

185.A83 Machine Learning for Health Informatics 2017S, VU, 2.0 h, 3.0 ECTS Module 01 - 14.03.2017

### **Health Data Jungle:**

#### **Selected Topics on Fundamentals of Data** and Information Entropy

a.holzinger@hci-kdd.org http://hci-kdd.org/machine-learning-for-health-informatics-course

01 Data – the underlying physics of data

02 Biomedical data sources – taxonomy of data

- 03 Data integration, mapping, fusion
- 04 Probabilistic Information

Red thread through the lecture today

- 05 Information Theory Information Entropy
- 06 Cross- Entropy Kullback-Leibler Divergence

QHCI-KDD :

QHCI-KDD-%

Holzinger Group, hci-kdd.org

ML needs a concerted effort fostering integrated research GHCI-KDD & http://hci-kdd.org/international-expert-network Data Interactive Mining Knowledge Discovery 2 Learning Visualization Algorithms Mapping cessing GDM 3 Graph-based Data Mining TDM 4 Topological Data Mining EDM 6 Entropy-based Data Mining Privacy, Data Protection, Safety and Security

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:

Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.

Machine Learning Jungle Top-Level View Visualization Data fusion Cognition Perception Preprocessing Decision Interaction Integration CONCEPTS THEORIES Complexity Unsupervised Gaussian P Regularization Python Reinforcement Bayesian p(x) Supervised Graphical M. Scaling Representation Entropy/KI Semi-Superv. **Neural Nets** Aggregation Vapnik-Chernov. Kernel/SVM Evolution Transfer Learning Multi-Agent-Hybrid-Systems Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) Application, Validation, Evaluation, Impact - Social, Economic, Acceptance, Trust Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0\_1.



image source: http://www.hutui6.com/reflection-wallpapers.html

Holzinger Group, hci-kdd.org MAKE Health 01



Holzinger Group, hci-kdd.org

Warm-up Quiz

MAKE Health 01

Question: Where is the Biologist in this image?

QHCI-KDD-%



Image source: http://www.efmc.info/medchemwatch-2014-1/lab.php

Domingos, P. 2015. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World, Penguin UK.

Repetition of Bayes - on the work of Laplace

What is the simplest mathematical operation for us?

$$p(x) = \sum (p(x, y)) \tag{1}$$

How do we call repeated adding?

$$p(x, y) = p(y|x) * p(y)$$
 (2)

Laplace (1773) showed that we can write:

$$p(x, y) * p(y) = p(y|x) * p(x)$$
 (3)

Now we introduce a third, more complicated operation:

$$\frac{p(x, y) * p(y)}{p(y)} = \frac{p(y|x) * p(x)}{p(y)}$$
(4)

We can reduce this fraction by p(y) and we receive what is called Bayes rule:

$$p(x,y) = \frac{p(y|x) * p(x)}{p(y)}$$
  $p(h|d) = \frac{p(d|h)p(h)}{p(d)}$  (5)

#### Practical Example: Diagnoses

Q HCI-KDD - %

GHCI-KDD 5€

Your MD has bad news and good news for you.





Good news: It is a rare disease, striking 1 in 10,000 (D)

How worried would you now be?

$$posterior \ p(x) = \frac{likelyhood * prior \ p(x)}{evidence} \qquad p(h|d) = \frac{p(d|h)p(h)}{p(d)}$$
$$p(T = 1|D = 1) = p(d|h) = 0,99 \ and$$
$$p(D = 1) = p(h) = 0,0001$$

$$p(D=1 \mid T=1) = \frac{(0.99)*(0.0001)}{(1-0.99)*(1-0.0001)+0.99*0.0001} = \frac{(0.99)*(0.0001)}{(1-0.99)*(0.0001)+0.99*0.0001} = \frac{(0.99)*(0.0001)+0.99*0.0001}{(1-0.99)*(0.0001)+0.99*0.0001} = \frac{(0.99)*(0.0001)+0.99*0.0001}{(1-0.99)*(0.0001)+0.99*0.0001} = \frac{(0.99)*(0.0001)+0.99*0.0001}{(0.99)*(0.0001)+0.99*0.0001} = \frac{(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.99)*(0.$$

= 0.0098

QHCI-KDD-

- Heterogeneous, distributed, inconsistent data sources (need for data integration & fusion) [1]
- Complex data (high-dimensionality challenge of dimensionality reduction and visualization) [2]
- · Noisy, uncertain, missing, dirty, and imprecise, imbalanced data (challenge of pre-processing)
- The discrepancy between data-informationknowledge (various definitions)
- Big data sets in high-dimensions (manual handling of the data is often impossible) [3]
- challenges and research directions. BMC Bioinformatics 15(S6):11.
  Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of Patient Groups and Immunization Results Based on Subspace Clustering. In: LNAI 9250. 358-368.

MAKE Health 01

Goal of Machine Learning in Health Informatics

Institute for Advanced Study, Princeton University

Statistical inference & **Decision support:** Better a good solution in time, than a perfect solution never ...

Holzinger Group, hci-kdd.org

QHCI-KDD-%

Q HCI-KDD - %

#### TU

Traditional Statistics versus Machine Learning



QHCI-KDD 3€

 Data in traditional **Statistics** 

What is this?

- Low-dimensional data ( $<\mathbb{R}^{100}$ )
- Problem: Much noise in the data
- Not much structure in the data but it can be represented by a simple model

- Data in Machine Learning
- High-dimensional data ( $\gg \mathbb{R}^{100}$ )
- Problem: not noise. but complexity
- Much structure, but the structure can not be represented by a simple model

Lecun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444.

Holzinger Group, hci-kdd.org MAKE Health 01



Holzinger Group, hci-kdd.org

#### Holzinger Group, hci-kdd.org

01 The underlying

physics of data

MAKE Health 01

Example: Neonatal Screening (1/3)

QHCI-KDD 3€



nymous Testing [801.370.500.174] Chest X-Ray [801.370.500.500] liphasic Screening [801.370.500.540

rical Chemistry Tests [E01,450,150] + odiagnosis [E01,450,230] +

http://www.nlm.nih.gov/cgi/mesh/2011/MB\_cgi?mode=&index=15177&view=expanded#TreeE01.370.500.580

Example: Neonatal Screening (2/3) QHCI-KDD 3€ Yao, Y., Bowen, B. P., Baron, D. & Poznanski, D. 2015. SciDB for High-Performance Array-Structured Science Data at NERSC. Computing in Science & Engineering, 17, (3), 44-52, doi:10.1109/MCSE.2015.43.



cases designated as PAHI =94). MCADD (n=63) and 3-MCCD (n=22), and a classification model 1) decision tree paradig (2) Logistic regression analysis with expert knowledge (diagnos flags) as model input variables

# 02 Biomedical data sources: **Taxonomy of data**

Holzinger Group, hci-kdd.org

Top Level View: Biomedical Data Sources GHCI-KDD ☆ Ecosystem Collective Individual **Tissue** Cell **Bacteria** Virus Molecule Atom MAKE Health 01



Example: Type of Cells

Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments, Gainesville, John Wiley. Holzinger Group, hci-kdd.org

To get a feeling of biological data sources (bionumbers)



Biological data is getting more complex (big sowieso;)



Navlakha, S. & Bar-Joseph, Z. 2011. Algorithms in nature: the convergence of systems biology and computational thinking. Molecular Systems Biology, 7.

