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m Solving health informatics problems needs a concerted effort G HCI-KDD =%

http://hci-kdd.org/international-expert-network
Data

Interactive pning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization ~ Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM @ Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

© a.holzinger@hci-kdd.org

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.

Holzinger Group 2 Machine Learning Health 06



B8 Red thread through this lecture GHCI-KDD %

" 1) Graphical Models and Decision Making
= 2) Bayesian Networks

= 3) Machine Learning on Graphs

= 4) Little Excursus: What is similarity?

= 5) Probabilistic Topic Models

" 6) Graph Bandits (a very hot topic!)
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BB Let us start with a warm-up Quiz (solutions -> last page) @HeCI-kDD -

0y=2  ay=0 ay=1 a3 ag=d  ag=2 o=}

® = brngen sie bitte das  auto  urikk
y = please retum the ca

| U (215 -+ s Ty )

h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 is febrile
hy = The name of PATIENT-1 is John Jones

CF[h,.E] = .8 . There is strongly suggestive evidence (.8) thal
the identity of ORGANISM-1 Is sireptococcus
CF[h,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile
CFlhy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is 6
John Jones
5
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Quiz: last question ... G HCI-KDD -3

http://sbcb.bioch.ox.ac.uk/users/oliver/software/
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b3 GHCIHDD

Graph Model

1) Graphical Models
-and fDeC|5|on Making

O @ omgns Data
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Bl Decision Making: Learn good policy for selecting actions @He1-DD -

Goal: Learn an optimal policy for selecting best actions
within a given context

Fort=1,...,T

1) The world produces a
“context” x; € X

2) The learner selects an action
a, €{1,..., K}

]

3) The world reacts with

areward r;(a;) € 1[0,1]
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m GM are amongst the most important ML developments GHCI-kDD -

= Key ldea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

(Vi, 5, k) P(X = z;|Y = y;, Z = z;) = P(X = x;|Z = z)
can be abbr. with P(X|Y,Z) = P(X|Z)

" Graphical models express sets of conditional
independence assumptions via graph structure

" The graph structure plus associated parameters define
joint probability distribution over the set of variables

Holzinger Group 8 Machine Learning Health 06



B Where do the data come from? @ HCI-KDD 2%

. v
DIRECT SUBMISSIONS & B "+

<

)

ik

(o

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http://www.ebi.ac.uk/intact/
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B Key Challenges G@HCI-KDD 5

" Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks

with probabilistic graphical models

" |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop

Holzinger Group 10 Machine Learning Health 06



Bl Basics and Background reading

@ HCI-KDD o

VI, Hn% LE»:: ~umc.

Bishop, C. M. 2007. Pattern
Recognition and Machine
Learning, Heidelberg, Springer.
Chapter 8 on graphical models
openly available:
http://research.microsoft.com/en-
us/um/people/cmbishop/prml/

Holzinger Group
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Maphlne Leafnlng

stic Pe

Kavin P Murphy

Murphy, K. P. 2012.
Machine learning: a
probabilistic
perspective, MIT

press. Chapter 26 (pp.

907) — Graphical
model structure
learning

11

Koller, D. & Friedman,
N. 2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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Bl Three types of Probabilistic Graphical Models @ HCI-KDD %

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

1 O
P(X)=Eexp(z  XiX; +be) @ )
j '

Directed: Bayes Nets, useful for designing
models (Details: Murphy 10)

»
x) = | | p(xx|pay)
k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

I I €T3

fa Jo Je fd
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Bl Factor Graphs — learning at scale @ HCI-KDD %

" What is the advantage of factor graphs?

Dependency | Efficient Usage
Inference

Bayesian Networks Yes Somewhat Ancestral
Generative
Process

Markov Networks Yes No Local Couplings
and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon
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B8 From structure to function prediction @HCI-KDD 5%

Topology

Y- ondary Structure Q7
“Prediction YR 7N s

: _1:.__:?*-':".':'.' '"“"" _I--“._" ' 3D Structure

Primary sequence J =~ ——————-—=

AQSVRTGIBQ IKAFALNSOGY TGS VEVAY - " ) - » ] ~

INECIOSENPOLNVASSA VR EETHIYOO = - ettt e :

GESHGTHYAGT IAALMNET GVLGVEPFASL = - - - e

TAVEVLDSTGIGOTEWT INGI EWAT S . . . A - -
\ == Contacts and

VIMMELCGFTCESTALETVWOKAVESCIVVA
Solvent Accessibility

I' II Prediction

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of

Machine Learning Research, 4, 575-602.
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B Protein Network Inference @HCI-KDD o

" Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

" |n this context, the problem of inferring a global
protein network for a given organism,

= - using all (genomic) data of the organism,

" is one of the main challenges in computational
biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.
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Borgwardt, K. M., Ong, C. S., Schénauer, S., e o
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. ¢ =,_ P R =
2005. Protein function prediction via graph (L& A
kernels. Bioinformatics, 21, (suppl 1), i47-i56.

protein secondary sequence structure
structure

" Important for health informatics: Discovering
relationships between biological components

» Unsolved problem in computer science:
= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |tis also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete
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B Example: Protein Network Inference @ HCI-KDD 2%

viol. 20 Suppi. 1 2004, pages 363370
DOl 10,7093 hiinformaticsbiha 10

Protein network inference from multiple

Y. Yamanishi'-*, J.-P. Vert? and M. Kanehisa'

L3
meﬁ genomic data: a supervised approach
1
2

" Bipinformatics Center, Instifute for Chemnical Research, Kyoto University, Gokasho,
Ui, Kyoto 611-0011, Japan and “Computational Biology group, Ecole des Mines de
RFanis, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Ko (Localization)

K phy (Phylogenetic profile)

Kexp + Kppi + J?'r';:']m: + Kphy
(Integration)
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B Example: Data fusion and Protein Annotation

@ HCI-KDD o

Vol 20na. 16 2004, peges HM6-2635
ool 10 1083 binimfarmatica/hih2 04

A statistical framework for genomic data fusion

Gert R. G. Lanckriet?, Tijl De Bie®, Neflo Cristianini®,
Michael I. Jordan® and William Stafford Noble™*

