. & Miiller-Putz, G. 2012. Computational Sensemaking on Examples of Knowledge Discovery from
Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Béhm, C., Khuri, S., Lhotskd, L. & Renda, M. (eds.) Information Technology in
Bio- and Medical Informatics, Lecture Notes in Computer Science, LNCS 7451. Heidelberg, New York: Springer, pp. 166-168
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B Example 3: FA G HCI-KDD o4

= Factor Analysis describes the variability of
observations in terms of unobserved latent
variables (these are called “factors”) and noise
" The factors explain the correlation between the var

" Variance can be explained by Gaussian noise (and
can be calculated)

" Advantage: generative approach and models BOTH
the noise of the observations and their correlation!

" You can make assumptions on the distributions of
noise and factors
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B Example 4: MDS: Find projection that best preserves d

@ HCI-KDD -

—Find a set of points whose pairwise distances match a

given distance matrix

® Given n x n matrix of pairwise distances

, pL [p2 [p3 [pa [pS
between data points
pL 0 1 2 3 |1
e Compute n x k matrix X with coordinates of
distances with some linear algebra magic p2 11 0 12 4 11
¢ Perform PCA on this matrix X p3 12 2 |0 11 3
pa 3 |4 |1 0o |1
p5 (1 |1 3 1 |0

z; Point in d dimensions

y; Corresponding point in r < d dimensions

d;; Distance between x; and x;

d;; Distance between y; and y;

e Define (e.g-) E(y) - Z (

i,J

e Invariant to translations, rotations and scalings

Holzinger Group, hci-kdd.org 56

y

e Find y;’s that minimize E by gradient descent
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B Example 5: LDA

@ HCI-KDD -

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many cenes does an Srganism need to
supvive! Last week at the genome meeting
here, ™ two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forflifes
One research team, using computer analy

ses to compare known genomes, concluded
that today's SEERISINS can be sustained wich
just 230 venes, and that the earliest life forms
rL"l.||.||.r|.'k| A Imere |I_'“:'." LUTICS. T]lL'

Y.

| m;n germs

L"[}IL"T n.'"‘-L'dI.'l..'i'Il.'l' I'I'I.I]"PL'I.{ LCTI S
in a simple parasite and esti
mated that for this organisim,
800 genes are plenty to do the
job—bur that anything short

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE » VOL. 272 & 24 MAY 1996

Holzinger Group, hci-kdd.org
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived ar the
BOC number. Bur coming up with a consen
sus answer may be more than just a geneti

numbers came, particularly as more and
more genomes are completely mapped and
sequenced.
any newly explains
Arcady Mushegian, a computational mo
lecular biologist at the National Center

N for Biotechnology Information (NCBI)

Vin Bethesda, Marvland. Comparing an

“Ir mav be a wayv of organizing

¥
AL |_L|\.'|."Ik_ \."\.I SCIICHIINR:,

GENEE ramosad

of 100 wouldn’t be enough. ‘@m e -4
Although the numbers don't CERES .\ e L P
match precisely, those predictions | “m ] ot { Efn:i ]
dogenes [ R hCia
- .-""'/ B

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

ADAPTED FROM MNCEI
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B Example 6: Isomap G@HCI-KDD 5

A Global Geometric Framework
for Nonlinear Dimensionality

Goal: Find projection onto nonlinear manifold

1. Construct neighborhood graph G-

L]
Reduction For all z;, z;
Joshua B. Tenenbaum,™ Vin de Silva,® John C. Langford® If disLallL‘e(Ii_ .LJ] < £
Scientists working with large volumes of high-dimensional data, such as global Then add Edgﬂ (Tz R ) to &
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen- 2. Cﬂmpute shortest distances ﬂ.lDl]jI graph EG (.’L . }
sional structures hidden in their high-dimensional observations. The human . . . - Bl
brain confronts the same problem in everyday perception, extracting from its {f‘g . h}-’ I Iﬂ}'d ‘s algnnthm}
high-dimensional sensory inputs—30,000 auditory nerve fibers or 10° optic
nerve fibers—a manageably small number of perceptually relevant features. 3. Appl}r multidimensional L'S[_:q‘:l,liﬂg to ES(_','('JJ::, 1_-})

Here we describe an approach to solving dimensionality reduction problems

that uses easily measured local metric information to learn the underlying

global geometry of a data set. Unlike classical techniques such as principal

component analysis (FCA) and multidimensional scaling (MDS), our approach

is capable of discovering the nonlinear degrees of freedom that underlie com-

plex natural observations, such as human handwriting or images of a face under .

different viewing conditions. In contrast to previous algorithms for nonlinear h -// f d d /
dimensionality reduction, ours efficiently computes a globally aptimal solution, tt p . I S O m a p . Sta n O r . e u
and, for an important class of data manifolds, is guaranteed to converge

asymptotically to the true structure.

