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Probabilistic Graphical Models
Part 1: From Knowledge Representation
to Graph Model Learning
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B8 ML needs a concerted effort fostering integrated research @HC1-xDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

© a.ho]zinger@htlri-kdd_org o |
Please always note that for sustainable solving of biomedical problems we need
a concerted effort of different disciplines fostering an integrated research
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B Recommended Books

@ HCI-KDD o

Machlne Learnlng
& Probabilistic Pe Cive

avin P, Murphy

Murphy, K. P. 2012. Machine
learning: a probabilistic
perspective, MIT press.

Holzinger Group

BAYESIAN
REASONING

and =1 T thms

MACHINE
LEARNING

David Barber

Barber, D. 2012.
Bayesian reasoning and
machine learning,
Cambridge University
Press.

http://web4.cs.ucl.ac.uk/s
taff/D.Barber/textbook/18
1115.pdf

Koller, D. & Friedman, N.
2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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B8 Red thread through this lecture GHCI-KDD %

= 1) Reasoning under uncertainty
= 2) Where do graphs come from?
= 3) What are the challenges?

= 4) Knowledge Representation
in Network Medicine

= 5) Review of basic metrics and measures

" 6) Practical Example:
How do we get PCD from natural images?

= 7) Graphical Model Learning

Holzinger Group 4 Machine Learning Health 05



B Quiz: Which concepts can you identify ... @ HCI-KDD o
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Graphical models are graphs where the nodes represent random
variables and the links represent statistical dependencies between
variables; This provides us with a tool for reasoning under uncertainty
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Bl Decision trees are coming from Clinical Practice GHCI-KDD -

Death from cancer
o Probability 2%
W Decision node Utility 5%

@ Chance node

“q Qutcome Fertile survival
Probability 98%
No further Utility 100%
surgery

Surgical death

Microinvasive Probability 0-5%

cancer of the Utility 0%
cervix
Infertile survival
: Probability 98% Physician treating a patient
Radical Utility 95% approx. 480 B.C.

hysterectomy Beazley (1963), Attic Red-figured

Vase-Painters, 813, 96.
Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Infertile survival
Probability 5%
Utility 95%

Sunvives (p=99-5%)

Spread (p=2%)
Death from cancer
Probability 5%

Utility 5%

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281), 571-574.
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B Expected Utility Theory E (U|d) @HCI-KDD %

For a single decision variable an agent can select = i
D = dforanyd € dom(D). |
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax = arg max F(U | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.
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B What are Probabilistic Graphical Models? @HCI-KDD

PGM can be seen as a combination between

Graph Theory + Probability Theory +

Machine Learning

One of the most exciting advancements in Al in the last
decades

Compact representation for exponentially-large
probability distributions

Example Question:
“Is there a path connecting two proteins?”

Path (X,Y) := edge (X,Y)

Path (X,Y):= edge (X,Y),path(Z,Y)

This can NOT be expressed in first-order logic
Need a Turing-complete fully-fledged language

Holzinger Group 8 Machine Learning Health 05



B Key Challenges @HCI-KDD

= Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

= Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

= Causal and Probabilistic Inference:
= Uncertainties are present at all levels in health related systems
= Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.

= Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions.

=" |nthe increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

= Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X., Janzing, D. & Schoélkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov
Kernels. ISAIM, 2006.

[2] Dagum, P. & Luby, M. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard.
Artificial intelligence, 60, (1), 141-153.

[3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-

the-loop? Springer Brain Informatics (BRIN), 3, 1-13, doi:10.1007/s40708-016-0042-6.
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v G HCI-KDD o

1) Reasoning under
Uncertainty
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Bl Remember: Taxonomy of Decision Support Models @HCI-KDD

Decision Model

Quantitative (statistical) Qualitative (heuristic)

W : Truth tabl Decision Reasoning
supervise Bayesian ru ables trees models
W . Boolean Expert
unsupervise uzzy sets Logic Non- systems

parametric

Partitioning Critiquing
systems

Neural

Logistic
network &

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer.
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B Dealing with uncertainty in the real world @ HCI-KDD %

® The information available to humans is often

imperfect — imprecise - uncertain.

" This is especially in the medical domain the case.

An human agent can cope with deficiencies.
Classical logic permits only exact reasoning:

IF A is true THEN A is non-false and
IF B is false THEN B is non-true

Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!

Holzinger Group 12 Machine Learning Health 05



B MYCIN - rule based system - certainty factors @ HCI-KDD %

MYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

Goal oriented strategy (“Ruckwartsverkettung”)

To every rule and every entry a certainty factor (CF) is
assigned, which is between O und 1

Two measures are derived:
MB: measure of belief
MD: measure of disbelief

Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] —MD[h]

CF is positive, if more evidence is given for a hypothesis,
otherwise CF is negative

CF[h] =+1->his 100 % true
CF[h] =—1 -> h is 100% false

Holzinger Group 13 Machine Learning Health 05



Original Example from MYCIN QHCI-KDD -

h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 is febrile
h, = The name of PATIENT-1 is John Jones

CF[h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febriie

CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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B MYCIN was no success in the clinical practice G@HCI-KDD 2%

https://www.youtube.com/watch?v=IVGWMOCKNWA (“real nurse triage”)
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B8 Gamuts: Triangulation to find diagnoses @HCI-KDD -4