' Department of Blectrical Engineening and Computer Science, <Division of Computer
Scisnce, Department of Statistics, University of Calformia, Berkeley 94720, USA,
3Department of Blectrical Enginesring, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, * Department of Statistics, University of California, Davis 95618, USA and

FDepartment of Genome Sciences, Linivers
1.0F

BL‘I.E :

Tos |

Kemel

Diata

Stmilarity measure

Kaw
Kn
Kl‘fﬂ.ﬂl
Kppr
Ku
Kp
Kg
Kpnp

profein sequences
profein sequences
prolein sequences
hvdropathy profile
profein interactions
profein interactions
DEne cXpression
random numbers

Smith-Waterman
BLAST

Pfam HMM

FFT

linear kernel
diffusion kernel
radial basis kemel
linear kernel

Holzinger Group

0.7

ity of Washington, Seatfie 98195, USA

| — ]
B SW Pfam FFT LI D E all
B SW Pfam FFT LI D E all

(B} Membrane proteins

Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. |. & Noble, W. S. 2004. A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635.
18
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v G HCI-KDD o

2) Bayesian
Networks
“Bayes’ Nets”
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B Bayesian Network (BN) - Definition G@HCI-KDD 5

" is a probabilistic model, consisting of two parts:
" 1) a dependency structure and
= 2) local probability models.

pCes, ) = | | p0xi | Pa(x)
=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.
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B Example: Directed Bayesian Network with 7 nodes @ HCI-KDD o2

p(X1)p(X2)p(X3)p(Xa| X1, X2, X3)-
p(X5| X1, X3)p(Xe|X4)p(X7| X4, X5)

Holzinger Group 21 Machine Learning Health 06



B Clinical Case Example GHCI-KDD -

Overmoyer, B. A,,
Lee, J. M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.
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= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information ! |

= Therefore valid prognostic
models can be of great benefit |
for clinical decision making and
of great value to the patient,
e.g., for notification and quallty
of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.
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B Predicting the future on past data and present status @ HCI-KDD %

current patient state next patient state
( Risk factors b i Risk factors A
Pathogenesis Pathogenesis
Disorders pmj"]' Disorders
Pathophysiology Pathophysiology
S Findings Y S Findings )

physician Tests
model Treatments
physician

—_—

past future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.
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m Example: Breast cancer - Probability Table @ HCI-KDD -4

Category Node description State description
Diagnosis Breast cancer Present. absent.
Clinical his- Habit of drinking alcoholic beverages and  Yes. no.
tory smoking
Taking female hormones Yes, no.
Have gone through menopause Yes, no.
Have ever been pregnant Yes, no.
Family member has breast cancer Yes. no.
Physical find- Nipple discharge Yes, no.
ings
Skin thickening Yes, no.
Breast pain Yes. no.
Have a lump(s) Yes. no.
Mammo- Architectural distortion Present. absent.
graphic
findings
Mass Score from one to three. score from four to five,
absent
Microcalcification cluster Score from one to three. score from four to five,
absent
Asymmetry Present. absent.

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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Bl Breast cancer — big picture — state of 1999 @ HCI-KDD o
Alcoholic & Skin Nipple Breast
Smoking Thickening Discharge Pain

A
Hormones Have a

/ Lump

Menopause Breast Cancer
Pregnant Mass

A 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Holzinger Group
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B8 10 years later: Integration of microarray data @ HCI-KDD %

" |ntegrating microarray data from multiple studies to increase
sample size;

= =approach to the development of more robust prognostic tests

i 13141 15141 i
!'.In..iiﬁ.ﬁ.lll]ﬁ FRERERARERIRAEEE] 115 ] 33 3 1313331333333 13331333 13333135333 EEd FEEES 'Iﬁli].]-}l;ﬁﬂ% FEE|
i* Eiu!“zlll lhﬂh: !.]:Ii £a ik 11! Bik 11 LY BLksl 1his TEI H' Bkh Ak LG |.|. T

i 2 | ] L]

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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B Example: BN with four binary variables GHCI-KDD %

Gene 1
P(on) 0.8
P(off) 0.2

Gene 2 Gene 1 Gene 1 Gene 1 Gene 1

on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4

Prognosis Gene2on Gene2on Gene2o0ff Gene 2 off
Gene3on Gene3o0off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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B Concept Markov-Blanket GHCI-KDD %

Gevaert, O., Smet, F. D,,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian
networks.
Bioinformatics, 22, 14,
184-190.
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Bl Dependency Structure -> first step (1/2) @ HCI-KDD %

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

l

1

[

p(SID) « p(S) ]1[ f

/ Ty /
F(N'i) 1_[ [(N'ijk + Nijx)
[(N';j + Nyj) 1 1 I'(N'iji)

Nijk ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.
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Bl Dependency Structure - first step (2/2) @ HCI-KDD %

" Next, N;; is calculated by summing over all states of a variable:

= N = 7,}:1 Nijk - N'ijx and N';; have similar meanings but refer to prior
knowledge for the parameters.

= When no knowledge is available they are estimated using N;j, = N/(7iq;)

=  with N the equivalent sample size,

= 7; the number of states of variable i and

" g; the number of instantiations of the parents of variable i.
= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(S) is calculated by:

= p(8) =T 12, p(l — x) [T =y (M)
= with p; the number of parents of variable x; and o; all the variables that are

not a parent of x;.

= Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge froma to b
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B Parameter learning -> second step @ HCI-KDD 2%

* Estimating the parameters of the local probability models corresponding
with the dependency structure.

e CPTs are used to model these local probability models.