A B c

Tenenbaum, J. B., De Silva, V. & Langford, J. C. 2000. A global geometric framework for nonlinear
dimensionality reduction. Science, 290, (5500), 2319-2323, d0i:10.1126/science.290.5500.2319.
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B Example 8: Autoencoders @HCI-KDD o

LT EN]

Compact

f -1 P representation
N Le /ﬂfinput

il .
A -
P e L AR

LIECHT L

Ingad]

= History: Dim-reduction with NN: Learning
representations by back-propagating errors

" Goal: output matches input

Rumelhart, D. A., Hinton, G. E. & Williams, R. J. 1986. Learning representations by back-propagating errors.
Nature, 323, 533-536.

Vincent, P, Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. 2010. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine
Learning Research, 11, 3371-3408.
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B Autoencoders are “old” @HCI-KDD

= Sigmoidal neurons and backpropagation: Rumelhart™*),
D. A., Hinton, G. E. & Williams, R. J. 1986. Learning
representations by back-propagating errors. Nature,

323, 533-536. ”
&X{y,x) = l‘!/ = "H:’

= Linear autoencoders: Baldi, P. & Hornik, K. 1989. Neural
networks and principal component analysis: Learning
from examples without local minima. Neural networks,

2, (1), 53-58. , | "
min Z |ABx — z||5

*) David Rumelhart (1942-2011) was Cognitive Scientist working on math. Psychology
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B Autoencoders -> Restricted Boltzmann Machines

@ HCI-KDD o

Based on Information processing in dynamical
systems: Foundations of harmony theory by

Smolensky (1986): Stochastic neural networks

where the unit activation i = probabilistic
1

Pr(oj=1) = =
1+ {.J—u'm-l-lﬂ- 04 Wjj

o Yolokam
w
Right: A restricted Boltzmann machine with

- Visible movie
binaryhidden units and softmax visible units

] ratings
Salakhutdinov, R., Mnih, A. & Hinton, G. (2007) Restricted Boltzmann machines for
Machine Learning Health 07

V

L]
.
HE BN
| Missing
| Missing

[ Missing
| Missing

collaborative filtering. ICML, 791-798.
61
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B Summary GHCI-KDD -

" Goal: Having m < p features

= Feature selection via
= A) Filter approaches
" B) Wrapper approaches

" C) Embedded approaches (Lasso, Electric net, see
Tibshirani, Hastie ...)

" Feature extraction
= A) Linear: e.g. PCA

" B) Non-linear: Autoencoders (map the input to the
output via a smaller layer)
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v G HCI-KDD o

05 Subspace
Clustering™ &
Subspace Analysis

* Two major issues
(1) the algorithmic approach to clustering and
(2) the definition and assessment of similarity versus dissimilarity.
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B What is subspace clustering? @ HCI-KDD %

= K clusters
= N data points

*" D dimensions (original space)
" d dimensions (latent subspace)

® SC = clustering data whilst reducing the d of each
cluster to a cluster-dependent subspace

Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan, P. 1998. Automatic subspace clustering of high
dimensional data for data mining applications. SIGMOD Rec., 27, (2), 94-105, doi:10.1145/276305.276314.
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B8 Visual Analytics Pipeline GHCI-KDD -

Visual Data Exploration

O User interaction

VISUElISBtIDn
Mapping
Transformation
O Model
visualisation K led
1—* Data Model nowledge |
bm!dlng
Data
mining

Models
Parameter
refinement

Automated Data Analysis

Feedback loop

Keim, D., Kohlhammer, J., Ellis, G. & Mansmann, F. (eds.) 2010. Mastering the Information
Age: Solving Problems with Visual Analytics, Goslar: Eurographics.