Gamut F-137

PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. latrogenic (eg, surgical injury; chest tube; therapeu-
tic avulsion or injection; subclavian vein puncture)
2. Infection (eg, tuberculosis; fungus disease; abscess)
3. Neoplastic invasion or compression (esp. carcinoma

of lung)
UNCOMMON
1. Aneurysmg, aortic or other
Correlation of radiographic findings 2. Birth trauma (Erb’s palsy)
and Gamut with patients' clinical 3. Herpes zosler
and lab findings to arrive at the 4. Neuritis, peripheral (eg, diabetic neuropathy)
most likely diagnosis o : . o
5. Neurologic dlsaaseE (eg. hemiplegia: encephalitis;
polio; Guillain-Barré S.)
Reeder, M. M. & Felson, B. 2003. 6. Pneumonia
Reeder and Felson's gamuts in 7. Trauma
radiology: comprehensive lists of Reference
roentgen differential diagnOSIS/ New 1. Prasad S, Athreya BH: Transient paralysis of the phrenic
i nerve associated with head injury. JAMA 1976:236:2532-
York, Springer Verlag. 7en3
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B Example - Gamuts in Radiology @HCI-KDD o

REEDER AND FELSON'S

GAMUTS IN RADIOLOGY

GAMUT G-25

ERCSIVE GASTRITIS*

COMMON Reeder, M. M. & Felson, B. (2003) Reeder
1. Acute gastritis (eg, alcohol abuse) f . . )

I S = and Felson’s gamuts in radiology:

3. Drugs (eg, aspirin il £ll; NSAID H; steroids) comprehensive lists of roentgen

- Ef;’;ﬁm”’”” Lo differential diagnosis. New York, Springer
6_[Normal areae gastricae ] Verl ag.

T. Peptic ulcer; hyperacidity

UNCOMMON

1. Corrosive gastritis £l

2. Cryplosporndium antritis

3. [Lymphoma]

4. Opportunistic infection (eg, candidiasis {moniliasis} Ell; herpes simplex; cytomegalovirus)
5. Postoperative gastritis

6. Radiation therapy

7. Zollinger-Ellison S. Ell: multiple endocrine neoplasia (MEM) 5.

* Superficial erosions or aphthoid ulcerations seen especially with double contrast technigue.

[ ] This condition does not actually cause the gamuted imaging finding, but can produce imaging changes that simulate it.
http://rfs.acr.org/gamuts/data/G-25.htm
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m Reasoning under uncertainty @ HCI-KDD %

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned
" Prior = belief before making a particular observation

= Posterio elief after making the observation and is
the\prior for t ext observation — intrinsically
increxgental

p(y;|z:)p(x;)

— 3l Y, )p(T;)

p(zi|y;)
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B Remember: 2 types of decisions (Diagnosis vs. Therapy) @He1-DD 4

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:

= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks vy, if an
obstruction of more than z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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v G HCI-KDD o

2) Where do graphs
come from?

Why are they so
interesting?
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B Leonhard Euler 1736 ...

MONS RLEGIVS: PRVESLA
SIVE BORYVSSIA VRAS
MARTTIMA ELEGAN TI5Y

Image from https //people kth se/”carIofl/teachmg/FEL3250 2013/courseinfo.html

Holzinger Group 21 Machine Learning Health 05



B8 252 years later: Belief propagation algorithm

@ HCI-KDD o

Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.

Holzinger Group 22
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B 275 years later ... the “Nobel-prize in Computer Science” @HEI-DD -

neh TYPE HERE

A.M. YR RIRRIR S 5

TURING £'FEmTaae

AWARD E !'J‘% ‘t@

ALPHABETICAL LISTING YEAR OF THE AWARD RESEARCH SUBJECT

JUDEA PEARL

United States — 2011

For fundamental contributions to artificial intelligence through the
development of a calculus for probabilistic and causal reasoning.

= o = u) D

HT ARNOTATED Vb B ACHE TUHING AvGUAL HESEAHEH Tie I
B aOSR A P AUTHOR PROENE LECTUAE WibE LIECTS LA TERIALS
D Photo-Essay :
Judeq Pearl created the representational and computational foundation lor the processing of mormation wnder
uncariainty.
September 4. 1906, Tel Aviy, He ia crediied with the invanlion ol Sayesian nefworks, 8 mathematical lormalism for delining complex probability

modeds, as well as e F‘:rll‘ltq.'ﬁl'll .H|I'JI'II'I=|'|I11“':. weaiEd for nierence in ihage modela. Tz wark nol I.'II"I!',' revo|uiEnmred
the Bedd of artdicial inteligence bul slso became an iImponiant ool for many other branchas ol engenesnng and
I ralral sclences. He lalker cradlad & malhamabcal ramework 1o ¢ il irlerence Bhinl has had significant
impact in the social sclences

IS, Electiical Engriveeriig [Tecluimoi,
whak M5, Electrondes (Mewark Calbege
of Englneering tobik; M5, Phsics

(Rutgers University, 1965} Fh.D, Judea Paarl was born on September 4, 1836, in Tel Aviv, which was al thal time administered under ihe British
Hectrical Engineering (Polytechnic andate for Palestine. He grew up in Bnel Brak, a Biblical fown his grandisther went to reestablish in 1824 in
Institute of Brooklyn, 19465). 1056, aftar serving in the israel army and joining & Kibbutz, Judea decided 1o study engineering. He attanded he