* For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

* Each set of parameters was given a uniform Dirichlet prior:

p(6l1|5) = Dir(@ij|N'ij1, ""N’ijk' ---»N,ijrl-)

Note: With 6;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 6;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N'ij1, ..., N';jr,) as parameters of this Dirichlet distribution. Parameter learning then consists of

updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(0U|D’S) = Dir(gile’ijl + Nijli "'JN,ijk + Nijki "'IN’ijTi + Nijrl-)
with N;j, defined as before.
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B Predicting the prognosis of breast cancer (integrated a.) @HE1-KDD

b ®

Gevaert, O., Smet, F. D,,
Timmerman, D., Moreau, Y. &
Moor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks. Bioinformatics, 22,

14, 184-190.
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B8 Inference in Bayes Nets is intractable (NP-complete!) G@HCI-KDD o

= For certain cases it is tractable if:
" Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

" Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem
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v G HCI-KDD o

3) Machine Learning
on Graphs
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B Example: Lymphoma is the most common blood cancer  @He1-KDD -

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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B ML tasks on graphs

= Discover unexplored
Interactions in PPI-
networks and gene
regulatory networks

= | earn the structure

= Reconstruct the
structure

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar,
T. & Miller, T. 2008. Identifying functional modules in
protein—protein interaction networks: an integrated

exact approach. Bioinformatics, 24, (13), i223-i231.
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B From structure to function

@ HCI-KDD o

| Subscrbe i Recommend i Pubksh ]
jove

© A Protocol for Computer-Based Protein Structure and Function Prediction

Ambwish Hoyl2, Dong X, Jonathan Poissont, Yang fhang™

LCemter for Computational Madicine and Bicinlormatics. University of Michigan. “Center b Bioinfoematics and Departmeant of Molecular Bioscience, Unhversity of Kansas
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B Interesting: Hubs tend to link to small degree nodes G@HCI-KDD 4

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability
that a node with degree k links to a

node with degree K’ is;
kk'

W ais —
P 7

k=50, k'=13, N=1,458, L=1746

Psoss =0.15  p,, =0.0004

Jeong, H., Mason, S. P,, Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in

protein networks. Nature, 411, (6833), 41-42.
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B Example: Subgraph Discovery @ HCI-KDD %

de Sitter Vacua i m_ S!ring Theu:r':wr

meA T : Fimt Year Wilkinson
Quasinormal Modes of inruwa\ra Anisotropy

Black Holes and Black Branes _

] R AnAItarnatwa To Cnmpactlflcatlun--
&, 0 .-_; ;J_:.____{estlmated bridgeness =

GENERAL RELATIVITY * "=+ ./ iR W\ )
AND QUANTUM COSMOLOGY™ -~ “ P A
| -"..' : Il'"..:r ._'i’;:- '_I\._ '

Gopalan, P. K. & Blei, D. M. 2013. . - -_ n_ SR
Efficient discovery of overlapping g’ 2 : B ki T ;
communities in massive Al.argu Mml-]mmmhy " T A )
networks. Proceedings of the from aSn'lﬂH Dlmanalnn et NN HIGH ENERGY PHYSICS:
National Academy of Sciences, AT . . ' 'PHENOMENOLOGY

110, (36), 14534-14539. T -~—~==~=- S
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B Why do we want to apply ML to graphs

@ HCI-KDD o

A)
B)
C)

Discovery of unexplored interactions
_earning and Predicting the structure

Reconstructing the structure

Which joint probability distributions does a
graphical model represent?

How can we learn the parameters and structure
of a graphical model?

52 months

The chemical space

1. Find a
target

3.Hit-to-lead:
»| characterize
hits

® 10 possible small or-
ganic molecules

.| 2. Identify
L hits

Holzinger Group

® 10?2 stars in the observ-
able universe

$500,000,000
to
$2,000,000,000
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B Example Question: Predicting Function from Structure  @HE1-DD -

a) R
B.cereus 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGRKNYEA
B.anthracis 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGREKNYEA
E.coli 1 ---MISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTLNKP------- VIMGRHTWES
H.sapiens 1 MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFS
5 . % k. gkk R skER e
A
B.cereus 51 I---GRPLPGRRNIIVIRNEGYHVEGCEVV-HSVEEVFEL------ CKNEEEIFIFGGAQ
B.anthracis 51 I---GRPLPGRRNIIVITRNEGYHVEGCEVA-HSVEEVFEL------ CKNEEEIFIFGGAQ
E.coli 50 I---GRPLPGRKNIILSSQPGTD-DRVTWV-KSVDEAIAA------ CGDVPEIMVIGGGR
H. aapiens 61 IPEKNR.PLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPE LANKVDMVWIVGGSS
* JHkk Rk Fsi:: 2 s®r3s.2 S T L WE,
B.cereus 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEIDMTNWKEIFVEKG- - -LTDEKNPYTYYY
B.anthracis 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG- - -LTDEKNPYTYYY
E.coli 99 VYEQFL--PKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFH- - -DADAQNSHSYCF

H.sapiens 121 VYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKF

* k. LR _kk k.

~

i | / N/ ,,‘®
= P

H.N" N \ e

19 21 ‘ | @’
(CH,)4COOH \

NH, OMe
N7 —
ﬁ/@ m ;ﬁ?
HaN N
2 HQN N HEN \N
22

O(CH,)4,COO0H (CH,)sCOOH
23 24

How similar are two graphs? How similar is their
structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.
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B Graph Comparison G@HCI-KDD 5

= Similar Property Principle: Molecules having
similar structures should have similar activities.

" Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

" Sets as sets: Measure similarity by the Jaccard
distance

» Sets as points: Measure similarity by Euclidean
distance

" Problems: Dimensionality, Non-Euclidean cases
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v G HCI-KDD o

4) Little Excursus:
What is
similarity?
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What is Similar? @HO-

Image credit to Eamonn Keogh (2008)
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G HCI-KDD -

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.
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v @HCI-KDD o4

Rock :
Scissors

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.
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B Similarity and Correspondence

Bronstein, A. M., Bronstein, M. M. & Kimmel, R. 2008. Numerical
geometry of non-rigid shapes, New York, Springer.

http://www.inf.usi.ch/bronstein/

X Y

Structure Structure

Correspondence quality = structure similarity

(distortion)

Minimum possible correspondence distortion

Holzinger Group 48
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B Invariant Similarity GHCI-KDD

