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ML needs a concerted effort fostering integrated research @HCI-KDD -

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

6 (2 1

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 6 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.holzinger@h(::i-kdd_org 0 I

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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Let us start with a warm-up Quiz (solutions -> last page) @HCI-KDD -

Dataset

Unknown
Classes

Clusla Samples

Assngn Class Labels

CIB 8 A

Holzinger Group
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Grand challenges in Machine Learning for Health @ HCI-KDD 35

= Big data with many training sets (this is good for ML!)

= Small number of data sets, rare events
= Very-high-dimensional problems

" Complex data — NP-hard problems

" Missing, dirty, wrong, noisy, ..., data

Transfer Learning Multi-task Learning
" GENERALISATION -
.1
Source Target : " f
Task Task
Task |,,| Task

I E 2 4
. RA N S F R Torrey, L. & Shavlik, J. 2009. Transfer learning. Handbook

of Research on Machine Learning Applications and
Trends: Algorithms, Methods, and Techniques, 242-264,

doi:10.4018/978-1-60566-766-9.ch011.
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Timeline @ HCI-KDD -

" Probabilistic Learning (1763)
= Reinforcement Learning (1950)

" Preference Learning (1987)

= Active Learning (1996)

= Active Preference Learning (2005)

" |nteractive Learning and Optimization (2010)

" |Interactive ML with the “human-in-the-loop” ...

Holzinger Group 5 Machine Learning Health 10



Red thread through this lecture @ HCI-KDD o

= 1) Active Learning

= 2) Preference Learning

= 3) Active Preference Learning
" 4) Multi-Task Learning

" 5) Transfer Learning

Holzinger Group 6 Machine Learning Health 10



G HCI-KDD =£-

Holzinger Group

1) Active Learning
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Motivation: classic fully supervised learning is expensive @HcI-kpD:-

le Align View Z Help

File Edit View Help

MEQR:139 Lenl:141 Len2:146 score: 364.84 Probability:0.00e+00 RMS5D: 1.49 Sim1:99% 5im2:95%
LA VLSPADKTNVKAAWGKVCAHAGEYGAEALERMFLSFPTTKTYFPHFDL------ SHGSAQVKGHGKKVAD 64:A
2B HLTPEEKSAVTALWGKY - -NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG 69E

654 ALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVST 1344
706 AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVOAAYOQKVVAGVAN 1398

135A VLTSKYR 14L:A
1408 ALAHKYH 1468

{

Selected rangel: [HIS]20:A (H) - [LEUJ48:A (L) range2: [ASN]19:B (N) - [ASP]47:B (D)

http://www.rcsb.org/pdb/general_information
/new_images/1002_aligdisplay.png
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Recommended Books

G HCI-KDD =%-

&% MORGAN &CLAYPOOL PUBLISHERS

Active Learning

Burr Settles

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

Ronald J. Brachman, William W. Cohen, and Thomas G. Dietterich, Series Editors

Settles, B. 2012. Active
Learning, San Rafael (CA),
Morgan & Claypool,
doi:10.2200/S00429ED1V0
1Y201207AIMO18.

http://active-learning.net

Holzinger Group

Active Learning Challenge

Challenges in Machine Learning, Volume 6

lsabelle Guyon, Gavin Cawley, Gldeon Dyor,
Vinceml Lemaine and Alexander Statnikos, odiiors

Cakdrimn T weal Fweks Tafisrn, prrsie s nidon

Guyon, |., Cawley, G., Dror, G,,
Lemaire, V. & Statnikov, A.
2012. Active learning
challenge: Challenges in
machine learning, volumn 6.
Microtome Publishing, River
Edge, NJ, USA.
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Active Learning — study of ML that improve by asking ... @HcI-kDD

" = ML algorithm can perform better with less

training if it is allowed to choose the data from
which it learns.

= “Active learner” may pose queries, usually in the
form of unlabeled data instances to be labeled
by an “oracle” (e.g., a human annotator) that
understands the nature of the problem.