Technion, whene ha met hig wile, Ruth, and received & B.5. degree in Electrical Enginearing in 1060, Recalling
e Technion facully members in a 2012 inlerdes In the Tachnion Magazine, he emphasgized he il of

htt5“77"5L'r"ﬁfﬂﬁ”ﬁlgm5'5m org/\ip/pearl_2658896.cfm
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B Nobel Prize in Chemistry 2013

Scientific Background on the Nobel Prize in Chemistry 2013

DEVELOPMENT OF MULTISCALE MODELS FOR

Photo: A. Mahmoud Photo: A, Mahmoud Photo: A. Mahmoud
¥ R e b "y e TV OTE M
COMPLEX CHEMICAL SYSTEMS Martin Karplus Michael Levitt Arieh Warshel
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

http://news.harvard.edu/gazette/story/2013/10/nobel_prize_awarded_2013/
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B8 First Question: Where does graphs come from? G HCI-KDD o2

" Graphs as
models for networks

= gjven as direct input
(point cloud data sets)

" Given as properties of a
structure

= Givenasa
representation of
information (e.g.
Facebook data, viral
marketing, etc., ...)

Holzinger Group

25

Graphs as
nonparametric basis

we learn the structure
from samples and infer

flat vector data, e.g.
similarity graphs
encoding structural
properties (e.g.
smoothness,
independence, ...)

Machine Learning Health 05



B Our World in Data (1/2) — Macroscopic Structures

- . SEE z : A - 3 - L.
R v z

- £
. -

__NGC 5139.0mega Centauri'by Edmund Halley in 1677, E

50, Atacama, Chile -
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ﬂ Two thematic mainstreams in dealing with data ... @ HCI-KDD -4

Dali, S. (1931) The persistence of memory Bagula & Bourke (2012) Klein-Bottle

Holzinger Group 27 Machine Learning Health 05



B Complexity Problem: Time versus Space @ HCI-KDD %

exponential cubic qguadratic

O(n™ O(nz) o(n) linear

O(Vn)

A

Time

g n) logarithmic

O(1)

constant

 /

Data Input (Space)

P versus NP and the Computational Complexity Zoo, please have a look at
https://www.youtube.com/watch?v=YX40hbAHx3s
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m Our World in Data — Microscopic Structures G HCI-KDD L

1 A 1 44.542 51.034 101.284 0.01 27.20

2 A 1 45.640 50.230 100.38% 0.01 Z6.98

3 L 1 46.692 459.643 101.3058 0.01 Z6.80

4 A 1 46.395 S0.22ZZ 10Z2.381 0.01 Z6.91

5 jiN 4 47,283 45.516 100.951 1.00 Z6.:26

] A 2 45.277 47Y.860 101.761 1.00 Z6.17

7 jiN d 49,212 47.031 100.845 1.00 Z4.:21

&] A 2 49.060 47.195 93,830 1.00 19.77Y

=] ji} 2 47.435 47.021 10Z.300 1.00 Z6.31

10 o3 3ER A 2 46.270 46,350 102.404 1.00 27.98

ATON 11 N HI3 & 3 s0.147 46.186 101.370 1.00 Z3.83
ATOHM 12 <4 HI3 & 3 S51.122 45,389 100.60%  1.00 21.44
ATON 13 C HI3 & 3 s0.953 43.2905 100.845  1.00 Z0.3:2
ATOHM 14 @ HIZ &4 3 S0.530 43,595 101.5950 1.00 22.00
ATON 15 CBE HIZ & 3 S5Z.555 45.674 100.2590 1.00 19.68
ATOHM le <3 HIZ A 3 S52.940 47.090 100.611  1.00 21.44
ATON 17 ND1 HIS & 3 53.371 47.470 99,422 1.00 Z0.87
ATON 13 CDZ HIS & 3 S52.9586 45.17%5 101.433 1.00 Z21.65
A 3 53.8%76 458.730 93.47Y6 1.00 Z0.57

Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech
Technical University (CTU), 69-74
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B Getting Insight: Knowledge Discovery from Data @ HCI-KDD o

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular

Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New
York, Springer, 199-212.

Holzinger Group
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m First yeast protein-protein interaction network @ HCI-KDD o

Nodes = proteins

Links = physical interactions
(bindings)

Red Nodes = lethal

Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, S.
P., Barabasi, A. L. &

K !
| S e h\" ;‘{mi’jﬁ"@‘,“‘\gﬁ Olt\r/]a I|’- Z. N. (g 2001)
’ ] < "i( | Q}%&tﬂ}{*ﬂb& SN : Letha ity an |
< ./..a-v. ;;*"‘l\\, \‘ AN centrality in protein
7 . 1 ] AN TN networks. Nature,
ey 4 PR 411, 6833, 41-42.
B ' TERY
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B8 First human protein-protein interaction network @ HCI-KDD 2%

Light blue = known proteins
Orange = disease proteins

Stelzl, U. et al.
(2005) A Human
Protein-Protein
Interaction
Network: A
Resource for
Annotating the
Proteome. Cell,
122, 6, 957-968.
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B Non-Natural Network Example: Blogosphere @ HCI-KDD o

Hurst, M. (2007), Data
Mining: Text Mining,
Visualization and Social
Media. Online available:
http://datamining.typep
ad.com/data_mining/20
07/01/the_blogosphere.
html, last access: 2011-
09-24
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B8 Social Behavior Contagion Network @ HCI-KDD 2%

ol
eyl

Aral, S. (2011)
Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.