Similarity

Invariant similarity

I'& -
um p!sible correspo!enc

— d(X,Y)
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B Gromov-Hausdorff dist: finding the opt. correspondence @HC-KDD::

& Gromov, M. (1984) Infinite groups as
geometric objects.

o -
LN o
NAE T

Felix Hausdorff

Michail Gromov (1868-1942)

(1943-) ! J —X
<o i 1 Y
7 A e ‘
(X,0y) Correspondence (Y, dy)
Metric space Metric space
1
dgH(X,Y) = =—min max |6x(x;, ;) — oy (y;, y;i)
G ? 2 C (x,,g:.y.;_)GC | 41 = 1) J] |
(z4,15)€C

Vo, Jy; st.(es,9;) €€ Vyydz; stz u) €C

Discrete optimization over correspondences is NP hard !
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Bl Distinguish topological spaces @ HCI-KDD %

Counts the number of “i-dimensional holes”

bi is the “i-th Betti number”

y e
R J/ﬂd}

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)

Zomorodian, A. & Carlsson, G. 2005. Computing Persistent Homology. Discrete &

Computational Geometry, 33, (2), 249-274.
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B8 Structural Patterns are often hidden in weakly str. data  @He1-KDD -

= Statement of Vin de Silva (2003), Pomona College:

= |let M be atopological or metric space, known as the
hidden parameter space;

= et R? be a Euclidean space, the observation space,
= and let f: M — R% be a continuous embedding.

= Furthermore, let X € M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;,i € I} defined on a
probability space (Q, F, P), and denote Y = f(X) c R
the images of these points under the mapping f.

= \We refer to X as hidden data, and Y as the observed data.
= M, f and X are unknown, butY is - so can we identify M?
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B Topological Data Mining

" Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014. On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5 19.
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v G HCI-KDD o

5) Probabilistic
Topic Models
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B Topic modelling — small topic but hot topic in ML @HCI-KDD o

S
.

MODELING

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING

DATA SCIENCE

Holzinger Group 55 Machine Learning Health 06



B Geometry of Topic Models

G HC1-KDD o>

A
I K P(wordl) )
= topic
O = observed
document
C}"
e ® = generated
.9.; document
<
osL| ©
<2 o
o 5 >
L' p(word2)
,  P(word3)

Holzinger Group

56

» Documents are categorical
distributions over some
predefined vocabulary of
(10,000+) words

» Topics are categorical
distributions on same
vocabulary

» Generative model: Each
document is (nearly) a
convex combination of the
topic distributions

D. Blei, 2008
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B Generative statistical model for natural language G HCI-KDD 2%

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— t all thar far apart
P L an v the

ARG T rt.” wspecially in
Haww many g boes am RERENENISEN 1o v COMTIEAFi s e 73000 genes in the hu
SRR Lot week ar the penome meetime i genomse, nastes, Siv Anderssaon ol Uppsala
et ™ b geniome researchers with radically Iniversity in Sweden, wha arrived o the
Jifferent approaches presented complemen- S0 number, Bat coming ug with a consen
ey views of the Pasic penes neaded torlliles slis sWer m Be msoee than just o
One r maly mumt e, partbeula =T il
\\‘_ srs Lin s s i 1 v ma
thuat 1 b wanstained with T iy 1w
just 230 eiarliest life forms 1y
e ' 1 r ush 1 CunmpL
her " coular b i the Man
11 =1 1 v I nnl 1
[ T 1 ng o

Given the parameters a and [5, the joint distribution of a
topic mixture 6, a set of N topics z, and a set of N words w

is given by: N
p(ejz,w | o B) : p(e | C{‘) Hp(zf? [ e)p(wf? |Zﬂa B)
=

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation.
The Journal of machine Learning research, 3, 993-1022.
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B Motivation: to get insight into unknown document sets

SQHISLQITIER IO

first
t‘x“n’O
Seems
time
evidence
fact

Holzinger Group
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http://agoldst.github.io/dfr-browser/demo/#/model/scaled
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B Example from Bioinformatics

@ HCI-KDD o

A

Functional module 1

FD-I

. FB-A
o Sy
FD J‘“’"a[:'\
FD-K

Protein complex

B

Hidden generative process

Functional module 1

1.0

Topic 1 .3

Functional module 2 i3

10

/ \

/ X

Functional module 2
P(FD)
Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4
FD-A FD-X FD-W FD-P
A » O =) - O - O
i Educt Product
Topic 1 Topic 2
Metabolic pathway
[ — C ———— I
FD-A FD-l FD-E FD-A FD-l FD-E Statistical inference
o - Genome
FD-Z FD-J FD-K Genome ; -Z FD-J ED-
annotation 1 annotation 1 | FD-ZFD-J FD-K \
FD-A FD-E FD-B FD-A FD-E FD-B
s N
FD-E FD-A FD-X ED-E FD-A FD-X / Potential
Ganome ? functional
Genome i H module 1
FD-J FD-P FD-K | _nnotation 2 annotation2 | Fp-J FD-P FD-K AN
FD-W FD-A FD-| FD-W FD-A FD-l
e e
FD-A FDW FDX | _ e FD-A FD-W FD-X
ErKama i Potential
. tation 3
FDW FDV ED-p | annotation 3 annotaton 2 | row Fov FDP functional
module 2

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional modules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.