Holzinger Group, hci-kdd.org MAKE Health 01



Example: Genetic Data

Holzinger Group, hci-kdd.org

GHCI-KDD 5€

MAKE Health 01



For further reading this is recommended: Buffalo, V. 2015. Bioinformatics Data Skills: Reproducible and Robust Research with Open Source Tools, Sebastopol (CA), O'Reilly.



Example Species: Bacterium E. coli



What can ML do with such data?

QHCI-KDD-%

GHCI-KDD 5€



Features are key to learning and understanding!

MAKE Health 01 Holzinger Group, hci-kdd.org

Holzinger Group, hci-kdd.org

QHCI-KDD-



QHCI-KDD €

- Billions of biological data sets are openly available, here only some examples:

- General Repositories:
  - GenBank, EMBL, HMCA, ...
- Specialized by data types:
- UniProt/SwissProt, MMMP, KEGG, PDB, ...
- Specialized by organism:
  - WormBase, FlyBase, NeuroMorpho, ...
- Details: http://hci-kdd.org/open-data-sets

QHCI-KDD≤

MAKE Health 01

## Taxonomy of data at Hospital Level

- Clinical workplace data sources
- Med.docs: text (non-standardized (free-text), semistructured, standard terminologies (ICD, SNOMED-CT)
- Measurements: lab results, ECG, EEG, EOG, ...
- Surveys, Clinical studies, trials
- Image data sources

Holzinger Group, hci-kdd.org

- Radiology: MRI (256x256, 200 slices, 16 bit per pixel, uncompressed, ~26 MB); CT (512x512, 60 slices, 16 bit per pixel, uncompressed ~32MB; MR, US;
- Digital Microscopy: WSI (15mm slide, 20x magn., 24 bits per pixel, uncompressed, 2,5 GB, WSI 10 GB; confocal laser scanning, etc.
- -omics data sources
  - Sanger sequencing, NGS whole genome sequencing (3 billion reads, read length of 36) ~ 200 GB; NGS exome sequencing ("only" 110,000,000 reads, read length of 75) ~7GB; Microarray, mass-spectrometry, gas chromatography, ...

Holzinger Group, hci-kdd.org MAKE Health 01

## Example Data Set from an High-Throughput Experiment SHCI-KOD &



Example Data Structures (1/3): List

P .

P [1] 4 .

. 4

- · this figure depicts one yeast gene-expression data set
  - · each row represents a gene
  - each column represents a measurement of gene expression (mRNA abundance) at some time point
  - red indicates that a gene is being expressed more than some baseline; green means

Figure from Spellman et al., Molecular Biology of the Cell, 9:3273-3297, 1998

Holzinger Group, hci-kdd.org

#### Taxonomy of data

Physical level -> bit = binary digit = basic indissoluble unit (= Shannon, Sh), ≠ Bit (!) in Quantum Systems -> qubit

- Logical Level -> integers, booleans, characters, floating-point numbers, alphanumeric strings, ...
- Conceptual (Abstract) Level -> data-structures, e.g. lists, arrays, trees, graphs, ...
- Technical Level -> Application data, e.g. text, graphics, images, audio, video, multimedia, ...
- "Hospital Level" -> Narrative (textual) data, numerical measurements (physiological data, lab results, vital signs, ...), recorded signals (ECG, EEG, ...), Images (x-ray, MR, CT, PET, ...); -omics

Holzinger Group, hci-kdd.org



QHCI-KDD :





Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. (2004) WebLogo: A sequence logo generator. Genome Research, 14, 6, 1188-1190.

Holzinger Group, hci-kdd.org MAKE Health 01



Holzinger Group, hci-kdd.org

## Example Data Structures (3/3) Tree



Holzinger Group, hci-kdd.org







http://cacm.acm.org/magazines/2015/1/181614-distributed-information-processing-inbiological-and-computational-systems/abstract

Navlakha, S. & Bar-Joseph, Z. 2014. Distributed information processing in biological and computational systems. Commun. ACM, 58, (1), 94-102.

https://www.youtube.com/watch?v=4u47nwHzqI4&feature=youtu.be

Holzinger Group, hci-kdd.org MAKE Health 01

#### Translational Health Informatics Continuum

@HCI-KDD €

QHCI-KDD-%

#### **Translational Medicine Continuum**



#### **Biomedical Informatics Continuum**

Sarkar, I. 2010. Biomedical informatics and translational medicine. Journal of Translational Medicine, 8, (1), 2-12.



- Grand Challenges in this area:
- - Production of Open Data Sets
- - Synthetic data sets for learning algorithm testing
- Privacy preserving machine learning
- - Data leak detection
- Data citation
- Differential privacy
- Anonymization and pseudonymization
- Evaluation and benchmarking

In medicine we have two different worlds ...

Please visit:

http://hci-kdd.org/privacy-aware-machine-learning-for-data-science/

GHCI-KDD 3€

QHCI-KDD 3€

Example Data Integration Architecture

major challenges of systems biology

**Unsolved Problem:** 

**Data Integration and** 

Data Fusion in the

Life Sciences

obtain a unified view of the activity in the cell is one of the

Navlakha, S. & Bar-Joseph, Z. 2014. Distributed information processing in biological and

How to combine these different data types together to

computational systems. Commun. ACM, 58, (1), 94-102, doi:10.1145/2678280.

GHCI-KDD 5€



## Our central hypothesis: Information may bridge this gap

Science LNCS 7058, Heidelberg, Berlin, New York: Springer.

Holzinger Group, hci-kdd.org

-Omics-data jungle

QHCI-KDD-

Genomics (sequence annotation)

Transcriptomics (microarray)

Proteomics (Proteome Databases)

- Metabolomics (enzyme annotation)
- Fluxomics (isotopic tracing, metabolic pathways)
- Phenomics (biomarkers)
- Epigenomics (epigenetic modifications)
- Microbiomics (microorganisms)
- Lipidomics (pathways of cellular lipid

Clinical patient data Biomedical R&D data (e.g. EPR, images, lab etc.) (e.g. clinical trial data) Weakly structured, highly fragmented, with low integration Health business data Private patient data (e.g. costs, utilization, etc. (e.g. AAL, monitoring, etc.)

Not only a problem at cell level ...