Information object O N Marketing Science, 30,
2,217-223.
34 Machine Learning Health 05
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B Human Disease Network -> Network Medicine @ HCI-KDD 2%

Barabasi, A. L.,
Gulbahce, N. &
Loscalzo, J. 2011.
Network medicine: a
network-based
approach to human
disease. Nature Reviews
Genetics, 12, 56-68.
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B The Genetic Landscape of a cell @HCI-KDD o

Endosome &

vacuo]e sorting Cell polarity &
‘ morphogenesis

Amino acid . = \ , . ) .4 7.... IRNA
biosynthesis . " s : 3", . modification
& uptake ° g

o :’ % ',1 - - == Cell wall biosynthesis
& - & integrity

Protein folding &
glycosylation

ER-dependent
protein degradation

ER/Golgi

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L.,
Toufighi, K. & Mostafavi, S. 2010. The genetic landscape of a cell. science, 327, (5964), 425-431.
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B Example for a weakly structured data set - PPI

G HCI-KDD %
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s ° Kim, P. M., Korbel, J. O.

& Gerstein, M. B. 2007.
Positive selection at the
protein network
periphery: Evaluation in
terms of structural
constraints and cellular
context. Proceedings of
the National Academy of
Sciences, 104, (51),
20274-20279.
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v G HCI-KDD o

4) Knowledge
Representation in
Network Medicine
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B Network Science — Graph Theory @HCI-KDD 5%

Networks = Graphs

24 July XEE 30

Scienc

'MACHINE LEARNING
APPROACHES FOR

MATTHIAS DEHMER

. UMIT = The Health and Life Sciences University, Institute for Bioinformatics and
- Translational Research, Hall in Tyrol, Austria

SUBHASH C. BASAK

Natural Resources Research Institute
University of Minnesota. Duluth
Duluth, MN, USA

httb:/ .com/tag/

http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200907-24_Science-

Decade/200907-24 Science-Coverlmage.gif
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B Network of Networks in Biology

Activate TFs

Form TF
complexes

Transcribe ,
Transcribe
enzymes _
roteins

Protein
interaction
networks

Image credit to Anna Goldenberg, Toronto
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B Genome-Phenome association in complex diseases @HCI-KDD 2%

Pleotropic effects

CTTCACTCGTGTCTATITTGAATTGCCTAT |
b ™ == c

Two subnetworks
for lung physiology

Epistatic effects

Image credit to Eric Xing, Carnegie Mellon University, Pittsburgh
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Bl From data sets to networks @HCI-KDD -

Existing biological knowledge

Nature Reviews | Molecular Cell Biology

Image description find here:

http://www.nature.com/nrm/journal/v6/n2/fig_tab/nrm1570 F1.html
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B Regulatory>Metabolic>Signaling>Protein>Co-expression @HEI-KDD -

Transcription factor ' Enzymes Receptors Protein
(TF)
=
—_—

Aw— =09 e O

Gene C Metabolites Jr

‘@

§ &S e

Directed, Signed, Undirected,
weighted weighted Directed Undirected Undirected

Image credit to Anna Goldenberg, Toronto
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B Example for a Medical Knowledge Space @HCI-KDD o

# Nodes: 641
# Edges: 1250

UA)

‘\k&“‘ ;.c \

Agent
Condition

Average Degree: 3.888
Average Path Length: 4.683
il Network Diameter: 9

Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices:
State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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B Medical Details of the Graph GHCI-KDD

¥
" Nodes - J .
" drugs .:‘ .O. i s .:0.: ..}
o clinicalguidelilze.O . .

" patient conditions (indication, contrflndlcat‘ory)
= pharmacological grot;& . - \. » ...
= tables and calculations o?v.‘alical SCOresS i

= algorithms and other medical doeum Sy, ¥

. . : .
= Edges: 3 crucial types of relationsiinducing medical,
relevance between two active substances «

T %
= pharmacological groups o % ¥
= indications ""

e s e
= contra-indications " N

Holzinger Group 45 Machine Learning Health 05



B Example for the shortest path @ HCI-KDD 2%

8\

4
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BB xample for finding related structures

0O
O

Relationship between

Adrenaline (center black node) and
Dobutamine (top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light):

1. Application (one ore more indications +
corresponding dosages)

2. Single indication with additional details
(e. g. “VF after 37 Shock”)

3. Condition (e.g. VF, Ventricular
Fibrillation)
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B Interactive Visual Data Mining @HCI-KDD o4

[ 2

http://ophid.utoronto.ca/navigator {0 Y

JURISICA LAB

[BM Life Sciences Discovery Center

@ HCI-KDD =£-

Otasek, D., Pastrello, C., Holzinger, A. & Jurisica, ., 2014, iIsual Data Ml‘fﬂngt:_Eﬁective Exploration of the Biological
Universe. In: Holzinger, A. & Jurisica, I. (eds.) Interactive KnowTedge Discovery and'[)a:a Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Notes in Computer Sgience LNCS 8401. Heidelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2.
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Node Types
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B Example: Graph Entropy Measures @ HCI-KDD %

# Engineering
B Computer Science &
8| Physics

I:J' )
B Humanities &
unkown
e S
D8 e
2e,
0.2 of oy
. )] {"IRI_}-_. :_‘\ T2l
T

Holzinger et al.
2013. On Graph
Entropy Measures
for Knowledge Q0
Discovery from ;

,_,,'lp-d!
Publication Network &
Data. In: LNCS 8127/, -
354-362.
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B Some selected open problems @ HCI-KDD %

Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known.