= |t is useful, where unlabeled data is abundant or
easy to obtain, but training labels are difficult,
time-consuming, or expensive to obtain

Holzinger Group 11 Machine Learning Health 10



Goal: Automating Inquiries (Ex. from Settles: alien fruits) @Hc1-kpp:%-

= A classifier to determine objects as a function mapping
h: X — Y, parameterized by a threshold 6:

@ safe if x < 6, and
© noxious otherwise.

y:. —D D D D D D S, S, S,
- 0000QQ D 2N
?
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hix; 8) = {
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Scenarios for active learning @ HCI-KDD -

learner

select the best
instance
in the pool

instance an instance
® ~ de novo

LY

label & add to

input

generate _E learner observe

. label & add to \ f i , label & add to
{.I ’ y} training set input s Y training set source )l .U) training set
s
space 9 “
‘ xI,!
{ z, 3) . { ’ > a
‘ o decide to query ﬁ
or discard
oracle query oracle oracle query

membership query synthesis

model generates
a query de novo

stream-based selective sampling

instance

space o lopit. ===+ sample an__ _ _ ® maodel decides to

distribution instance query or discard

pool-based active learning query is labeled

by the oracle
...\ sample alarge ____ model selects | | |
pool of instances u the best query

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool, doi:10.2200/S00429ED1V01Y201207AIMO018.
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Uncertainty Sampling @ HCI-KDD o

(4) —

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool,

doi:10.2200/S00429ED1V01Y201

Holzinger Group
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Qo

1: U = a pool of unlabeled instances {x* }5’;1
2: L = set of initial labeled instances {(x, }?}m}}r‘zl
3: forr=1,2,... do

6 = train(L)

select x* € U, the most uncertain instance according to model &
) g

add (x*, y*) to L

4
5
6:  query the oracle to obtain label y*
7
8:  remove x* from U

9:

end for

14 Machine Learning Health 10



Multi-Task Active learning @ HCI-KDD -

" The typical active learning setting assumes a single
machine learner trying to solve a single task.

" |In many real-world problems, however, the same data
might be labeled in multiple ways for several different
subtasks. In such cases, it is probably more economical to
label a single instance for all subtasks simultaneously, or
to choose instance-task query pairs that provide as much
information as possible to all tasks. This motivates the
need for multi-task active learning algorithms.

= |f we take a multi-task entropy-based uncertainty
sampling sort of approach, then we might want to select
instances with the highest joint conditional entropy of
both labels given the instance: HO (Y1,Y2|x), where Y1
and Y2 denote the output variables for the two different

tasks.

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool, doi:10.2200/S00429ED1V01Y201207AIMO018.
Holzinger Group 15 Machine Learning Health 10



Example for the Human-in-the-Loop @ HCI-KDD %

|| Long-term inositol phosphate release, but not tyrosine kinase activity, correlates with IL-2 secretion and NF-AT

.| Long-term inositol phosphate release, but not tyrosine kinase activity, correlates with 1L-2 secretion and NF-AT

Mode Annotator type Recall Precsion F-score
Automation
Entity 61.94 4931 54.91
Protein 57.31 50.97 53.95
Expert
Entity 29.11 22.90 25.63
Protein 71.94 59.28 65.00

Yimam, S. M., Biemann, C., Majnaric, L., Sabanovi¢, S. & Holzinger, A. 2016. An adaptive annotation approach
for biomedical entity and relation recognition. Brain Informatics, 1-12, doi:10.1007/s40708-016-0036-4.
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Example for the Human-in-the-Loop @ HCI-KDD %

Yimam, S. M., Biemann, C., Majnaric, L., Sabanovi¢, S. & Holzinger, A. 2016. An
adaptive annotation approach for biomedical entity and relation recognition.

Brain Informatics, 1-12, doi:10.1007/s40708-016-0036-4.

Holzinger Group

_ (DISORDER] (CONDITION| _
5| Over the past decade , chronic inflammation in visceral adipose tissue ( VAT ) has gained accej

DISORDER]  [CONDITION)

as a lead promoter of insulin resistance in obesity

MOLECULE| (CELL
6| A great deal of evidence has pointed to the role of adipokines and innate immune cells , in parti
[CONDITION]

adipose tissue macrophages , in the regulation of fat inflammation and glucose homeostasis .
(a) Annotated by medical expert.
ONDITION CONDITION
Over the past decade , chronic inflammation in visceral adipose tissue ( VAT ) has gained acce|
as a lead promoter of insulin resistance in obesity .

n

5| A great deal of evidence has pointed to the role of adipokines and innate immune cells , in parti

adipose tissue macrophages , in the requlation of fat inflammation and glucose homeostasis .