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute

03 Data Integration,

mapping, fusion

Holzinger Group, hci-kdd.org MAKE Health 01

Kirsten, T., Lange, J. & Rahm, E. 2006. An integrated platform for analyzing molecular-biological data within clinical studies. Current Trends in Database Technology-EDBT 2006. Heidelberg: Springer, pp. 399-410, doi:10.1007/11896548\_31. Holzinger Group, hci-kdd.org

Omics-data integration

Gene Expression Data Matrix-CGH Data Lab Annotation Data

© HCI-KDD 3€

Joyce, A. R. & Palsson, B. Ø. 2006. The model organism as a system: integrating omics' data sets. Nature Reviews Molecular Cell Biology, 7, 198-210.

Example: Integrated Data Set

© HCI-KDD - %



Kirsten, T., Lange, J. & Rahm, E. 2006. An integrated platform for analyzing molecular-biological data within clinical studies. Current Trends in Database Technology-EDBT 2006. Heidelberg: Springer, pp. 399-410, doi:10.1007/11896548\_31.

Holzinger Group, hci-kdd.org

MAKE Health 01



- 50+ Patients per day ~ 5000 data points per day ...
- Aggregated with specific scores (Disease Activity Score, DAS)
- Current patient status is related to previous data
- = convolution over time
- ⇒ time-series data

Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, J. (2011). Optimizing Long-Term Treatment of Rheumatoid Arthritis with Systematic Documentation. Pervasive Health - 5th International Conference on Pervasive Computing Technologies for Healthcare, Dublin, IEEE, 550-554.

# Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, J. (2011). Optimizing Long-Term Treatment of Rheumatoid Arthritis with Systematic Documentation. Pervasive Health - 5th International Conference on Pervasive Computing Technologies for Healthcare, Dublin, IEEE, 550-554.

QHCI-KDD :

MAKE Health 01

DAS28 Predicted Mean Responses

Holzinger Group, hci-kdd.org



#### Data Dimensionality examples

GHCI-KDD %

- 0-D data = a data point existing isolated from other data, e.g. integers, letters, Booleans, etc.
- 1-D data = consist of a string of 0-D data, e.g. Sequences representing nucleotide bases and amino acids, SMILES etc.
- 2-D data = having spatial component, such as images, NMR-spectra etc.
- 2.5-D data = can be stored as a 2-D matrix, but can represent biological entities in three or more dimensions, e.g. PDB records
- 3-D data = having 3-D spatial component, e.g. image voxels, e-density maps, etc.
- H-D Data = data having arbitrarily high dimensions

Holzinger Group, hci-kdd.org MAKE Health 01 Example: 1-D data (univariate sequential data objects)

SMILES (Simplified Molecular Input Line Entry Specification)

... is a compact machine and human-readable chemical nomenclature:

e.g. Viagra:

CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CC

N(C)CC4

Holzinger Group, hci-kdd.org

...is Canonicalizable

...is Comprehensive

...is Well Documented

http://www.daylight.com/dayhtml\_tutorials/languages/smiles/index.html



Kastrinaki et al. (2008) Functional, molecular & proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Annals of Rheumatic Diseases, 67, 6, 741-749.









| Scale    | Empirical<br>Operation                                         | Mathem.<br>Group<br>Structure                           | Transf.<br>in R | Basic<br>Statistics                                         | Mathematical<br>Operations |
|----------|----------------------------------------------------------------|---------------------------------------------------------|-----------------|-------------------------------------------------------------|----------------------------|
| NOMINAL  | Determination of equality                                      | Permutation<br>x' = f(x)<br>x 1-to-1                    | x → f(x)        | Mode,<br>contingency<br>correlation                         | =, ≠                       |
| ORDINAL  | Determination of more/less                                     | Isotonic<br>x' = f(x)<br>$x \dots mono-$<br>tonic incr. | x → f(x)        | Median,<br>Percentiles                                      | =, ≠, >, <                 |
| INTERVAL | Determination<br>of equality of<br>intervals or<br>differences | General<br>linear<br>x' = ax + b                        | x →rx+s         | Mean, Std.Dev.<br>Rank-Order<br>Corr., Prod<br>Moment Corr. | =, ≠, >, <, -, +           |
| RATIO    | Determination of equality or ratios                            | Similarity<br>x' = ax                                   | x ↔rx           | Coefficient of<br>variation                                 | =, ≠, >, <, -, +, *, ÷     |

Stevens, S. S. (1946) On the theory of scales of measurement, Science, 103, 677-680.



use of data, security, safety, data protection

patient data integrated in routine?)

Combine Ontologies with Machine Learning

clinical medicine (who has seen genomics and

ownership, privacy, accessibility, usability, fair

Stochastic Ontologies, Ontology learning

 Integration of data from wet-labs with in-silico experimental data (e.g. tumor growth simulation)

Holzinger Group, hci-kdd.org

QHCI-KDD 3€

04 Probabilistic Information p(x)

Holzinger Group, hci-kdd.org MAKE Health 01 Please always distinguish models between ...

TI Categorization of Data (Classic "scales")

QHCI-KDD 3€

## Boolean models

- Algebraic models
- Probabilistic models \*)

environment - and if we use the mathematics of probability theory , in order to express the uncertainties around our model then the inverse probability allows us to infer unknown unknowns ... learning from data and making predictions - the core essence of machine learning and of vital importance for health informatics

Ghahramani, Z. 2015. Probabilistic machine learning and artificial intelligence. Nature, 521, (7553), 452-459, doi:10.1038/nature14541.

MAKE Health 01

Life is complex information



Lane, N. & Martin, W. (2010) The energetics of genome complexity. Nature, 467, 7318, 929-934.

Holzinger Group, hci-kdd.org MAKE Health 01

Information is everywhere ...

© HCI-KDD - %

- · Communication (Hartley, Nyquist, Shannon)
- Coding Theory (Fano, Hamming, Reed, Solomon)
- Cryptography (Hellman, Rivest, Shamir, Adleman)
- Complexity (Kolmogovov, Chaitin) Computation, Chaos
- Cybernetics (Wiener, von Neumann, Langton)
- Foundations (Brillouin, Bennet, Landauer)
- Canonical Quantum Gravity (Wheeler, De-Witt)
- Metabiology (Conrad, Chaitin)

Unification via Information (Carlo Rovelli's books)

Universe's ultimate mechanism for existence might be Information: "it from bit" (Wheeler's last speculation)

Manca, V. 2013. Infobiotics: Information in Biotic Systems, Heidelberg, Springer, doi:10.1007/978-3-642-36223-1.