Problem: What is the structural interpretation of graph measures ? They are
mappings which maps graphs to the reals. Thus, they can be understood as
graph complexity measures and investigating their structural interpretation
relates to understand what kind of structural complexity they detect.

Problem: It is important to visualize large networks meaningfully. So far, there
has been a lack of interest to develop efficient software beyond the available
commercial software.

Problem: Are multi-touch interaction graphs structurally similar to other
graphs (from known graph classes)? This calls for a comparison of graph
classes and their structural characteristics.

Problem: Which graph measures are suitable to determine the complexity of
multi-touch interaction graphs? Does this lead to any meaningful classification
based on their topology?

Problem: What is interesting? Where to start the interaction?

Holzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 (pp. 241-254). Berlin, Heidelberg: Springer.
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B Example: The brain is a complex network @ HCI-KDD %

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010)
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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Bl Representative Examples of disease complexes @ HCI-KDD 2%

Atrial septal defect

Examples of

4 functional
networks
driving the
development of
different
anatomical
structures in
the human
heart of a
37-dayold  “—
human embryo

Abnormal atrioventricular valve morphology

Abnormal outflow tract development

related disorders. Molecular systems biology, 6, 1, 1-9.
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B Example: Cell-based therapy @HCI-KDD o

A Early phenotypes
e “
E1. Abnormal heart E2. Abnormal looping E3. Abnormal E4. Abnormal atrio- Function of clusters
tube morphology morphogenesis sinus venosus ventricular canal
morphology
&,ﬂ .’b e , ® Transcription regulation

FGF/PDGFR signaling
Intermediate phenotypes

Late phenotypes

Other function

Mo. of proteins in clusters

10 20 30 40 50
— Direct interaction

....... Indirect interaction
W A

o858

E1 E2 E3 E4 I 12 13 14 L1 L2 L3 L4
Lage et. al (2010)
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B Identifying Networks in Disease Research @ HCI-KDD 2%

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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B Three main types of biomedical networks @ HCI-KDD %

@

=)
-

Prot_pin A p Protein |

Protein B | Protein H

! Protein D / Protein G

: Protein E b

ot Pr:)tcin F @
Transcriptional regulatory Protein-Protein Metabolic network
network with two interaction network (constructed considering the
components: reactants, chemical reactions
TF = transcription factor and enzymes)
TG = target genes
(TF regulates the Costa, L. F., Rodrigues, F. A. & Cristino, A. S. (2008)
transcription of TG) Complex networks: the key to systems biology.

Genetics and Molecular Biology, 31, 3, 591-601.
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B Example Transcriptional Regulatory Network @ HCI-KDD o

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, S., Peralta-Gil,
M., Pefialoza-Spinola,
M. I., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7, (1), 5.
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Bl Network Representations of Protein Complexes @HCI-KDD 5%

B e A
) B

e True PPI topology

AN
Matrix-Mod;\ C @ Spoke-Model

Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks. PLoS Computational Biology, 3, 6, 1011-1021.
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B Correlated Motif Mining (CMM) GHCI-KDD o

Boyen, P., Van Dyck, D., Neven, F., van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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Bl Steepest Ascent Algorithm applied to CMM @ HCI-KDD o

Input: PPI-network G = (V,E,;)A), {,de N, d < ¢
Output: {X™*,Y™*} best correlated motif pair found in G
1: {X*,Y*} « randomMotifPair()
2: mazxsup — f{X*,Y*},G)
3: SuUp «+— —0o0
4: while maxsup > sup do
{X,Y} —{X*Y*}
SUP <— Marsup
for all {X'.Y'} € N{X,Y}) do
if f({X',Y'},G) > maxsup then
{)(#’};*} e {){fﬁ}/!}
10: maxsup — f{X",Y'}, G)

P eoSa S

Boyen et al. (2011)
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B Metabolic Network GHCI-KDD -

M1 M2
M1 M4
M1 M5
M2 M1
M2 M3
M2 M4
M4 M1
M5 M1

Hodgman, C. T., French, A. &

Matrix contains many sparse elements - In Westhead, D. R. (2010)

this case it is computationally more efficient Bioinformatics. Second

to represent the graph as an adjacency list Edition. New York, Taylor &
Francis.
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@ HCI-KDD o

B Metabolic networks are usually big ... big data ©

12. parAB, VNG0473/4G

1. glkK YNG2EZ0G

13, ged, VNGD4.46G
2. pgl VNG1992G | 14, rspA, YNGD.442G
3. fbp, VNGOGB4G 15, kegk, VNGO'158G
4. VHNGOBBIC 16. dapi, VNGO444G*
5. gap, VNGO937G 17, glpk, VNG1967G