Holzinger Group
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B8 Eval. scheme for inferred potential functional modules  @He1-KDD -

Koni
functional modules of protein families with probabilistic

topic models. BMC bioinformatics, 12, (1), 1. - _
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B Generative Probabilistic Model GHCI-KDD -

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-browser/demo/#/model/grid

Topic proportions and

Topics Documents :
assignments

gene 0.04

dna 0.02 . E_y . -

genetic .01 Seeking Life’s Bare (Genetic) Necessities

e COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
How many cenes does anerganism negd 0 comparison to the 73,000 genes in the hu

J survive! Last week at the genome meeling anizine, notes Siv Andersso ) BT
here,” two genome researchers with radically University i v — .
different approaches presented complemen- . S00 ~But coming up with wcome

life 0.082 tary views of the basic genes needed for IS sus answer may be more than just ag

evolve 0.01 One research team, using computer analy numbers icularly =T
ses to compare known cenomes, concluded IO CETOTIES ATE & T

orﬁn.‘ sm 0.61 that today's Grganisms can be sustained with sequenced. *It may be a way of organi-ime

snoime,” explains
required a mere 128 genes, The o Arcady Mushegian, a computational mo
\_///— vther researcher mapped genes 7 = lecular biologist at the Natisggl Cente
in a simple parasite and esti- / N B
. . " ! Hnemoptilus
mated that for this creanism, |
BO0 genes are plenty todo the |
job—but that anything shor

*22 just 250 genes, and that the earliestlife forms— any newly sequenced

'l

brain 0.04

neuron 0.02 of 100 wouldn't be enough.
nerve 0.01 Although the numbers don't ’ | \
march ["-I'('('I.\l‘]\‘ those P Jictions Mpcoplasma | { o as
re ! genome | /
AH0 genes h ey
* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modem and ancient genomes
data 8.42 SCIENCE o VOL. 272 % 24 MAY 1996
number  9.02 T St Tt
computer 0.01

f
Each doc is a random mix of corpus-wide topics

and each word is drawn from one of these topics
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@ HCI-KDD -

Topics

Topic proportions and

Documents :
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
Haow many genes Joes an organism gl o comparison to the 75,000 venes igghe hu

survive! Last week ot the genome mecring T nores Siv Apdersy el
VETSILY i1 Sl ‘M

y
Rer. But coming up with o conserts

here,® two gename researchers with swlically
different approoaches presented complemen-

tary views of the hasic genes needed for TfEY  sus answergmay be more thin

Uhne research ream, using computrer analy numbers -

ses to compare known genomes, concluded  more penomes are

thar today's organisms can be sustamed with sequenced. “le may be o way of organiime
yust 230 pepes, and that the earliest lifeforms any newly sequenced genome,” explains
required 1 mere 128 senes, The — Arcady Mushegian, a compurational mo
ather researcher mapped genes 7 o Jecular biologist ar the Natogal Center
i simple parasite and esti- -/ S for Biotechnolooy Tnformation

1 - [ Hawropiilus
At o ||.-| foor Ih|~ rLanism, - ganome
SO0 genes are plenty to dothe |,

jub—hut that anything short \\

|
of 100 wouldn't be enoueh. \ ‘J/V
Althoogh the numbers don't =

match precisely, those predicrions

DAFTED FROM NCH

/; E
* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 810 12, mate of the minimum medern and ancient genomes.

SCIENCE = VOL. 272 = 24 MAY 1996

h

J

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)

Holzinger Group

62 Machine Learning Health 06



B Output Example: 4 learned topics @ HCI-KDD %
human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences COMIMon tuberculosis simulations

Holzinger Group
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B8 LDA is an example for a probabilistic graphical model @ HCI-KDD o

Proportions

Per-word
topic assignment

parameter
Per-document Observed
topic proportions word

|

.

Topic

parameter

Topics

|

Q—H(H}H-Q—ooi

Zd.n Wd .n

N

D

Q._
Pk

K

S

" Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)

Holzinger Group
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B Posterior inference @HCI-KDD

-Of-O-@— 1O

d.n Wd n

=

p(p.0.z,w)
A, =
p(B,0,z|w) Ts Jo 2o (B0 2. w)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;

However, this do not scale well ...

Holzinger Group
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B For “big data” stochastic variational inference G HCI-KDD 2%

GLOBAL HIDDEN STRUCTURE
MASSIVE

DATA ——
" LR
Fd v

L
&

*

LY
i ey

,
&

y

Subsample \ _/ Infer local \ .| Update global

data 4 \ structure j structure
0O O e o
olie e 0

-
#
’
3

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Bl Stochastic variational inference

G HC1-KDD o>

1: Initialize A(”) randomly.

2. Set the step-size schedule p; appropriately.

3: repeat

4:  Sample a document wy uniformly from the data set.
5. Initialize v = 1, fork € {1,..., K}.
6:  repeat

T Forn e {1,..., N} set

din x exp {E[log 0,4] + Eflog 8¢, 1}, k€ {1

Set Td = & 1T Eﬂ Lt B,
. until local parameters ¢4, and 4 converge.
10: Forke {l...., K'} set intermediate topics
.

dp=n+D Z r,bﬁﬂ-u:dn.

=1

1: - Set A = (1 — p)At-D 4 p A,
12: until forever

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.

Holzinger Group
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Bl Stochastic variational inference in LDA

@ HCI-KDD o3

Yd | Pd.n

|1
OrO-@

Wd n

Q
>
L

N

O.._
Br

K

1. Sample a document

2. Estimate the local variational parameters using the current topics

3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics
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B Approximate inference can be difficult to achieve @ HCI-KDD %

KNOWLEDGE

B

Make assumptions

DATA

&
1

» Approximate inference can be difficult to derive.

Discover patterns

Predict & Explore

» Especially true for models that are not conditionally conjugate
(Discrete choice models, Bayesian generalized linear models, ...)

» Holds us back from trying many models.

Holzinger Group
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Black Box Approach G HO-

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL
BLACK BOX p(B.z|x)

VARIATIONAL
j INFERENCE

» Easily use variational inference with any model
» No exponential family requirements

» No mathematical work beyond specifying the model
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B Conclusion: What is needed ... GHCI-KDD %

" Flexible and expressive components for building
models

= Scalable and generic inference algorithms

" Easy to use software to stretch probabilistic
modeling into new areas

" Topic models are one approach towards
detection of topics in text collections

" More general: Identify re-occurring patterns in
data collections
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TV GHCI-KDD -

Topic model toolkits

e Particular topic models

» Stanford topic model toolbox
http://nlp.stanford.edu/software/tmt

» Topic modeling at Princeton
http://www.cs.princeton.edu/~blei/topicmodeling.html

» MALLET (Java) http://mallet.cs.umass.edu

» Network topic models: Bayes-stack
https://github.com /bgamari/bayes-stack

» Gensim (Python) http://radimrehurek.com/gensim/

» R package for Topic models. http://epub.wu.ac.at/3987/

e Frameworks for generative models

» Variational inference: Infer.net
http://research.microsoft.com /infernet/
» Gibbs sampling: OpenBUGS http://openbugs.net/
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v G HCI-KDD o

6) Graph Bandits
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B The complexities of optimization: Sébasitien Bubeck @ HCI-KDD 2%

I’'m a bandit

Random topics on optimization, probability, and statistics. By Sébastien Bubeck

Bubeck, S. & Cesa-
Bianchi, N. 2012.