For ML and Health always remember

QHCI-KDD-

#### Probabilistic Information p(x)



Bayes, T. (1763). An Essay towards solving a Problem in the Doctrine of Chances (Postum communicated by Richard Price). Philosophical

$$p(x_i) = \sum P(x_i,y_j) \quad \text{Thomas Bayes} \quad p(x_i,y_j) = p(y_j|x_i) F(x_i,y_j) = p(y_j|x_i) F(x_i,y_j) \quad \text{Thomas Bayes} \quad p(x_i,y_j) = p(y_j|x_i) F(x_i,y_j) = p(y_j|x_i) F(x_i,y_j) \quad \text{Thomas Bayes} \quad p(x_i,y_j) = p(y_j|x_i) F(x_i,y_j) = p(x_i|x_i) F(x_i,y_j) = p(x_i|x_i) F(x_i,y_j) = p(x_i|x_i) F(x_i,y_j) = p(x_i|x_i) F(x_i|x_i) F(x_i|x_i) F(x_i|$$

Bayes' Rule is a corollary of the Sum Rule and Product Rule:

$$p(x_i|y_j) = \frac{p(y_j|x_i)p(x_i)}{\sum p(x_i, y_j)p(x_i)}$$

Barnard, G. A., & Bayes, T. (1958). Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances. Biometrika, 45(3/4), 293-315.

Bayes Law of Total Probability = data modelling Q HCI-KDD - % Bayes' Rule in words Likelihood d ... data; h ... hypothesis Probability  $H = \{H_1, H_2, \dots, H_n\} \dots Hypothesis space$ Fyidence = marginal likelihood Sum over space of alternative hypotheses

Always remember: QHCI-KDD 3€

The inverse probability allows to infer unknowns, learn from data and make predictions:

- 1) Maximum-Likelihood Learning finds a parameter setting, that maximizes the p(x) of the data:  $P(\mathcal{D} \mid \theta)$
- 2) Maximum a Posteriori Learning (e.g. for MCMC) assumes a prior over the model parameters  $P(\theta)$  and finds a parameter setting that maximizes the posterior:  $P(\theta \mid \mathcal{D}) \propto P(\theta)P(\mathcal{D} \mid \theta)$
- 3) Bayesian Learning assumes a prior over the model parameters and

computes the posterior distribution  $P(\theta \mid \mathcal{D})$ 

Parameter Estimation

- General setting:
  - Given a (hypothesized & probabilistic) model that governs the random experiment
  - The model gives a probability of any data  $p(D|\theta)$  that depends on the parameter  $\theta$
  - Now, given actual sample data  $X = \{x_1, ..., x_n\}$ , what can we say about the value of  $\theta$ ?
- Intuitively, take your best guess of  $\theta$
- "best" means "best explaining/fitting the data"
- Generally an optimization problem

Holzinger Group, hci-kdd.org

05 Information

**Theory & Entropy** 

Maximum Likelihood vs. Bayesian GHCI-KDD 3€

1) Maximum likelihood estimation (given X)

• "Best" means "data likelihood reaches maximum" 
$$\widehat{ heta} = rg \max P(X| heta)$$

- Problem: massive amount of data necessary
- 2) Bayesian estimation (use posterior)

$$\hat{\theta} = \arg \max_{\theta} P(X|\theta) = \arg \max_{\theta} P(X|\theta) P(\theta)$$

- "Best" means being consistent with our "prior" knowledge and explaining data well
- Problem: how to define prior?

Probability > Information > Entropy

An example can be found in: Baneriee, O., El Ghaoui, L. & D'aspremont, A. 2008. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9, 485-516. Available via: http://arxiv.org/pdf/0707.0704

GHCI-KDD €

Illustration of Bayesian Estimation

Holzinger Group, hci-kdd.org

QHCI-KDD 3€

QHCI-KDD-%

QHCI-KDD 3€

Information is the reduction of uncertainty

If something is 100 % certain its uncertainty = 0

- Uncertainty is a max. if all choices are equally probable
- Uncertainty (as information) sums up for independent sources

Holzinger Group, hci-kdd.org

MAKE Health 01

GHCI-KDD 5€

likelyhood \* prior p(x)posterior p(x) =evidence Posteriors  $p(\theta|X) \propto p(X|\theta)p(\theta)$ Likelihood:  $p(X|\theta)$ Prior: p(0) θ<sub>ml</sub>: ML estimate

For more basic information: Bishop, C. M. 2007. Pattern Recognition and Machine Learning, Springer. For application examples in Text processing refer to: Jiang, J. & Zhai, C. X. 2007. An empirical study of tokenization strategies for biomedical information retrieval. Information Retrieval, 10, (4-5), 341-363.

Holzinger Group, hci-kdd.org

MAKE Health 01

Entropy as measure for disorder high complexity low complexity low complexity http://www.scottaaronson.com

An overview on the History of Entropy QHCI-KDD = Bernoulli (1713) Maxwell (1859), Boltzmann (1871), Principle of Insufficient Gibbs (1902) Statistical Modeling Pearson (1900) of problems in physics Reason Goodness of Fit measure Bayes (1763), Laplace (1770) How to calculate the state of a system with a limited number of expectation values Fisher (1922) Maximum Likelihood Jeffreys, Cox (1939-1948) Shannon (1948) Statistical Inference Information Theory **Generalized Entropy Bayesian Statistics Entropy Methods** confer also with: Golan, A. (2008) Information and Entropy Econometric: A Review and Synthesis. Foundations and Trends in Econometrics, 2, 1-2, 1-145.

Towards a Taxonomy of Entropic Methods © HCI-KDD 3€ **Entropic Methods** Generalized Entropy Jaynes (1957) Renvi (1961) Maximum Entropy (MaxEn) Renyi-Entropy Adler et al. (1965) Mowshowitz (1968) Topology Entropy (TopEn) Graph Entropy (MinEn) Tsallis (1980) Posner (1975) Tsallis-Entropy Minimum Entropy (MinEn) Pincus (1991) Approximate Entropy (ApEn) Rubinstein (1997) Cross Entropy (CE) Richman (2000) Sample Entropy (SampEn)

Holzinger, A., Hörtenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D. 2014. On Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, I. (eds.) Lecture Notes in Computer Science, LNCS 8401, Berlin Heidelberg: Springer, pp. 209-226

Holzinger Group, hci-kdd.org

MAKE Health 01



Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H. & Fred, A. 2012. On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data. In: Huang, R., Ghorbani, A., Pasi, G., Yamaguchi, T., Yen, N. & Jin, B. (eds.) Active Media Technology, Lecture Notes in Computer Science, LNCS 7669. Berlin Heidelberg: Springer, pp. 646-657. EU Project EMERGE (2007-2010)

Holzinger Group, hci-kdd.org



 $\vec{X}_i = (x_i, x_{(i+1)}, \dots, x_{(i+m-1)})$ 

Let: 
$$\langle x_n \rangle = \{x_1, x_2, \dots, x_N\}$$

$$\|\vec{X}_i, \vec{X}_j\| = \max_{k=1,2,...,m} (|x_{(i+k-1)} - x_{(j+k-1)}|)$$

$$\widetilde{H}(m,r) = \lim_{N \to \infty} [\phi^m(r) - \phi^{m+1}(r)]$$

$$C_r^m(i) = \frac{N^m(i)}{N-m+1}$$
  $\phi^m(r) = \frac{1}{N-m+1} \sum_{t=1}^{N-m+1} \ln C_r^m(i)$ 

Pincus, S. M. (1991) Approximate Entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America, 88, 6, 2297-2301.