AUtoma .iC SUgges 'i(Jl]l‘S atter o abstracts are annotated.
b) Automat goest fter 5 abstract ted

DISORDER CONDITION

5/ Over the past decade , chronic inflammation in visceral adipose tissue ( VAT ) has gained accef

DISORDER ONDITION
as a lead promoter of insulin resistance in  obesity

CELL
5| A great deal of evidence has pointed to the role of adipokines and innate immune cells , in parti

CONDITION| DISORDER D

adipose tissue macrophages , in the requlation of fat inﬁmﬁatioﬁ and glucose homeostasis .
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Automated scientific processes (to save time=money)

G HCI-KDD =%-

Holzinger Group

Functional genomic hypothesis
generation and experimentation
by a rohot scientist

Ross D. King', Kenneth E. Whelan', Ffion M. Jones', Philip G. K. Reiser’,
Christopher H. Bryant’, Stephen H. Muggleton’, Douglas B. Kell*
& Stephen G. Oliver’

'Department of Computer Science, University of Wales, Aberystwyth SY23 3DB,
UK

*School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK
*Department of Computing, Imperial College, London SW7 2AZ, UK
4Department of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK
>School of Biological Sciences, University of Manchester, 2.205 Stopford Building,
Manchester M13 9PT, UK

The question of whether it is possible to automate the scientific
process is of both great theoretical interest” and increasing
practical importance because, in many scientific areas, data are
being generated much faster than they can be effectively ana-
lysed. We describe a physically implemented robotic system that
applies techniques from artificial intelligence®™® to carry out
cycles of scientific experimentation. The system automatically

18 Machine Learning Health 10



Example of a real-world application: Robot Scientist Q@ HCI-KDD -

= Query synthesis: “robot scientist” executes autonomously
biological experiments to discover metabolic pathways in
yeast (saccharomyces cerevisiae).

Background 5 Machine

knowledge learning < Analysis
A
Consistent
hypotheses
\ Experiment(s)

Final | — Exper{ment —> (Robot) —> Results
hypothesis selection

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B. & Oliver, S. G. 2004. Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, (6971), 247-252.

Holzinger Group 19 Machine Learning Health 10



Approximate estimation of the expected cost Q@ HCI-KDD -

Let EC(H,T) denote the minimum expected cost of experimentation given the set
of candidate hypotheses H and the set of candidate trials T

= (,..price of the trial t

= p(t) ... probability of the outcome

|...] ... is the “floor” function

p(t) can be computed as the sum of the probabilities of the
hypotheses (h) that are consistent with a positive outcome of t

EC(J,T)=0
EC({h},T)=0

EC(H,T) = min;e1[C; + p(t)(mean, g7—)Cy ) Hin + (1 — p(¥)

X (mean, er—pnCy ) Hin]

Ju = —Zpenp(h)llog,(p(h))]

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B. & Oliver, S. G. 2004. Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, (6971), 247-252.

Holzinger Group 20 Machine Learning Health 10



A4 Logical model of the aromatic amino acid yeast pathway @Hci-kpp -

WIEN

Growth
medium
Glycerate- l
2-phosphate Metabolite import
YGR254W
YHR174W
YMR323W
D-Erythrose- Phosphoenol .
4-phosphate pyruvate 5-0-1-Carboxyvinyl- YDR354W 2"5 fho?pho-
i . -D-ribosy
igﬁggg% YDR127W 3-phosphoshikimate Anthranilate ——» anthranilate
YEROSOW
3-deoxy-D-arabino- YGLMBW\ /YKLQ‘]‘]C YDROO7W
heptulosonate-7-phosphate Chorismate
YDFH 27W  Shikimate-3- l YPROBOC e-Caboxt
phenylamino)-1'-
phosphate deoxy-D-tibulose-

3-Deh ydroquma te A Prephenate 5'-phosphate

YDR127W
YDR127W YBR166C YNL316C
YKL211C

3-Dehydroshikimate
g 4-Hydroxyphenyl (3- ."ndofy.‘)— YGLO26C

pyruvate Phenylpyruvate glycerol ndole
YHR137W YHR137W P P
YGL202W YGL202W YGLO26G
5-Dehydroshikimate —» Shikimate YG LDZGC
YDR127W , .
Tyrosine Phenylalanine Iryptophan