Home ORF523: The complexities of optimization Guest posts Archives About me Regret Ana IYSiS Of
Stochastic and
ORF523: The complexities of Nonstochastic Multi-
S . armed Bandit

optimization .

P Problems. Machine
This page collects together the posts for the graduate course on optimization | taught at Princeten in Lea rn | n g 5 (1) 1_
the Spring 2013. This materlal has been reorganized (some parts have been cut, some have been r = ’
extended) into a monograph which got recently published “Foundations and Trends in Machine 122 .

Learning. Vol. 8. No. 3-4. pp 231-357. 2015" (see here for the free version);
https://blogs.princeton.edu/imabandit/

Also very interesting: Bubeck, S. 2015. Convex optimization: Algorithms and complexity. Foundations

and Trends in Machine Learning, 8, (3-4), 231-357.
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B Remember Bandits

= Slot-machine (bandit - robs your money)
" One-armed bandit

= Very simple model for sequential decision
making under uncertainty

= Main challenge: exploration versus exploitation

= Many application domains: A/B-Testing,
Crowdsourcing, optimization, search, ...
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B Multi-Armed Bandits problem

= Multi-armed bandit:= a gambler strategically operating
multiple machines in order to draw the highest possible
profits

" There are n slot-machines (“einarmige Banditen”)
» Each machineireturnsarewardy = P(y; 0;)
* Challenge: The machine parameter 0; is unknown

= Which arm of a slot machine should a gambler pull to
maximize his cumulative reward over a sequence of
trials? (stochastic setting or adversarial setting)
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B Machine Parameters of the k-armed Bandit G HCI-KDD 2%

Each arm a either

wins (reward=1) with fixed (unknown) probability u,, or
loses (reward=0) with fixed (unknown) probability 1 — u,
= All draws are independent given u,; ... u,

" Problem:
How to pull arms to maximize the total reward?
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B Underlying Principle of the k-Armed Bandits problem @ HCI-KDD %

" leta; € {1,...,n} be the choice of a machine at time t
* Lety; € R be the outcome with a mean of (y ;)
= Now, the given policy maps all history to a new choice:

m. [(”11 Y1), (a2,92), ..., (az1, .Ut-l)] = Qt

= The problem: Find a policy 7 that max(yr)

= Now, two effects appear when choosing such machine:
= You collect more data about the machine (=knowledge)
= You collect reward

= Exploration and Exploitation
= Exploration: Choose the next action a; to min{(H (b;))
= Exploitation: Choose the next action a; to max(y;)

" models an agent that simultaneously attempts to acquire new
knowledge (called "exploration") and optimize his or her
decisions based on existing knowledge (called "exploitation").
The agent attempts to balance these competing tasks in order to

maximize total value over the period of time considered.

More information: http://research.microsoft.com/en-us/projects/bandits
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B MAP-Principle: “Optimism in the face of uncertainty”

log(1/9) I
a; = max (ﬁ(a ) + 06 ) f

1.5

ac A

Tf (ﬂ-)

Reward
o
9
e

-0.5

@ HCI-KDD o3

1 (100) 2(10)
a; = max (rew;(a) + uncert(a))

Exploitation

Exploration

the higher the (estimated) the higher the (theoretical)

reward the higher the chance
to select the action

uncertainty the higher the
chance to select the action

3 (30) 4 (70)

Auer, P., Cesa-Bianchi, N. & Fischer, P. 2002. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47, (2-3), 235-256.
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B A bandit in a graph is still a bandit © G@HCI-KDD

e Let G a known graph with K nodes {1,2,....K}

e Let f be a unknown function defined on the set of nodes
e Fort=1 to n,

e Select a node /,
e Observe reward r, = f(I;) + ¢,

e Goal: maximize sum of expected rewards

e Equivalently minimize regret:

Rn = Z(f* — (1)),
=]
where f* = maxXi<i<k f(f)

e We care about the case when K > n
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B Smooth Graph Function GHCI-KDD -
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m Knowledge Representation in MAB @ HCI-KDD o

= Knowledge can be represented in two ways:

= 1)asfull history  h; = [(a1,11), (a2, v2), ..., (@r1, Y1)
or

= 2)as belief b,(0) = P(0|h)

where 0@ are the unknown parameters of all machines

The process can be modelled as belief MDP:

232328

l |f bf — bff}.ﬂ.;j] ‘

. P(yla,b) = [, b(6a) P(y|0a)
0 otherwise a

P(b'|y,a,b) = {
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Bl The optimal policies can be modelled as belief MDP @ HCI-KDD %

o 1 ifd =bls,s,al :, .
P(b'|s',s,a,b) = , P(s'|s,a,b) = [,b(0) P(s'|s,a,0)

0 otherwise

V (b, s) = max [E(T“h‘: a,b)+> ., P(s'|a,s,b) V(¢ b")}

Poupart, P., Vlassis, N., Hoey, J. & Regan, K. An analytic solution to discrete Bayesian
reinforcement learning. Proceedings of the 23rd international conference on Machine learning,

2006. ACM, 697-704.
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B Applications of MABs G@HCI-KDD 5

= Clinical trials: potential treatments for a disease
to select from new patients or patient category
at each round, see:

W. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Bulletin of the American Mathematics Society, vol. 25, pp. 285-294, 1933.