6. gapB, VNGO095G
T. pak, VNG1216G

B. gpm, VNG1BETG
B, eno, VNG1142G
10. ppsh, VNGO330C3
11, pykA, VNGOI4ZCH

:kﬂiu-.
A 5-[-pluose s

Semi-phospherylitive E C
Entnar= DG

It
Doudoreff Mx
OFG

Fathway
i@n‘ﬂ.__:cmg = [ructo-G-F

e e o

i
Glucoda-G-F

18, VNGO309C, 18a. VNGO310C*

18, arsE, VHGEDEB2G
20, VNGA245C

21, pae, VNG12312G
22, aroC, WNG12:30C"

23, trpE2, 0384¢3"; trpG2, VNGO3B6G*

24, manF, VME11083G
26, manD, WHE1 081G*

and putative opea ron menBACE*

26, acs2, VNGIIO7G
27, acd2, VNGO 775G,

(indirect target acs3, VNG0940G).

acd? and divarggently transcribed aldy2

are direct TrmB: targets.
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28, citZ, VNG2102G
29, can, VNG2574G
30. icd, VNG1873G
31. gdhB, VNGO1615

32. korAB, VNG11258G

33. sucCD, VNG154G
and VNG1542G

34, sdhABCD

TRE
~axoglutarale ”_szm._uca.._u._.cm

35, fumC, VNG1356G
36. mdh, VNG1624G
37. mdhA, VNG2367G
38. aldY2, VNGO771G

139, gdhA1, VNG0624G

40. ginA, VNG2093G

41. carAB, VNG1814/5G
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45, purL2, VNG1945G;
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46. purM, VNGOB76G

47, purk/E, VNGOB32AG
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//www.nature.com/msb/journal/v5/n1/fig_tab/
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B8 Using EPRs to Discover Disease Correlations G HCI-KDD 2

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. S., Jensen, P.
B., Schmock, H.,
Dalgaard, M., ®
Andreatta, M., Hansen,
T., Seeby, K., Bredkjeer,
S., Juul, A., Werge, T.,
Jensen, L. J. & Brunak,
S.(2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts. PLoS
Computational Biology,
7,8, e1002141.

e
i o
. %:5’?-_'?!‘_?#
2Tt @

o hXN o

5

®
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Heatmap of disease-disease correlations (ICD) G HCI-KDD
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B Example: 6poloyéw (homologeo)

T0499

He, Y., Chen, Y.,
Alexander, P,,
Bryan, P. N. &
Orban, J. (2008)
NMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.

VDAGTAEKYFKLIANAKTVEGVWTYKDE IKTFTVTE
L irrregxXrrerererretenld trerrererteld
DAGTAEKY I|IKLIANAKTVEGVWT\ILKDE IKTFTVTE

T0499 TTYKLILNLKQAKEEAIKE
N O I O I
T0488 TTYKL ILNLKQAKEEAIKE
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B Conclusion GHCI-KDD -

= Homology modeling is a knowledge-based
prediction of protein structures.

" |n homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.

= Homology modeling will be extremely
important to personalized and molecular
medicine in the future.
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B Future Outlook

Holzinger Group

67

Personalized
Medicine
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v G HCI-KDD o

5) Review of basic
concepts, metrics
and measures
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B Complex Biological Systems key concepts @ HCI-KDD %

In order to understand complex biological systems, the
three following key concepts need to be considered:

(i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

(ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

(iii) modularity, vertices sharing similar functions are
highly connected.

Network theory can largely be applied for biomedical
informatics, because many tools are already available
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B8 Network Basics on the Example of Bioinformatics @ HCI-KDD 2%

G(V,E) Graph
V..vertex
E ..edge{a,b}
abevV,a#b

_._..._ ink
Hodgman, C. T,, . Hub L

French, A. & . Critical node w— Critical link
Westhead, D. R.

(2010) Bioinformatics. O Bottle neck W Second order hub
Second Edition. New | Links comprisingan  «~ " Clique/module
York, Taylor & Francis. interaction cycle e
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B8 Baby Stuff: Computational Graph Representation @ HCI-KDD %

Adjacency (o-'ja-s°n(t)-sé) Matrix A = (a;y) ay, = { 1, if{jk} €E

0010107
000011
100010
000011
111100

010100

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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Type

@ HCI-KDD o

1 Data

B Example: Tool for Node-Link Visualization

HEE R E l- H = H HEE
WEN W NN L | HEN N
il il NN O EEEEEEENNBN]
HEEEEETEEEEEEEEREN
EEEE R EEEES S S SEE NN
HEEENENGEENEESENDEEDNN
WO e nE NN NE NN
HEEETEEEENEEEN
‘AT EEEEEEE
RN EEE NN

@1t

v||

O XS

Jean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. IEEE, 167-174.
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B Some Network Metrics (1/2) G@HCI-KDD 5

Order = total number of nodes n; Size = total number of links (a): @
adge / connection s
ZZ aij Y /
S ] -
@ -
® g ®

Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

C . Zti C _ 1 Z C b
“ok(k— 1) VA
l
¢ J _F..-"/’-,j
Path length (c) = is the arithmetical @”’T ©
3 mean of all the distances: '
1

| = —z d;,

2 nn—1) 4L Y
[#]

i

Costa, L. F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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B Some Network Metrics (2/2) G@HCI-KDD 5