ApEn



Holzinger, A., Hörtenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D. 2014. On Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics, Lecture Notes in Computer Science, LNCS 8401. Berlin Heidelberg: Springer, pp. 209-226.

Holzinger Group, hci-kdd.org MAKE Health 01 III Significance of FuzzyMEn for different nL and nF, N=1000 → HCI-KDD →



Mayer, C., Bachler, M., Hortenhuber, M., Stocker, C., Holzinger, A. & Wassertheurer, S. 2014. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15, (Suppl 6), S2, doi:doi:10.1186/1471-2105-15-S6-S2.

Holzinger Group, hci-kdd.org MAKE Health 01



- Heart Rate Variability (HRV) can be used as a marker of cardiovascular health status.
- Entropy measures represent a family of new methods to quantify the variability of the heart rate.
- Promising approach, due to ability to discover certain patterns and shifts in the "apparent ensemble amount of randomness" of stochastic processes,
- measure randomness and predictability of processes.

Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.

Holzinger Group, hci-kdd.org

Baseline: A,B,C - After treatment: D,E,F N=1200

Holzinger Group, hci-kdd.org



Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.

QHCI-KDD %

# **06 Cross-Entropy** Kullback-Leibler **Divergence**

Entropy - KL-Div. - Mutual Information

Entropy:

Example: ApEn (2)

- Measure for the uncertainty of random variables
- Kullback-Leibler divergence:
  - comparing two distributions
- Mutual Information:
- measuring the correlation of two random variables

MAKE Health 01 Holzinger Group, hci-kdd.org Fissues / Drug Treatr

Holzinger Group, hci-kdd.org

ON INFORMATION AND SUFFICIENCY

BY S. KULLBACK AND R. A. LEIBLER

The George Washington University and Washington, D. C.

 Introduction, This note generalizes to the abstract case Shannon's definition
of information [15], [16]. Wiener's information (p. 75 of [18]) is essentially the same as Shannon's although their motivation was different (cf. footnote 1, p. 95 of [16]) and Shannon apparently has investigated the concept more com R. A. Fisher's definition of information (intrinsic accuracy) is well known (p. 709 of [6]). However, his concept is quite different from that of Shannon and Wiener,

and hence ours, although the two are not unrelated as is shown in paragraph 2. and nence ours, astronger the two are not unreasons as a mown in paragraps 2.

R. A. Fisher, in his original introduction of the eviderion of sufficiency, required "that the statistic chosen should summarize the whole of the relevant information supplied by the sample," (p. 316 of [5]). Halmos and Savage in a secent paper, one of the main results of which is a generalization of the well nown Fisher-Neyman theorem on sufficient statistics to the abstract case onclude, "We think that confusion has from time to time been thrown on the subject by ..., and (c) the assumption that a sufficient statistic contains all the information in only the technical sense of 'information' as measured by variance," (p. 241 of [8]). It is shown in this note that the information in a sample as defined herein, that is, in the Shannon-Wiener sense cannot be inreased by any statistical operations and is invariant (not decreased) if and only if sufficient statistics are employed. For a similar property of Fisher's information see p. 717 of [6], Doob [19]. We are also concerned with the statistical problem of discrimination ([3], [17]),

by considering a measure of the "distance" or "divergence" between statistical populations ([1], [2], [13]) in terms of our measure of information. For the statistician two populations differ more or less according as to how difficult it is to discriminate between them with the best test [14]. The particular measure of divergence we use has been considered by Jeffreys ([10], [11]) in another connec-tion. He is primarily concerned with its use in providing an invariant density of a priori probability. A special case of this divergence is Mahalanobis' gen-

Holzinger Group, hci-kdd.org

Conditional Entropy



Solomon Kullback Richard Leible 1907-1994 1914-2003

Kullback, S. & Leibler, R. A. 1951. On information and sufficiency. The annals of mathematical statistics, 22, (1), www.jstor.org/stable/2236703

The Kullback-Leibler Divergence

500

1000

QHCI-KDD 3€

MAKE Health 01

 $KL(p||q) = -\int p(\mathbf{x}) \ln q(\mathbf{x}) d\mathbf{x} - \left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}\right)$  $= -\int p(\mathbf{x}) \ln \left\{ \frac{q(\mathbf{x})}{p(\mathbf{x})} \right\} d\mathbf{x}$ 

1500

Genes

2000

$$\mathrm{KL}(p||q) \simeq \frac{1}{N} \sum_{n=1}^{N} \left\{ -\ln q(\mathbf{x}_n|\boldsymbol{\theta}) + \ln p(\mathbf{x}_n) \right\}$$

$$\mathrm{KL}(p||q) \geqslant 0$$

KL-divergence is often used to measure the distance between two distributions

Holzinger Group, hci-kdd.org MAKE Health 01 Holzinger Group, hci-kdd.org

Note: KL is not symmetric!

Important quantity in

· coding theory

statistical physics

· machine learning

System Technical Journal, 27, 379-423.

GHCI-KDD 5€

MAKE Health 01



 $H[x] = -\sum p(x)\log_2 p(x)$ 

Shannon, C. E. 1948. A Mathematical Theory of Communication. Bell

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep Learning, Cambridge (MA), MIT Press.

Holzinger Group, hci-kdd.org MAKE Health 01

Mutual Information I(X;Y): Comparing two distributions SHCI-KDD &

Entropy measures generally ...

Holzinger Group, hci-kdd.org

QHCI-KDD-%

MAKE Health 01

QHCI-KDD %

... are robust against noise:

... can be applied to complex time series with good replication:

 $H[\mathbf{y}|\mathbf{x}] = -\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) d\mathbf{y} d\mathbf{x}$ 

 $H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]$ 

- ... is finite for stochastic, noisy, composite processes;
- ... the values correspond directly to irregularities - good for detecting anomalies

## **Mutual Information** and Point Wise MI

 $= -\iint p(\mathbf{x}, \mathbf{y}) \ln \left( \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$ 

 $I[\mathbf{x}, \mathbf{y}] = H[\mathbf{x}] - H[\mathbf{x}|\mathbf{y}] = H[\mathbf{y}] - H[\mathbf{y}|\mathbf{x}]$ 

- Measures how much reduction in uncertainty of X given the information about Y
- Measures correlation between X and Y

 $I[\mathbf{x}, \mathbf{y}] \equiv KL(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x})p(\mathbf{y}))$ 

■ Related to the "channel capacity" in the original Shannon information theory

Bishop, C. M. 2007. Pattern
Recognition and Machine Learning.