= Games: Different moves at each round, e.g. GO

= Adaptive routing: finding alternative paths, also
finding alternative roads for driving from Ato B

= Advertisement placements: selection of an ad to
display at the Webpage out of a finite set which
can vary over time, for each new Web page
visitor
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B Graph Bandits -> undirected graph/directed graph G@HCI-KDD o
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Bl Some Statistics on rare diseases (orphan diseases) @ HCI-KDD %

= 7,000 + different types - more being discovered every day

= >10% of the world population is suffering (if all of the
people with rare diseases lived in one country, it would
be the world’s 3rd most populous country)

= 80% of rare diseases are genetic, so are present
throughout a person’s lifetime, even if symptoms do not
immediately appear

= >50% of the people affected by rare diseases are children
= Are responsible for 35% of deaths in the first year of life

= The prevalence distribution is skewed — 80% of all rare
disease patients are affected by 350 rare diseases

= >50% of rare diseases do not have a disease specific
foundation supporting or researching their rare disease

https://globalgenes.org/rare-diseases-facts-statistics/

https://www.hon.ch/HONselect/RareDiseases/
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B Example Rare Disease: CADASIL GHCI-KDD -

= Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy

" js a hereditary disease affecting all the small cerebral arteries.
It causes subcortical infarcts and damages the white matter

(leukoencephalopathy) and it is due to various mutations of
the Notch3 gene situated on chromosome 19:
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Joutel, A. et al. 1996. Notch3 mutations in CADASIL, a hereditary aduIt-ons%fg%ﬂgcgiomcausing stroke and
dementia. Nature, 383, (6602), 707-710, doi:10.1038/383707a0.
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B CADASIL GHCI-KDD -

Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009. CADASIL. The
Lancet Neurology, 8, (7), 643-653, doi:http://dxégloi.org/lo.1016/81474-4422g892|70127-9.
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B CADASIL GHCI-KDD -

Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009. CADASIL. The
Lancet Neurology, 8, (7), 643-653, doi:http://dxécgoi.org/lo.1016/81474-4422g892|70127-9.
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B Generally: Long Tradition in medical research @ HCI-KDD %
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radifion XKoL Ay ask, ‘how didth
Je ted 28Il tell you ... [in sottg
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http://fortune.com/2015/10/26/cancer-clinical-trial-belmont-report/
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B8 Example: Clinical Trials in rare diseases @HCI-KDD o

Limitations of drug design for rare diseases due to:

" Lack of understanding of the underlying
principles of the rare disease
= Motivation: Research advances
= Unbalanced economic motivation (cost/benefit)
= Motivation: Orphan Drug Act and other regulations
= Unavailability of # patients for standard trials
" This is the true bottleneck!

Villar, S. S., Bowden, J. & Wason, J. 2015. Multi-armed Bandit Models for the Optimal Design of
Clinical Trials: Benefits and Challenges. 199-215, doi:10.1214/14-STS504.
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B Why should Bandit Strategies be of help here? @ HCI-KDD %

" The goal of Standard Randomized Controlled Trials
(RCT) are a controlled learning setting:

= Control for Type | and Type Il errors, dependent of trial
Size Nprcr

" |n the case if the patient population N is smaller than the
trial size np-7r: underpowered trial — problem!

" |f we change the goal to

= “learning sufficient - to treat N as effectively as
possible”,

= then bandit strategies — optimal policy for max. the
expected reward - are perfectly suited!

Kuleshov, V. & Precup, D. 2014. Algorithms for multi-armed bandit problems. arXiv:1402.6028.
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B Learning vs. Earning dilemma @ HCI-KDD %

= Learning — experimenting with all treatments

= Earning — selecting one treatment only, based on
experimentation results

= Question 1: How much learning is best — for an
optimal treatment of N patients?

= Suppose N patients with a rare disease:

= Experimental Group E and control group C
= e.g. control = response rate pc and little information
about experimental group
= Question 2: How many allocations of treatment to
E are necessary (= how much experimentation?)
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m Answer to Q2: Dynamic Programming

DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS

By RicHArRD BELLMAN

RAND CORPORATION, SANTA MONICA, CALIFORNIA

Communicaled by Einar Hille, August 13, 1956

1. Initroduction.—The purpose of this note is to indicate how a suitable combina-

tion of the classical method of the Lagrange multiplier and the functional-equation

method of the theory of dynamic programming! can be used to solve numerically, Richard Ernest
and treat analytically, a variety of variational problems that cannot readily be
treated by either method alone. BELLMAN
A series of applications of the method presented here will appear in further (1920-1984)
publications.
2. Functional Egquation Approach.—Consider the problem of maximizing the
function
N
F(xy, zs, ..., xz5) = Z; g:(xy), (2.1)
subject to the constraints
N
(H') E ﬂﬁ(mi) < ¢y 1=12 ..., Mr
i=1
(2.2)
(b) =z, 20,

Bellman, R. 1956. Dynamic programming and Lagrange multipliers. Proceedings of the
National Academy of Sciences, 42, (10), 767-769.
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B Answer to Q2: Application of dynamic programming @ HCI-KDD %

" According to Whittle (1988) [1], we can now
include a third treatment W with p,,,(N), so

that for a given N it is indifferent between E
and W

" |f we know pW(N) then the answer to Q2 is:
Allocate the experimental treatment as long
as pw(N) > pc — otherwise switch to control
group C
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B The original Whittle (1988) Paper

G HC1-KDD o>

Holzinger Group

Restless Bandits: Activity Allocation in
a Changing World

Stable URL: http://www.jstor.org/stable/3214163

P. WHITTLE

Abstract

We consider a population of n projects which in general continue to evolve whether in operation
or not (although by different rules). It is desired to choose the projects in operation at each instant
of time so as to maximise the expected rate of reward, under a constraint upon the expected
number of projects in operation. The Lagrange multiplier associated with this constraint defines an
index which reduces to the Gittins index when projects not being operated are static. If one 15
constrained to operate m projects exactly then arguments are advanced to support the conjecture
that, for m and n large in constant ratio, the policy of operating the m projects of largest current
index is nearly optimal. The index is evaluated for some particular projects.