http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf

Holzinger Group, hci-kdd.org 65 Machine Learning Health 07



B High-Dimensional Data @HCI-KDD o

N Large Amount of Dimensions

Product Categories

Batles Batles
Bike and Hydration Tiesand  Bike and Hydration Tires and
Geogiaphy  Pscks  Cages Clesners Helmets  Packs  Locks Pumps  Tubes  Racks  Cages Clesners Helmets  Packs  Locks  Pumps  Tubes Socks  Tights  Vests  BottomBr Brakes  Chains  Cranksets Derailleur Forks  Handlebai Headsets Mountsin Pedals  Rosd Fram Ssddles TouringFriWheels  Road Bike:1
Wirgiria £2,362 45 £133 £2,021 £47E £180 €84 2 £B36 £39 £231 £1243 £302 £18 €3 €1 £1472 £42 £15 £832 £286  £1,684 £151 £31 €277 £1 £24 £709 £252 £ £ £1 £78 £763
Arizana £2.209 61 £33 £lEs £806 £75 €72 3 €1 €316 £S61 £8M e2d7 650 €5 65 51 £20 €37 €S €87 294 g2 £180 ] 44 €79 €755 o2 €59 = €l @25 727
Colorado £4,153 £146 €262 £4.326 £1631 £165 £228 fars £233 £372 £1,430 £1.017 £1.352 £136 £10 £10 £2 608 €17 £133 £1.500 £W3 £1,447 £1,706 £31 £13 £1 £225 £326 £1134 £53 £ £3 £1477 £727
Flarida £4422 €182 €205 £3848 €106 €180 €4 €33 0941 £889 €108 £M3 €397 w3 €23 €6 €208 €270 €383 3843 €M 2406 £1,005  £315 €764 £MT €54 £ £72 21 Rl € €3 £533
Hlircis €576 €27 €33 489 e297 5 ¢l522 €59 eld0l  el063 €51 €515 e €M €143 €25 206 €700 €93 2562 £1038 728 €097 el o0 €l046 2% 51 € £l260  £3%0
Indiana £1,250 £33 £92 £1,330 £474 £45 £24 £14 £334 £48 £458 £643 £136 £23 44 £22 £276 £36 £167 £153 £231 82 £176 £62 £78 £3 £36 £925 £207 £36 6 £1 €87 £578
Maine £2,069 €63 €137 £1.343 £507 €60 3z £z £372 £253 £701 476 €324 €43 £242 £ £1.375 €4z £ £2.926 £480 £545 £463 £119 £270 £21 £162 £40 £445 £40 £86 E11 £5,000 £7,500
Michigan £2.421 £86 £140 £2,642 €87 £60 £8d 2722 £478 £24 £518 £351 £723 £33 £57 £30 £1583 £16d £6 £2,512 663 £531 £252 £326 £194 £0 £478 £1,186 £1,509 £62 £75 £17 £4,159 £9,500
Mz i £1368 B3 €81 £1,140 £BE80 £75 €60 £483 £193 £408 £309 £250 £25 £23 £13 £11 €6 £58 £2,1770 £1108 £560 £297 £228 £397 £26 £255 £623 £651 £2 £24 £50 £340  £6,800
Nevada £1.656 €lzz €143 £1621 £738 £z £1.383 £195 a7 €672 £543 €581 £309 £ £332 €220 £130 £3.032 £1.131 £2.410 £1,239 £188 £1,958 £26 £68 £990 £1,766 £4,598 £2,714 £194 £8,000 £577
Mew Mewioc £1531 £56 £133 £1,336 £534 £105 £48 £14 £337 £123 £742 £136 £323 £64 £48 6 £231 £3 £212 £1,904 £108 £571 £368 £159 £240 £3 £348 £1383 £823 £525 £105 £73 £3,911 £29
(%) Newvok €327 €185 £3Z e43T  €2070 €185 €108 €3 0157 £829 £429 £3.962 L1461 €01 £I63 €4 £328  £201 €7 2265 €2325 €731 £780  £508 £97 245 £128 £4048 24593 £1416  £1500  £253  £4,003  £2.218
o] Ohio £1656 51 7 el0 eds2 € el243 e84 £286 48T €266 0 &0 el eds4 el el eds €381 0 20 f0 €850 B £30  £L020  £486 £0 0 £11  £2,450 £1767
S Wirginia £289 £24 £70 £1.739 £518 £328 £74 €31 £ £126 £274 £334 £m £73 18 £20 £576 £34 £4d £1,187 £273 £1,108 £245 £20 7 £8 £63 £287 £243 £4gd £4z £421 £3,532 £4,285
(o) Arizana 1927 23 €90 2926 ofT8 €83 el e €360 el @1 el 31 €22 €75 P 27 el 236 €13 £253 257 £20 o4 = £1s 97 263  £253  £630  £987 £3,33%  £3,379
Q Colorado £163 £143 £101 £1,.225 £1420 £102 £160 £34 £18 £378 €524 £2,038 £240 £26 £55 £6 £72 £23 £33 £3.055 £602 £38 £437 £113 £12 £2 £48  £2,188 £312 £40 £193 £430 £421 £451
7] Flarida £3.567 £33 £366  £3.442  £2080 €402 42 €83 €2737 €386 €130 €392 €7 €1B e’ €6 €323 £M8 €287 42 €69 f2382  £16  £166 €730 £ 64 £496  £764 841 £966  £775  £3,532
Hlinois ela’ €S0 eMS  el72 €21 €738 81 €51 £1006 €3 882 €36 €35 3 €45 €23 €405 ol P €2 eTa2 £57 £55 €75 € £206  £136 £57  £211  £235  £275  £4.288
m Indizra £38 8 £20 £334 £1.075 £18 £4 15 £13 £45 €82 £38 £197 3 £0 3 8 £2 £0 £53 54 £83 £6 £49 5 £ £23 £11 £2 £2 £3 £19 £13
— Maine 2430 €3 €22 £558  eTd2 £79 £ e el 43 43 w43 €30 £20 £3 el o £3 €28 €203 edd  £lg 2 - £ £s £33 37 32 £2 el s181
o Michigan £1615 £356 €0 £2,438 £533 £48 £165 £32 £1473 £65 £3 £133 £143 £2 £26 £6 £535 £16 £0 £221 £76 £113 £11 £75 £467 £10 £1 £381 £154 £1 £54 £28  £1,060
Mizzouri 867 £ £54 £1,241 £348 £151 £87 £22 £4ET £ fal: £397 24 £18 £20 i BB 94 48 £393 £51 £220 £136 £63 45 £0 £1 £632 £30 £12 £44 £1 £2,572
) Nevada €372 £ €23 3375 €84 €2033  e465 €7 €355 ediz =2 €36 €27 307 £33 & b & 6 £36 €13 £3842  g1e27 £50 €24 €52 = €35 €0 e200 €23 €2 €225
c Arizona £2,203 £61 £33 £1,651 £806 £75 £72 £13 €7 £316 £561 £834 £237 £60 £15 £5 £513 £20 £37 £145 £687 £294 £32 £180 £68 44 £73 £7156 £152 £59 £ £1 £25
= Colrsdo  £4.153  €M8 €262 4326 €163 €185 €228 €2 €233 £32 £1430 €100 €352 e18 €0 €0 £2608  EM7 €13 £1500 €WI  £1447  £L706 £a1 £13 £ €225 £926 €113 53 5 €3 €477
o Flarida £4422 €182 €206 £3848 €106 €80 £Md €33 151 e889  el208 ef3 €387 w3 €23 €6 €126 £270 £33 3843 €N3  £a0s 1008 £315  e76d £MT €54 el €72 €21 el P
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B8 High-Dimensional Data — The Curse of Dimensionality @HCI-KDD 5%