Heidelberg, Springer,

MAKE Health 01 Holzinger Group, hci-kdd.org

MAKE Health 01



Let two words,  $w_i$  and  $w_{ij}$ , have probabilities  $P(w_i)$  and  $P(w_i)$ . Then their mutual information PMI (w, w) is defined as:

$$PMI(w_i, w_j) = log\left(\frac{P(w_i, w_j)}{P(w_i) P(w_j)}\right)$$

For w, denoting rheumatoid arthritis and w, representing diffuse scleritis the following simple calculation yields:





folzinger, A., Simonic, K. M. & Yildirim, P. Disease-Disease Relationships for Rheumatic Diseases: Web-Based Biomedical nining an Knowledge Discovery to Assist Medical Decision Making. 36th Annual IEEE Computer Software and Applications Conference (COMPSAC), 16-20 July 2012 2012 Izmir. IEEE, 573-580, doi:10.1109/COMPSAC.2012.77.

QHCI-KDD %

 $SCP(x, y) = p(x|y) \cdot p(y|x) =$ p(x,y) p(x,y)  $p(x,y)^2$ p(y) p(x)  $p(x) \cdot p(y)$ 

| for the query | parison of FACTAs r<br>"rheumatoid arthritis" |  |  |
|---------------|-----------------------------------------------|--|--|
| and SCP       |                                               |  |  |

| Frequency            |      | PMI                            |     | SCP                 |       |
|----------------------|------|--------------------------------|-----|---------------------|-------|
| pain                 | 5667 | impaired hody balance          | 7,8 | swoffen joints      | 0.002 |
| Arthralgia           | 001  | ASPIRIN INTOLERANCE            | 7,8 | pain                | 0.001 |
| fatigue              | 429  | Epinochicar<br>lymphadenopathy | 7,8 | Arthralgia          | 0.001 |
| diserbea             | 301  | swellen joints                 | 7,4 | fatigue             | 0.000 |
| swellen joints       | 299  | Joint tenderness               | 7   | erythenu            | 0.000 |
| erythenu             | 255  | Occipital headache             | 6,2 | splenomegaly        | 0.000 |
| Back Pain            | 254  | Neuvenocular excitation        | 6.2 | Back Pain           | 0.000 |
| headsche             | 239  | Restless sleep                 | 5,8 | polymyalgia         | 0.000 |
| splenestegaly        | 228  | joint corpitas                 | 5,7 | joint stiffness     | 0.000 |
| Anesthesia           | 221  | joint symptom                  | 5.5 | Joint tenderness    | 0.000 |
| dyspaca              | 218  | Painful feet                   | 5.5 | hip pain            | 0.000 |
| wrakness .           | 210  | feeling of malaise             | 5.5 | metatursalgia       | 0.000 |
| Rauses               | 199  | Honun's sign                   | 5,4 | Skin Manifestations | 0.000 |
| Recovery of Function | 193  | Diffine pain                   | 5,2 | neck pain           | 0.000 |
| low back pain        | 167  | Palmar erythema                | 5.2 | Eye Manifestations  | 0.000 |
| abdominal pain       | 141  | Absormal sensation             | 5,2 | Sow back pain       | 0.000 |

Holzinger, A., Yildirim, P., Geier, M. & Simonic, K.-M. 2013. Quality-Based Knowledge Discovery from Medical Text on the Web. In: Pasi, G., Bordogna, G. & Jain, L. C. (eds.) Quality Issues in the Management of Web Information, Intelligen Systems Reference Library, ISRL 50. Berlin Heidelberg: Springer, pp. 145-158, doi:10.1007/978-3-642-37688-7\_7.

- 1) Challenges include –omics data analysis, where KL divergence and related concepts could provide important measures for discovering biomarkers.
- 2) Hot topics are new entropy measures suitable for computations in the context of complex/uncertain data for ML algorithms.
- Inspiring is the abstract geometrical setting underlying ML main problems, e.g. Kernel functions can be completely understood in this perspective. Future work may include entropic concepts and geometrical settings.

Holzinger Group, hci-kdd.org

Questions

#### Limitations and Open Problems

- The case of higher order statistical structure in the data - nonlinear and hierarchical?
- Outliers in the data noise models?
- There are  $\frac{D(D+1)}{2}$  parameters in a multi-variate Gaussian model – what happens if  $D \gg ?$ dimensionality reduction

Thank you!

Holzinger Group, hci-kdd.org

Holzinger Group, hci-kdd.org MAKE Health 01

#### Sample Questions (1)

Holzinger Group, hci-kdd.org

Holzinger Group, hci-kdd.org

MAKE Health 01



- What are the grand challenges in ML for health?
- What is the key problem before you can apply ML?
- Describe the taxonomy of data at Hospital level!
- What does translational medicine mean?
- Give an example for a 2.5D-data set!
- Why would be the combination of ontologies with machine learning provide a benefit?
- How did Van Bemmel and Musen describe the interplay between data-information-knowledge?
- What is the "body-of-knowledge" in medical jargon?
- How do human process information?

Sample Questions (2)



MAKE Health 01

HCI-KDD %

- What was our definition of "knowledge"?
- What is the huge benefit of a probabilistic model?
- Please explain Bayes law with view on ML!
- What is information in the sense of Shannon?
- Why is information theory for us important?
- Which benefits provide entropic methods for us?
- Why is feature selection so important?
- What can you do with the Kullback-Leibler Divergence?

Q HCI-KDD - %

QHCI-KDD -

**Appendix** 

Holzinger Group, hci-kdd.org MAKE Health 01



Holzinger Group, hci-kdd.org

Given a signal x(n)=x(1), x(2),..., x(N), where N is the total number of data points, ApEn algorithm can be summarized as follows [1]: Form m-vectors, X(1) to X(N-m+1) defined by:

- X(i) = [x(i), x(i+1), ..., X(i+m-1)] i = 1, N-m+1 (1) 2) Define the distance d[X(i),X(j)] between vectors X(i) and Arr as the maximum absolute difference between
- their respective scalar components:  $d[X(i), X(j)] = \max_{k=0, m-1} [|x(i+k) - x(j+k)|]$
- 3) Define for each i, for i=1, N-m+1, let
  - $C_c^{HI}(i) = V^{HI}(i)/(N-m+1)$ where  $V^{III}(i) = no. of d[X(i), X(j)] \le r$
- Take the natural logarithm of each C<sup>ttt</sup><sub>r</sub>(t), and average it over i as defined in step 3):

$$\phi^{m}(r) = \frac{1}{N-m+1} \sum_{i=1}^{N-m+1} \ln(C_r^{m}(i))$$

- Increase the dimension to m+1 and repeat steps 1) to 4). 6) Calculate ApEn value for a finite data length of N:
  - $ApEn(m,r,N) = \phi^{m}(r) \phi^{m+1}(r)$

Xinnian C. et al. (2005). Comparison of the Use of Approximate Entropy and Sample Entropy: Applications to Neural Respiratory Signal. Engineering in Medicine and Biology IEEE-EMBS 2005, 4212-4215.