GITTING  INDEX; MULTI-ARMED  BANIDITS, SEQUENTIAL SCHEDULINGS  STIMULATING  PRICES;
INDEXABILITY

1. Introduction

The multi-armed bandit problem is a classic version of the problem of
optimal allocation of activity under certainty. One can phrase it by saying that
one has n projects, the state of project i being denoted by x; (or by x;(¢) if one
wishes to emphasise its dependence on time, ). One can operate only one
project at once: if one operates project i then one receives reward g;(x,(f)) in
the time-interval (¢, ¢t + 1) and the transition x;(t)— x,(¢ + 1)) follows a Markov
rule specific to project i. The unused projects neither yield reward nor change
state; current states of all projects are known at any time. The problem is to so
choose the project at each moment that the expected discounted reward over
an infinite future is maximal.

The problem was proposed first during the Second World War, and had

1= fa . - T b}
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TV GHCI-KDD -

o Start simple: N =1 and pg ~ B(1,1), what is
the value of py/(1)?

maxeg wi{l/2, pw(l)} — pw(l) =1/2=0.5
Then, if pc < 0.5, treatment E is allocated.

e Now, consider N = 2 and pg ~ B(1,1), what is
the value of py/(2)7?

maxg,w{0.5(1 +2/3) 4+ 0.5(pw(2)), 2pw(2) }
—pw(2) = 5/9 = 0.5556.

Then, if pc < 0.5556, treatment E is allocated.
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B Working recursively GHCI-KDD o

e For N = 2, suppose that pc < 0.5556, so
treatment E is allocated to patient 1.

Then, if a success is observed, py/(1) = 2/3
treatment E is allocated to patient 2.

Then, if a failure is observed py(1) =1/3
treatment C is allocated to patient 2 if
pc > 0.333.

o Working recursively, these “Whittle” indices can
be computed for any patient horizon N.
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T G HCI-KDD 2%

e For N = 2, suppose that pc < 0.5556, so
treatment E i1s allocated to patient 1.

Then, if a success is observed, py(1) = 2/3
treatment E iIs allocated to patient 2.

Then, if a failure is observed py (1) = 1/3

treatment C is allocated to patient 2 if
pc > 0.333.

e Working recursively, these "Whittle” indices can
be computed for any patient horizon N.
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B Q2 is a Multi-armed Bandit Problem @HCI-KDD

e Suppose N patients with a rare life threatening
disease.

« Two treatments available: control (C) and
experimental (E)

« Suppose equipoise so that pg, pc ~ B(1,1)

Q2 How much experimentation? = How many
allocations of treatments E and C until choosing
one treatment for the rest of the population?
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TV @HCI-KDD

e The pw(N) can be computed independently for
each treatment as the trial evolves.

e |If 2 treatments available: C and E, then:

Allocate C to the next patient only if
pc(N) > pe(N) (Ties broken at random)

e If multiple arms, then the rule is:

Allocate to the next patient the treatment with
the highest value of px(N).

For the multi-arm case the rule i1s a near-optimal
heuristic.

Holzinger Group 101 Machine Learning Health 06



B Final conclusion @HCI-KDD o

" Bandit strategy: Is experimentation worth it for a
small number N?

= Reconcile clinical trials and clinical practice

= Extensions should deal with randomization, delayed
responses and uncertainty around N

= Bayesian bandits need Online-ML

® Bandits are a great source of inspirations and
building blocks for solving manifold problems

" Future work: convex optimization, contextual,
combinatorial, ...

Berry, D. A. & Fristedt, B. 1985. Bandit problems: sequential allocation of experiments
(Monographs on statistics and applied probability), Springer.
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@ HCI-KDD -

k you!
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B Sample Questions (1/3) G@HCI-KDD 5

= Describe the clinical decision making process!

= Which type of graph is particularly useful for
inference and learning?

= What is the key challenge in the application of
graphical models for health informatics?

= What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

= What main difficulties arise during breast cancer
Prognosis?

= What can be done to increase the robustness of
prognostic cancer tests?

= Inference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?
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B Sample Questions (2/3) G@HCI-KDD 5

= Why do we want to apply ML to graphs?

Describe typical ML tasks on the example of
olood cancer cells!

f you have a set of points — which similarity
measures are useful?

Why is graph comparison in the medical domain
useful?

Why is the Gromov-Hausdorff distance useful?

What is the central goal of a generative
probabilistic model?

Describe the LDA-model and its application for
topic modelling!
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B Sample Questions (2/3) G@HCI-KDD 5

Briefly describe the stochastic variational inference
algorithms!

What is the principle of a bandit?
How does a multi-armed bandit (MAB) work?
In which ways can a MAB represent knowledge?

What is the main problem of a clinical trail — and
maybe the main problem in clinical medicine?

Why are rare diseases both important and relevant?
Describe an example disease!

What is the big problem in clinical trials for rare
diseases?

What did Richard Bellman (1956) describe with
dynamic programming?
Why are graph bandits a hot topic for ML research?
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B Solutions of the Quiz GHCI-KDD -

= 1=this is a factor graph of an undirected graph — we have seen this in protein networks (refer to slide
Nr. 70 in lecture 5). Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For example, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A,B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
information please consult: http://deepdive.stanford.edu/inference

= 2=thisis the decomposition of a tree, rooted at nodes into subtrees
= 3=an example for machine translation, Image credit to Kevin Gimpel, Carnegie Mellon University

= 4=the famous expectation-utility theory according to von Neumann and Morgenstern (1954): a
decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he is
maximizing the expected value of some function defined over the potential outcomes at some
specified point in the future.

= 5= MYCIN —expert system that used early Al (rule-based) to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for
patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have
the suffix "-mycin".

= 6= metabolic and physical processes that determine the physiological and biochemical properties of a
cell. These networks comprise the chemical reactions of metabolism, the metabolic pathways, as well
as the regulatory interactions that guide these reactions.

= 7= W.ith the sequencing of complete genomes, it is now possible to reconstruct the network of
biochemical reactions in many organisms, from bacteria to human. Several of these networks are
available online, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG), EcoCyc, BioCyc etc.
Metabolic networks are powerful tools for studying and modelling metabolism.
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