" |[rrelevant Dimensions

® Correlated and Redundant
Dimensions

" Conflicting Dimensions

" Challenging Interpretation of data
and analysis results

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor"
meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540.
Berlin: Springer, pp. 217-235.
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B8 High-Dimensional Data — The Curse of Dimensionality @HCI-KDD 5%

= NN problem: Given n data points and a query
point in an m —dimensional metric space

" find the data point closest to the query point.

L ] L -
L e & " Nearest Neighbor
. - Query Point
P 0» o
- .
.
»
.
. . .
[ ] C'-
L .
-:.- . * g .
™ ‘.‘: - L
----- L 1 ]
. = DMIN
Toiet j *Query Point
DMAX eols
' oo end
e [ 14+E)DMIN ™

~MNearest Cluster

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor"
meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540.
Berlin: Springer, pp. 217-235.
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m Challenges in High-Dim Data — Curse of Dimensionality @ HCI-KDD o

] d(a,p) D
= Concentration Effect qm;edm

C .. - T W) P im0 d(g,p) = d(@.p")
= Discriminability of similarity gets lost

" |[mpact on usefulness of a similarity measure

= High-Dimensional Data is Sparse

_Q L]
E 2 | a
N o =] . | =
g 2 ’ : 3
E [ e
a8 E 8
(] el =
/fus D
. 3- e
,:-— . - : [ - T T T on 1] 18 s 0
0.8 05 1.0 1.5 0.0 111 1.0 1.5 20 Dime nsion a
Dimension a Dimension a

Optimization Problem and Combinatorial Issues
Feature selection and dimension reduction
2%-1 possible subsets of dimensions ( -> subspaces)
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B8 Example: Full Space Clustering of High-Dimensional Data @He1-kpD4-

i

Normalized Distance
between records / clusters

PP i§ii i

e e A e s s e e A e e A e A B e A e A A A A S A AR A S AR R AR AN AR SN AN N

Data Records
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B Overview of (major?) Subspace Analysis Techniques

@ HCI-KDD o

4 e 4 om®
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I. A Subspace
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High-Dimensional Data
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Facetted Result View, e.g. multiple clustering sﬂiulmr'.ug,/

/Subspace NN Search - facetted result vf.e'w.:\|
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e Patterns may be found in subspaces (dimension combinations)
e Patterns may be complementary or redundant to each other
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B Subspace Concept