Backup Slide: Comparison ApEn - SampEn

- Given a signal x(n)=x(1), x(2),..., x(N), where N is the total umber of data points, SampEn algorithm can be summarized s follows [5]: 1) Form m-vectors, X(I) to X(N-m+1) defined by
- $X(i) = \{x(i), x(i+1), \dots, X(i+m-1)\}$  i = 1, N-m+1 (6) Define the distance d<sub>m</sub>[X(i), X(j)] between vectors
  - X(i) and X(j) as the maximum absolute difference between their respective scalar components:  $d_m[X(i), X(j)] = \max_{k=0, m-1} [|x(i+k) - x(j+k)|]$  (7)
- Define for each i, for i=1, N-m, let
- $B_i^{m}(r) = \frac{1}{N-m-1} \times no. \text{ of } d_m[X(i), X(j)] \le r, i \ne j (8)$
- 4) Similarly, define for each i, for i=1, N-m, let
- $A_i^m(r) = \frac{1}{N-m-1} \times no. \text{ of } d_{m+1}[X(i), X(j)] \le r, i \ne j$  (9)
- 6) SampEn value for a finite data length of N can be

 $SampEn(m,r,N) = -\ln \left(A^{m}(r)/B^{m}(r)\right) \quad (12)$ 

Holzinger Group, hci-kdd.org MAKE Health 01

#### Backup Slide: Graph Entropy Measures

Back-up Slide: SampEn (1/2)

Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. (2002) Sample entropy analysis of neonatal heart

rate variability. American Journal of

and Comparative Physiology, 283, 3,

Physiology-Regulatory Integrative

R789-R797.

Holzinger Group, hci-kdd.org

- The most important question: Which kind of structural information does the entropy measure detect?
- the topological complexity of a molecular graph is characterized by its number of vertices and edges, branching, cyclicity etc.

500

400 payment your make

300



Dehmer, M. & Mowshowitz, A. (2011) A history of graph entropy measures. Information Sciences, 181, 1, 57-78,

Holzinger Group, hci-kdd.org MAKE Health 01

#### Backup: SampEn (2/2) Surrogate data heart rate variability CHCI-KDDmean process observed data set point mode - spike mode isospectral surrogate record baseline process surrogate with spike surrogate data record C) 350 Lake et al. (2002) Holzinger Group, hci-kdd.org

#### Backup: English/German Subject Codes OEFOS 2012 GHCI-KDD 5€ 106005 Bioinformatics Bioinformatik 106007 Biostatistics Biostatistik 304005 Medical Biotechnology Medizinische Biotechnologie 305901 Computer-aided diagnosis Computerunterstützte Diagnose and therapy und Therapie 304003 Genetic engineering, -Gentechnik, -technologie technology 3906 Medical computer Medizinische (old) sciences Computerwissenschaften 305906 Medical cybernetics Medizinische Kybernetik 305904 Medical documentation Medizinische Dokumentation 305905 Medical informatics Medizinische Informatik

http://www.statistik.at

Holzinger Group, hci-kdd.org MAKE Health 01

Medizinische Statistik

#### Backup: English/German Subject Codes OEFOS 2012

QHCI-KDD-%

102001 Artificial Intelligence Künstliche Intelligenz 102032 Computational Intelligence Computational Intelligence 102033 Data Mining **Data Mining** 102013 Human-Computer Interaction Human-Computer Interaction 102014 Information design Informationsdesign 102015 Information systems Informationssysteme 102028 Knowledge engineering **Knowledge Engineering** 102019 Machine Learning Maschinelles Lernen 102020 Medical Informatics Medizinische Informatik 102021 **Pervasive Computing** Pervasive Computing 102022 Software development Softwarenetwicklung 102027 Web engineering Web Engineering

Advance Organizer (1/2)

Abduction = cyclical process of generating possible explanations (i.e., identification of a set of hypotheses that are able to account for the clinical case on the basis of the available data) and testing those (i.e., evaluation of each generated hypothesis on the

GHCI-KDD 5€

CRASH

المام الأنافالعقليسي

MAKE Health 01

GHCI-KDD 3€

MAKE Health 01

Age (days)

- basis of its expected consequences) for the abnormal state of the patient at hand; Abstraction = data are filtered according to their relevance for the problem solution and chunked in schemas representing an abstract description of the problem (e.g., abstracting that an adult male with haemoglobin concentration less than 14g/dL is an anaemic patient):
- Artefact/surrogate = error or anomaly in the perception or representation of information trough the involved method, equipment or process;
- Data = physical entities at the lowest abstraction level which are, e.g. generated by a patient (patient data) or a (biological) process; data contain no meaning;
- Data quality = Includes quality parameter such as : Accuracy, Completeness, Update status, Relevance, Consistency, Reliability, Accessibility;
- Data structure = way of storing and organizing data to use it efficiently;
- Deduction = deriving a particular valid conclusion from a set of general premises;
- DIK-Model = Data-Information-Knowledge three level model
- DIKW-Model = Data-Information-Knowledge-Wisdom four level model
- Disparity = containing different types of information in different dimensions
- Heart rate variability (HRV) = measured by the variation in the beat-to-beat interval; HRV artifact = noise through errors in the location of the instantaneous heart beat, resulting in errors in the calculation of the HRV, which is highly sensitive to artifact and errors in as low as 2% of the data will result in unwanted biases in HRV calculations:

#### Advance Organizer (2/2)

305907 Medical statistics

@HCI-KDD €

- Induction = deriving a <u>likely general conclusion</u> from a set of particular statements;
- Information = derived from the data by interpretation (with feedback to the clinician); Information Entropy = a measure for uncertainty: highly structured data contain low
- entropy, if everything is in order there is no uncertainty, no surprise, ideally H = 0
- Knowledge = obtained by inductive reasoning with previously interpreted data, collected from many similar patients or processes, which is added to the "body of knowledge" (explicit knowledge). This knowledge is used for the interpretation of other data and to gain implicit knowledge which guides the clinician in taking further action;
- Large Data = consist of at least hundreds of thousands of data points
- Multi-Dimensionality = containing more than three dimensions and data are multi-
- Multi-Modality = a combination of data from different sources
- Multivariate = encompassing the simultaneous observation and analysis of more than
- Reasoning = process by which clinicians reach a conclusion after thinking on all facts;
- Spatiality = contains at least one (non-scalar) spatial component and non-spatial data
- Structural Complexity = ranging from low-structured (simple data structure, but many instances, e.g., flow data, volume data) to high-structured data (complex data structure, but only a few instances, e.g., business data)
- Time-Dependency = data is given at several points in time (time series data)
- Voxel = volumetric pixel = volumetric picture element

http://www.statistik.at

Holzinger Group, hci-kdd.org MAKE Health 01 Holzinger Group, hci-kdd.org



John von Neumann

Number of samples Number of input variables Matrix of input samples

Vector of output samples

Combined input-output training data or Representation of data points in a feature space