= Centrality (d) = the level of “betweenness- centrality” of a node | (“hub-node
in Slide 28); d
@ k=2

@3

= Nodal degree (e) = number of links connecting i to its neighbors: k; = },; a;;

f
! ]
Modularity (f) = describes the possible .\ /.
- o formation of communities in the network,
@ ) indicating how strong groups of nodes . pu &

@ form relative isolated sub-networks within
o 9 the full network (refer also to Slide 5-8).
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B Network Topologies G@HCI-KDD 5

regular small-world random
o o -
o3| ok | c|
w ®,, o I - ®
- W [ (&% i -
® o ® ® 9 ® ® 9 ®
randomness g
b
o
Scale-free network
-] -
@) o
® 9 ®

Van Heuvel & Hulshoff (2010)
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B Small-World Networks

Regular Small-world
p=1
p=0 p=0.0001

Increasing randomness

/ 29.000 citations ..

Watts, D. J. & Strogatz, S. (1998) Collective dynamics of small-world networks. Nature, 393, 6684, 440-442.

Milgram, S. 1967. The small world problem. Psychology today, 2, (1), 60-67.
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Bl Slide 5-15 Graphs from Point Cloud Data Sets

G HC1-KDD o>

-

-\, N~ Nl

RNOEY 7L S
NS~ NN AR 7
{ = L A ~
5
Soe oL e J!#\}FJ
(a) Initial set of points. (b) 1-ball Graph. (c) 1-Nearest-Neighbor Graph.

(e) 3-Nearest-Neighbor Graph. (f) Relative Neighborhood Graph.

(g) Gabriel Graph.

(d) Euclidean Minimum Spanning
Tree.

(h) 3-Skeleton Graph, 5 = 1.1:
black edges, 3 = 0.9: grey edges.

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:

Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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B Finally a practical example @ HCI-KDD %

6) How do you get
point cloud data
from natural
images?

Holzinger Group 78 Machine Learning Health 05



B Graphs from Images G@HCI-KDD 5

et
%
N .

Tl

el &

c) Watershed Algorithm d) SLIC superpixels

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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B Example Watershed Algorithm

@ HCI-KDD o

Algorithm 4.2 Watershed transform w.r.t. topographical distance based on image integration
via the Dijkstra-Moore shortest paths algorithm.

1:

= e AN o

procedure ShortestPathWatershed;

INPUT: lower complete digital grey scale image G = (V, E, im) with cost function cost.
OUTPUT: labelled image lab on V.

#define WSHED 0 (*label of the watershed pixels *)

(+ Uses distance image dist. On output, distfv] = im[v], for all v € V. #)

for all v £ V do (+ Imitialize =)
lablv] «— 0 ; dist|v| — oo
end for
for all local mmima m, do
for all v = m,; do
lablv) — i ; dist[v] — im[v] (* mitialize distance with values of minima )
end for

4: end for

. while V' £ (1 do
16:
17:
18:
19:
20:
21:
22:
23:
24:
2h:

26:

u— GetMinDist(V) (+find u € V with smallest distance value dist|u] )
V — ¥\ {u}
for all v £ V with (u,v) £ E do
if dist|u] + cost[u,v] < dist[v] then
dist|v] — dist[u] + cost(u,v)
lablv| — lab|u]
else if labv| # WSHED and dist|u] + cost|u,v| = dist[v] and lablv| # lablu| then
lablv] = WSHED
end if
end for
end while

Meijster, A. & Roerdink, J. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 1995. Springer, 790-795.

Holzinger Group
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B Graphs from Images: Watershed + Centroid @ HCI-KDD 2
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B Slide 5-20 Graphs from Images: Voronoi <> Delaunay G@HCI-KDD o

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, J. F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
Machine Learning Health 05

Holzinger Group 83



B8 Are graphs better than feature vectors ? @ HCI-KDD %

" More expressive data structures
" Find novel connections between data objects

= Fit for applying graph based machine learning
techniques

= New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, P,,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin) 7-19

Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014), IEEE (2014) in print
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B Watershed methods @Ha-mngin

.. .
" Topographic maps => .

landscapes with height structures . : __

= Segmentation into regions of pixels

" Assuming drops of water raining on the map

" Following paths of descent

= |Lakes called catchment basins

" Also possible: Flooding based

" Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6), 583-598.
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B Watershed 4 Steps GHCI-KDD -

= 1) Transformation into a topographic map
= Convert gray values into height information

= 2) Finding local minima
" |nspecting small regions in sequence

= 3) Finding catchment basins
= Algorithm simulating flooding
= Graph algorithms such as Minimum Spanning Trees

= 4) Erecting watersheds
= Artificial divide between catchment basins
= Final segmentation lines
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B Watershed Algo based on connected components @ HCI-KDD 2%

714 |8 12|11} 3 —fm| |« | =m0 0|0 |0 1 L

T |7 |8 [12] 117 1IN« AT O(0]|]0 (0|1 |1

13] 13 15(16|16] 13| [T |+ | ~|~| It 1[0 oo o011

1901918171157 | [T [T 1T =1 ~IL [0 ]0 0222

200 181 17| 16| 15| & =S| =222 —-pN | 2 (2 |2 |2 |2 B2

(a) The original image (b) Each pixel connect to lowest  (c¢) The Image with labels
minimum