@ HCI-KDD o

voils P s

¥, Ls

ol B9 i
PRES T 1 ]
Subspace
HD Data Subspace Search Inte rgsﬁng Grouping and Filtering Hgdundan:gy Subspace Interaction Cluster
e.0. SURFING Subspaces e.g. Hierarchical Clustering | Reduced View e.9. coloring cluslers Colored View
based on subspace similarity
objectlD '_age" - "L:r'lt;avdnafes,
p "traveling subspace” "health subspace™
1 ABC ABC
2 'ABC _|ABC :
3 ABC___|ABC 2
4 _ABC ABC =
5 "ABC ABC : g
6 ABC ___|ABC
7 ABC ABC
8 ABC ABC
9 ABC__ laBC

Tatu, A., Maass, F., Faerber, |., Bertini, E., Schreck, T., Seidl, T. & Keim, D. Subspace search and visualization to
make sense of alternative clusterings in high-dimensional data. IEEE Symposium onVisual Analytics Science
and Technology (VAST), 2012 Seattle. IEEE, 63-72, d0i:10.1109/VAST.2012.6400488.
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B8 Example of 12D Data -> 4095 subspaces (296 interesting) @HCI-KDD -
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B Motivation G HCI-KDD o

k-Nearest Neighbor Quer

distance function
set of dimensions

¢

Query Object

Single Distance Function: d(‘ ) ’ ) = R, based on
Fixed dimensions [shape, color, size, rotation]

Hund, M., Behrisch, M., Farber, 1., Sedlmair, M., Schreck, T., Seidl, T. & Keim, D. 2015. Subspace
Nearest Neighbor Search-Problem Statement, Approaches, and Discussion. Similarity Search and
Applications. Springer, pp. 307-313.
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B Motivation @HCI-KDD

k-Nearest Neighbor Quer

distance function
set of dimensions

Query Object

k-Nearest Neighbors: Ranked list of most similar objects
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B8 Effects in High-Dimensional Spaces @HCI-KDD o

= Attention: Similarity measures lose their
discriminative ability

" Noise, irrelevant, redundant, and conflicting
dimensions appear

k-Nearest Neighbor Quer

distance function
set of dimensions

¢

Query Object
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B Application in a Clinical Scenario

Nearest

Neighbor

Sex, Age, Blood Type,

(1) Relevant subspaces depend on patient and are Blood Pressure,

Former Diseases,
Medication

unknown beforehand
(2) Multiple subspaces might be relevant
(3) Subspaces helps to interpret the nearest

neighbors (semantic meaning)
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B Subspace NN-Search: Definition and Characteristics @HCI-KDD

1. Detect all previously unknown subspaces that are
relevant for a NN-search

2. Determine the respective set of NN within each

relevant subspace Hig-Dimensional
Feature Space

fSubspace NN Search - facetted result vimv\

He Y
"' ... .-.. . “..
- :'. Ao l.l «® A

* ®un »n ey AN

Lt e Fa .,

[ ] A
Characteristics: o @ ® \ ®

e Search for different NN’s in different subspaces
e Consider local similarity (instead of global)
e Subspaces are query dependent

e Subspaces are not an abstract concept but helps to
semantically interpret the nearest neighbors
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B Again: What is a Relevant Subspace for NN-Search? @ HCI-KDD 2%

A A A

- - * Nearest Neighbor

‘ O Search ?

> > >

Subspace Clustering Subspace Outlier Detection

Subspace clustering aims at finding clusters in different axis-
parallel or arbitrarily-oriented subspaces [1]

Subspace Outlier Detection search for subspaces in which an
arbitrary, or a user-defined object is considered as outlier [2].

[1] Kriegel, H. P., Kroger, P. & Zimek, A. 2009. Clustering High-Dimensional Data: A Survey on
Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transactions on
Knowledge Discovery from Data (TKDD), 3, (1), 1-58, d0i:10.1145/1497577.1497578.

[2] Zimek, A., Schubert, E. & Kriegel, H. P. 2012. A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387.
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B Initial Subspace Model GHCI-KDD -

Relevance of Nearest Neighbors

A set of objects a, b, c are NN of the query g in a subspace
s, iff a, b, and c are similar to g in all dimensions of s.