Probability

Mathematical Notation

Cumulative probability distribution function (cdf) Probability density function (pdf)  $p(\mathbf{x})$ 

 $p(\mathbf{x}, \mathbf{y})$ Joint probability density function

Probability density function, which is parameterized  $p(\mathbf{x}; \omega)$ Conditional density

 $p(y|\mathbf{x})$ Target function

Holzinger Group, hci-kdd.org

**Glossary** 

ApEn = Approximate Entropy;

■ C<sub>data</sub> = Data in computational space;

DIK = Data-Information-Knowledge-3-Level Model;

DIKW = Data-Information-Knowledge-Wisdom-4-Level Model:

GraphEn = Graph Entropy;

H = Entropy (General);

HRV = Heart Rate Variability;

MaxEn = Maximum Entropy;

MinEn = Minimum Entropy;

NE = Normalized entropy (measures the relative informational content of both the signal and noise);

P<sub>data</sub> = Data in perceptual space;

Clinical View of Data, Information, Knowledge

PDB = Protein Data Base:

SampEn = Sample Entropy;

Scientists in data integration - selection - incomplete!

Status as of 04.04.2016

QHCI-KDD 3€

GHCI-KDD %

Mathematical

# **Clinical view** on data information, and knowledge

Holzinger Group, hci-kdd.org MAKE Health 01

Implicit Knowledge Interpreted Data Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer. Holzinger Group, hci-kdd.org MAKE Health 01





Wickens, C. D. (1984) Engineering psychology and human performance. Columbus: Merrill.

Our definition of Knowledge – adaptive agent .... Information Knowledge Mental Models Knowledge := a set of expectations



QHCI-KDD-%

QHCI-KDD 3€

Point Cloud Data Sets

Let us collect n-dimensional i observations:  $x_i = [x_{i1}, ..., x_{in}]$ 



Point cloud in  $\mathbb{R}^2$  topological space

Zomorodian, A. J. 2005. Topology for computing, Cambridge (MA), Cambridge University Press.

- Grand challenges in Machine Learning for Health
- Big data with many training sets (this is good for ML!)
- Small number of data sets, rare events
- Very-high-dimensional problems
- Complex data NP-hard problems
- Missing, dirty, wrong, noisy, ..., data
- GENERALISATION

Source Target Task

doi:10.4018/978-1-60566-766-9.cb011

Multi-task Learning

Task
1 3
1 X 1

Task
2 4

■ TRANSFER

Torrey, L. & Shavlik, J. 2009, Transfer learning, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, 242-264,

Holzinger Group, hci-kdd.org 121 MAKE Health 01

#### Example Metric Space ♀HCI-KDD☆

A set S with a metric function d is a metric space



Doob, J. L. 1994. Measure theory, Springer New York.

Holzinger Group, hci-kdd.org 119 MAKE Health

Text Mining





Visualization Data structure

ML-Jungle Top Level View and the focus of today ...

Cognition

• X:  $S \to \mathbb{R}$  ("measure" of outcome)

Discrete versus continuous random variable

- Events can be defined according to X
  - $E(X=a) = \{s_i | X(s_i) = a\}$
  - $E(X \ge a) = \{s_i | X(s_i) \ge a\}$
- Consequently, probabilities can be defined on X
  - P(X=a) = P(E(X=a))
  - $P(a \ge X) = P(E(a \ge X))$
- partitioning the sample space

Entropy H as a measure for uncertainty (3/3)

Holzinger Group, hci-kdd.org 122 MAKE Health 01

Holzinger, A. 2014. On Topological Data Mining. In Lecture Notes in Computer Science LNCS 8401.

Non-Standardized

QHCI-KDD-

Holzinger Group, hci-kdd.org

12

MAKE Health 01

@HCI-KDD €

GHCI-KDD 5€

Challenges

#### εντροπια

Holzinger Group, hci-kdd.org

#### © HCI-KDD %





My greatest concern was what to call it. I thought of calling it "information", but the word was overly used, so I decided to call it "uncertainty". When I discussed it with John von Neumann, he had a better idea. Von Neumann told me, "You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, nobody knows what entropy really is, so in a debate you will always have the advantage."

Tribus, M. & McIrvine, E. C. (1971) Energy and Information. Scientific American, 225, 3, 179-184.

A measure for uncertainty (2/3)

Standardized

Data Mining

Methods for Mining ...





Shannon, C. E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423.

10 H

 $H_B = -\sum_{k=1}^{n} p_k \log_2 p_k = -1 * \log_2(1) = 0$ 



$$H_B = -\sum_{k=1}^{B} \frac{1}{B} \log_2 \frac{1}{B} = \log_2(B)$$



$$H = H_{max} = \log_2 N$$

Holzinger Group, hci-kdd.org 125 MAKE Health 01

Holzinger Group, hci-kdd.org 126 MAKE Healt



GHCI-KDD; %

- Developed by Claude Shannon in the 1940s
- Maximizing the amount of information that can be transmitted over an imperfect communication channel
- Data compression (entropy)
- Transmission rate (channel capacity)

Claude E. Shannon: A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp. 379–423, 623–656, 1948

Holzinger Group, hci-kdd.org

127

MAKE Health 01

#### Entropic methods – what for?

GHCI-KDD %

- 1) Set of noisy, complex data
- 2) Extract information out of the data
- 3) to support a previous set hypothesis
- Information + Statistics + Inference
- = = powerful methods for many sciences
- Application e.g. in biomedical informatics for analysis of ECG, MRI, CT, PET, sequences and proteins, DNA, topography, for modeling etc. etc.

Mayer, C., Bachler, M., Hortenhuber, M., Stocker, C., Holzinger, A. & Wassertheurer, S. 2014. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15, (Suppl 6), S2.

Holzinger Group, hci-kdd.org 130 MAKE Health 01





GHCI-KDD ☆

The VC dimension is a measure of the capacity of a space of functions that can be learned by a statistical classification algorithm. It is defined as the cardinality of the largest set of points that the algorithm can shatter. It is a core concept in Vapnik— Chervonenkis theory

Vapnik, V. N. & Chervonenkis, A. Y. 1971. On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its Applications, 16, (2), 264-280, doi:10.1137/1116025.

Holzinger Group, hci-kdd.org 128 MAKE Health 01

#### Entropy H as a measure for uncertainty (1/3)

QHCI-KDD☆



$$Qb = \{a_1, a_2\} \, with \, P = \{p, 1-p\}$$

$$H(Qb) = p * \log \frac{1}{p} + p * \log \frac{1}{1 - p}$$

Shannon, C. E. (1948) A Mathematical Theory of Communication. *Bell System Technical Journal*, 27, 379-423.

Shannon, C. E. & Weaver, W. (1949) The Mathematical Theory of Communication. Urbana (IL), University of Illinois Press.



Holzinger Group, hci-kdd.org 129 MAKE Health 01