Connects each pixel to the lowest neighbor pixel, all pixel connected to same lowest
neighbor pixel form a segment
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B Region Merging (from here see Tutorial Bernd Malle) @ HCI-KDD %

= Region Merging
= Based on Kruskals MST algorithm

=  Takes input image as natural graph with vertices := pixels and
edges := pixel neighborhoods

= Visits edges in ascending order of weight and merges regions
if they satisfy a certain criterion

= Flexible as merging criterion can be adapted as desired (for
amount, size, or shape of resulting regions)

Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59 (2004) 167-181
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B Challenges

@ HCI-KDD o

= We want to find “interesting” novel patterns
(rules, anoma

Prob
Prob

Prob

Prob

Holzinger Group

em #1: H

em #2: H

ies, outliers, similarities, ...)
ow to get a graph?
ow do graphs evolve?

em #3: What tools to apply?
em #4: Scalability to TB, PB, EB ...
Success is in repeatability and scalability
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Bl State-of-the-Art Facts GHCI-KDD -

= Study of complex networks started in the 1990s with the
insight that real networks contain properties not present
in random (Erdos-Renyi) networks.

= Meanwhile networks and network-based approaches
form an integral part of many studies throughout the
sciences.

= Graph-Theory provides powerful tools to organize data
structurally and in combination with statistical and
machine learning methods allows a meaningful analysis of
underlying processes.

= For instance, a mapping of causal disease genes and
disorders as made available by the OMIM database
provided novel insights into disease patterns, as recently
demonstrated by investigating the diseasome
(http://diseasome.eu).
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B Finally a practical example @ HCI-KDD %

7) Graphical
Model Learning
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B8 Learning Graphical Models from data @ HCI-KDD %

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges

in the biomedical domain:

Uncertainty and complexity

" The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. |. 1998. Learning in graphical models, Springer
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B Learning the Structure of GM from data @ HCI-KDD 2%

1) Test if a distribution is decomposable with regard to a given graph.

= This is the most direct approach. It is not bound to a graphical
representation,

= |t can be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.

2) Find a suitable graph by measuring the strength of dependences.

= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.

3) Find an independence map by conditional independence tests.

= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.

= |t has the advantage that a single conditional independence test, if it fails,

can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.

Borgelt, C., Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for
learning, reasoning and data mining, John Wiley & Sons.
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B Who of you smokes?

G HCI-KDD o

Relaxed
smooth
muscles

Normal airway

9

Wall inflamed
and thickened

Asthmatic airway

Air trappet
———inalveoli

J—
| Tightened
— \ smooth

muscles

Asthmatic airway
during attack

Beasley, R. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351, (9111), 1225-1232,

doi:http://dx.doi.org/10.1016/S0140-6736(97)07302-9.
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B Example for Graphical Model Learning @ HCI-KDD %

S ————  BaY€sian Network
I £ K

Florian Asthma Smokes
Tamas
Matthias
Benjamin
Dimitrios
Rows are independent
during learning and
Florian

inference!

Florian 0 0.3 0.2
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B8 Relational Representation Learning and Prediction @ HCI-KDD %

= Asthma can be hereditary
" Friends may have similar smoking habits

" Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

Smokes 2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)
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B Knowledge Representation > Reasoning > Learning G@HCI-KDD o

>

= Probabilistic £ & Program
- — U .
© Programming = Induction
- o E O -
[ Statistical - Statistical :
O Relational Models s = Relational @
T © : 5
Probabilistic ® o & iR E
Databases = g = =
™ U
o :
Graphical — “E GEPE":IEI
Models Bayesian E Leacr}n;
Networks &
Knowledge Reasoning Machine
i I
Representation Learnin

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+
Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called
ProbLog, see: De Raedt, L., Dries, A., Thon, |., Van Den Broeck, G. & Verbeke, M. 2015. Inducing probabilistic relational rules

from probabilistic examples. International Joint Conference on Artificial Intelligence (1JCAI).
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B Future Outlook

@ HCI-KDD o

The future is in integrative ML, i.e. combining relational databases,
ontologies and logic with probabilistic reasoning models and
statistical learning — and algorithms that have good scalability

Run Time [s]

i 2o |

Holzinger Group

w Smokes(x) A Friends(x,y) = Smokes(y) I

5000 10000 15000 20000
Domain Size (Number of People)

|
25000

0 30000

Learns a model over
900,030,000 random variables

Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J. & De Raedt, L.
Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2011. AAAI Press, 2178-
2185.
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@ HCI-KDD -

k you!
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B Sample Questions GHCI-KDD -

= What is the primary idea of a graphical model learning algorithm?
= Where do graphs come from in the medical domain?

= Where do decision trees originally come from?

=  What are probabilistic graphical models?

= Why is the topic "reasoning under uncertainty" so important for the
health domain?

= Why was MYCIN not a success in the clincial domain?
= What was the core essence in MYCIN?

= What is the principle of GAMUTS?

=  Which two types of decisions do clinicians execute?

= What is the goal of network medicine?

= What s a true PPl topology?

=  Why are structural homologies so important?

= What is the vision of personalized medicine?

= What does robustness in the context of complex biological systems
mean?

= How do you get point cloud data from a natural image?
= Why is graphical model learning so interesting for medical problems?
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