Relevance of a Subspace

A subspace is considered relevant, iff it contains relevant
nearest neighbors

/Fl oD ./—r"*"*ﬂg]:}ﬂ\ 7 .p.lﬁ\
; kR - o'e
: —-= v te_ _ a_e_ - —r e D O -i-” - b
I
[ ] = ™ & o
I *: & *‘; #- & .o % " =
: < : e ** a8 *® nﬁ
| f} e _|_"__:"'_+__¢_‘_... L P A ——
I 4 ] * ee
T G o * . hpe * on_®
I /m-¢ * 1 0% . . g
| e @& | : +*'++ E{+ ﬁ
\n__IL ————————— .-_,j \,,__I _________ - j l\"r-ﬁl-ﬂ—ﬂ-ll-“ —soon & — -j

Dimensionality

Hund, M., Behrisch, M., Farber, |., Sedimair, M., Schreck, T., Seidl, T. & Keim, D. 2015. Subspace Nearest Neighbor
Search-Problem Statement, Approaches, and Discussion. Similarity Search and Applications. Springer, pp. 307-313.
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B Advantages of Subspace Modelling @ HCI-KDD %

" Interpretability: reflects the semantic meaning
" |n which way are NN’s similar to the query?
= = In all dimensions of the subspace

= Fulfills the downward-closure property

" Make use of Apriori-like algorithms for subspace
search

" No global distance function necessary
" Heterogeneous subspaces can be described

= Compute the nearest neighbors in every dimension
separately (with an appropriate distance function)

= Compute subspace by intersection
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B Query Based Interestingness Measure for Dimensions G HCI-KDD 2

L ] 1)
ﬁ“ 2 g < e p.'“
ﬁ - o *® o ™
= g ° L . 8 q
;| . : [ et A
= I . | I e > . .
distance to p : distance to q ' dim,
Non-Characteristic Characteristic

. . . ) Data Distribution
Dimension Dimension

Holzinger Group, hci-kdd.org 82 Machine Learning Health 07



B Query Based Interestingness Measure for Dimensions

@ HCI-KDD o

BT B | e [ S
N T
PN P Y e
—m—— e - —— B e W
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query = butter

Holzinger Group, hci-kdd.org
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B Initial experiments GHCI-KDD -

Supplementa ry Material Full Space Subspace 1 Subspace 2

= http://files.dbvis.de/sisap2015 outer wieec Dutes W
butter, without salt butter oil, anhydrous butter, without salt
butter oil, anhydrous butter, without salt salad drsng, mayo

Dataset kellogg's, fruit bars lard margarine

] USDA Natlonal Nutrltlon Data base margarine salad drsng, mayo chicken, broilers

pork, backfat

pancakes

=  http://ndb.nal.usda.gov/

Experiment cheese, cream
H . pie crust
=  Full Space (Eucl. distance, 50 dim.) |

=  Subspaces (our model) kellogg's cereals

soup

shortening

chicken, broilers

oil, corn, peanut, and olive
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B Discussion and Open Research Questions @HCI-KDD 5%

(1)Determine Nearest Neighbors per Dimension

(2) Efficient Search Strategy

(3) Query-Based Interestingness for Dimensions

(4) Subspace Quality Criterion (Depends on
Analysis Task)

Q
G

(5) Evaluation Methods and Development of

Benchmark Datasets

(6) Multi-input Subspace Nearest Neighbor

Search

(7) Visualization and User Interaction

Holzinger Group, hci-kdd.org 85 Machine Learning Health 07



B Subspace Clustering GHCI-KDD %

r/FSubspaa:.:e NN Search - facetted result vi ) ’/I_Tea,ture Selection - single result view A
[ A
High-Dimensional '=".' "i'e -3 :t“' AAAAAA
Feature Space mey Al EEEEEN
A op o ®a g
] A Pa Py o 00 s os e -
A
L A - \ @ \ @
- ®n n
Ae o B, 4 Subspace Clustering - faceited clusters ) /-Subspace Outlier Detection — find arpiamiian;\
- @ 2 e ¢ AAAAAA
G’ e w L:. .:. R * := == : =
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&
=:.' cre LI =:.= x e 00
A
N © o AN D)

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis
of Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston,
K., Aldo, F., Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial
Intelligence LNAI 9250. Cham: Springer International Publishing, pp. 358-368, doi:10.1007/978-
3-319-23344-4 35.
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m Projected Clustering / Subspace Clustering / Alternative @ HCI-KDD o

= Variety of different algorithms, e.g. PROCLUS
[1], CLIQUE [2], RESCUE [3]

= Example CLIQUE:

et
i o
e P B 2-dim. dichte Regionen
o I. . ” " . [
)= [ 3-dim. Kandidaten-Region
#1 L = ;-f’;’r'
I A 2-dim. Region, die gepriift
A 3 - werden muf

= Challenges
= Exponential # of possible subspaces
= Result highly depend on parameters
" Highly redundant results (clusters + subspaces)
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B Example Clust Nails Tatu et al (2012) G@HCI-KDD 5

Which dimensions occur more often in clusters?
Which occur often together?
Which values do records in a specific cluster have?

Data Records —

Dimensions

Tatu, A., Albuquergue, G., Eisemann, M., Schneidewind, J., Theisel, H., Magnor, M. & Keim, D.
Combining automated analysis and visualization techniques for effective exploration of high-
dimensional data. Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium
on, 2009. |IEEE, 59-66.

Tatu, A., Maass, F.,, Faerber, I., Bertini, E., Schreck, T., Seidl, T. & Keim, D. Subspace search and
visualization to make sense of alternative clusterings in high-dimensional data. IEEE Symposium
onVisual Analytics Science and Technology (VAST), 2012 Seattle. IEEE, 63-72,
doi:10.1109/VAST.2012.6400488.
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= VISA by Assent et al. (2007)
" CoDa by Ginnemann et al (2010)
" Morpheus by Miller et al. (2008)

= Visual Analytics Framework by Tatu et al.
(2012), see before

|.‘i‘_,|___.__. S ———— — e -
—l b — e - e _.I B
L, - | - e
o H il | = -
| 1 i

i )
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B Visual Analytics for Subspace Steering @ HCI-KDD %

= Existing techniques: exploration of subspace clusters

= \/isualizations to make sense of clusters and its
subspaces

Is the parameter setting appropriate for the data?

What happens if algorithms cannot scale with
the #dimensions?

" We need methods to steer algorithms while

computing relevant subspaces
" Pruning of intermediate results

" Adjust parameters to domain knowledge
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G HCI-KDD o
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Fig. 3 A screenshot of our visual analytics tool SubVIS. It enables the user to interactively explore a large number of subspace
clusters. A general overview of the similarities between the subspaces is given by an MDS projection (A). Small multiples (B)
allows to preview projections of different distance functions and a quick change of the MDS plot. On the very top (C) the user
is provided with some distribution properties of the subspaces such as the #dimensions. A heatmap (D) provides more details
of relationships between the pair-wise distances. An aggregation table (E) shows the values of the aggregated cluster members
and the table lense (F) provides details on demand.

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis
of Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston,
K., Aldo, F., Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial
Intelligence LNAI 9250. Cham: Springer International Publishing, pp. 358-368, doi:10.1007/978-
3-319-23344-4 35.
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Data in only one dimension is relatively packed

Adding a dimension “stretch” the points across that dimension,
making them further apart

Adding more dimensions will make the points further apart—high
dimensional data is extremely sparse

Distance measure becomes meaningless—due to equidistance
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B Repeat some definitions @ HCI-KDD 2%

= Dataset - consists of a matrix of data values, rows represent
individual instances and columns represent dimensions.

= |nstance - refers to a vector of d measurements.

= Cluster - group of instances in a dataset that are more similar to
each other than to other instances. Often, similarity is measured
using a distance metric over some or all of the dimensions in the
dataset.

= Subspace - is a subset of the d dimensions of a given dataset.

= Subspace Clustering — seek to find clusters in a dataset by
selecting the most relevant dimensions for each cluster
separately .

= Feature Selection - process of determining and selecting the
dimensions (features) that are most relevant to the data mining
task.
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B Interesting Clusters may ONLY exist in subspaces!!

Hol

Dimen=ion b

Parsons, L., Haque, E. & Liu, H. 2004. Subspace
clustering for high dimensional data: a review.
SIGKDD Explorations 6, (1), 90-105.
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@ HCI-KDD -

ipal Component Analysis (PCA)
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B8 Black-Box approach

@ HCI-KDD o

-

24 May 2016

}7277v1 [cs.CR]

Transferability in Machine Learning: from Phenomena to
Black-Box Attacks using Adversarial Samples

Nicolas Papernot and Patrick McDaniel
The Pennsylvania State University
University Park, PA
{ngp5056,mcdaniel}@cse.psu.edu

ABSTRACT

Many machine learning models are vulnerable to adversarial
erxamples: inputs that are specially crafted to cause a8 ma-
chine learning model to produce an incorrect output.  Ad-
versarial examples that affect one model often affect another
moddel, even if the two models have different architectures or
were trained on different training sets, so long as both mod-
els were trained to perform the same task. An attacker may
therefore train their own subsfiute model, craft adversar-
ial examples against the substitute, and transfer them to a
victim model, with very little information about the victim.
Recent work has further developed a technique that uses the
victim model as an oracle to label a synthetic training set
for the substitute, so the attacker need not even collect a
training set to mount the attack. We extend these recent
technigques using reservoir sampling to greatly enhance the
efficiency of the training procedure for the substitute model.
We introduce new transferability attacks between previously
unexplored (substitute, victim) pairs of machine learning
model classes, most notably SVAlIs and decision trees. We
demonstrate our attacks on two commercial machine learn-
ing classification systems from Amazon (96.19% misclassi-
fication rate) and Google (88.94%) using only 800 queries
of the victim model, thereby showing that existing machine

Holzinger Group, hci-kdd.org
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Figure 1: An adversarial sample (bottom row) s prodoced
by slightly altering a legitimate sample (top row) in a way
that forces the model to make a wrong prediction whereas
a human would still correctly classify the sample lE

Adversarial sample :!mﬂ.ls_fr.'mbi!:'tyﬂiﬁ the property that some
adversarial samples produced to mislead a specific model
f can mislead other models f'—even if their architectures

greatly differ @ A practical impact of this prop-
erty 15 that it leads to oracle-based black box attacks. In

Machine Learning Health 07



06 “What is
interesting?”
Projection Pursuit
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B Huber (1985): “What is interesting?” GHCI-KDD -

e Projection pursuit : Find a subset of coordinates of
the data which display “interesting” features. Often the
selection of the subset of coordinates is manual, but there
are automated algorithms which can find these subsets
automatically also. Finally one has to inspect each

projection and decide if its “interesting”.

Huber P.J.: Projection pursuit. Ann. Statist. 13, 2 (1985), 435-525.
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Bl Least Gaussian projections of the data (interesting?) @ HCI-KDD o

how to define non-Gaussianity?

covariance and mean given: Gaussian distribution maximizes the
entropy

Objective: minimize H(t) for t = wlx

t is normalized to zero mean and unit variance

This is difficult to optimize
- finding unimodal super-Gaussians
-> finding multimodal distributions

Other criteria are given for ICA: kurtosis and different contrast
functions which measure non-Gaussianity
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B Miller-Reavens Diabetes Study from 1979 (1/2) @HCI-KDD o

= 145 diabetes patients

" 6 dimensional data set:
" 1) age,
= 2) relative weight,
= 3) fasting plasma glucose,

= 4) area under the plasma glucose curve for the three
hour glucose tolerance test (OGTT),

= 5) area under the plasma insulin curve for the OGTT,
" 6) steady state plasma glucose response.

= Method: Projection Pursuit (PP)
= Result: R® — R3

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a
multidimensional analysis. Diabetologia, 16, 1, 17-24.
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B Miller-Reaves Diabetes Study (2/2) G@HCI-KDD
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Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a

multidimensional analysis. Diabetologia, 16, 1, 17-24.
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B Mapping the data from R to R? @HCI-KDD o

Given a point cloud data set X and a covering U
= simplicial complex

[ X->R
[ X—>Z
9 "o U= {Uglaea
H::: —d(x,y)?

e TR =G ) exp(—
¥ y

'/I

Singh, G., Mémoli, F. & Carlsson, G. (2007). Topological methods for the analysis of high
dimensional data sets and 3D object recognition. Eurographics Symposium on Point-Based
Graphics, Euro Graphics Society, 91-100.

Holzinger Group, hci-kdd.org 102 Machine Learning Health 07



B Topology based data analysis

G HCI-KDD +%-
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Nicolau, M., Levine, A. J. & Carlsson, G. (2011) Topology based data analysis identifies a
subgroup of breast cancers with a uniqgue mutational profile and excellent survival. Proceedings

of the National Academy of Sciences, 108, 17, 7265-7270.
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B Future Outlook GHCI-KDD -

" Time (e.g. entropy) and Space (e.g. topology)

= Knowledge Discovery from “unstructured” ;-)
(Forrester: >80%) data and applications of
structured components as methods to index and
organize data -> Content Analytics

" Open data, Big data, sometimes: small data
" |Integration in “real-world” (e.g. Hospital), mobile

" How can we measure the benefits of visual
analysis as compared to traditional methods?

" Can (and how can) we develop powerful visual
analytics tools for the non-expert end user?
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@ HCI-KDD -

k you!
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B Sample Questions GHCI-KDD -

Why would we wish at all to reduce the
dimensionality of a data set?

Why is feature selection so important? What is the
difference between feature selection and feature
extraction?

What types of feature selection do you know?

Can Neural Networks also be used to select
features?

W
Su

W

ny do we need a human expert in the loop in
ospace clustering?

nat is the advantage of the Projection Pursuit

method?
Why is algorithm selection so critical?
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B Sample Questions GHCI-KDD -

= What are the problems in high-dimensional
spaces?

= When is the human-in-the-loop beneficial?

" What is a Autoencoder and when would you use
it?

= When would you use PCA?

= \What did the authors of the Miller-Reavens
study do?

= Why is the question “what is interesting?” a hard
guestion?
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