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B. & Oliver, S. G. 2004. Functional

genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, (6971), 247-252.
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Note @ HCI-KDD =%-

In science, as in industry,
“time is money”

(although the conversion
rate may be unclear)

Holzinger Group 22 Machine Learning Health 10



Performance of the “robot scientist” @ HCI-KDD 35

-
(-2

100 1
< 100 g ]
- >, 904
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o o
3 3 801
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5 : . S 70
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King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B. & Oliver, S. G. 2004. Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, (6971), 247-252.
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Structure of the “robot scientist”

= The Robot Scientist automates the task
of liquid handling and conducts assays by
pipetting/mixing liquids on micro-titres.

= The robot is controlled using Tcl (Tool
command language)

= A compiler translates Prolog commands
into Tcl robot operations.

" The robot was programmed to
automatically plate out the yeast and
media into the correct wells. The micro-
titre plates were measured with the
adjacent plate reader and the results
were returned to the LIMS.

= However, transfer of plates from the
robot to the incubator, and from the
incubator to the plate reader, was done
manually.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B. & Oliver, S. G. 2004. Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, (6971), 247-252.

Holzinger Group 24 Machine Learning Health 10




The Automation of Science

Science..
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SHARE
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REPORT

The Automation of Science

Ross D. King-", Jem Rowland!, Stephen G. Oliver?, Michael Young?, Wayne Aubrey’, Emma Byrne!, Maria
Liakata!, Magdalena Markham’, Pinar Pir?, Larisa N. Soldatoval, Andrew Sparkes!, Kenneth E. Whelan!,
Amanda Clare!
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King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P. & Soldatova, L. N.
2009. The automation of science. Science, 324, (5923), 85-89, doi:10.1126/science.1165620.
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The Automation of Science: The Robot Scientist Adam  @HcI-kpD =%

&
) -, b

-—

7

\_

scale : 1m

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P. & Soldatova, L. N.
2009. The automation of science. Science, 324, (5923), 85-89, doi:10.1126/science.1165620.
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The Automation of Science: The Robot Scientists @ HCI-KDD %

1999-2004 Initial Robot Scientist Project
— Limited Hardware

— Collaboration with Douglas Kell (Aber Biology), Steve

Oliver (Manchester), Stephen Muggleton (Imperial)
King et al. (2004) Nature, 427, 247-252

2004-2011 Adam Project
— Sophisticated Laboratory Automation

— Collaboration with Steve Oliver (Cambridge).
King et al. (2009) Science, 324, 85-89

2008-2011 Eve Project

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P. & Soldatova, L. N.
2009. The automation of science. Science, 324, (5923), 85-89, doi:10.1126/science.1165620.
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The Automation of Science: The Robot Scientist Adam @ HCI-KDD £~

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P. & Soldatova, L. N.
2009. The automation of science. Science, 324, (5923), 85-89, doi:10.1126/science.1165620.

Holzinger Group 28 Machine Learning Health 10



Statistical learning — Probable Approximate Correct (PAC) @HCI-KDD =%

SRR SCE ‘ ¢ Distribution D on X
hvvd
(x

-earning ...,
Algorithm "\’fn)

Expert / Oracle

Labeled Examples

J (X1.€*(X1)), (X €* (X))
A@M c*: X - {01}
h: X — {011} %"

Image credit to Maria-Florina Balcan, CMU
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Remember: Learning from unlabeled data Q@ HCI-KDD -

= Design a predictor based on unlabeled and few
randomly labeled data sets

= Assumption: The knowledge of marginal density
may simplify prediction, e.g. similar sets have

similar labels

Learning algorithm :> ﬁn,n

{ X}
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G HCI-KDD =£-

Holzinger Group

2) Preference
Learning



www.preference-learning.org

G HCI-KDD =£-

Holzinger Group

You are here: Home

Datasets Research Groups Waorkshops

Welcome to the preference learning site
Software

o | PCforSOS Framework (Johannes Fiarnkranz)
» Weka extension for Label Ranking (Evke Hillermeier)
» SVM-Rank (Thorsten Joachims)

» Preference Leaming Toolbox (Georgios Yannakakis)

Datasets

* The Sushi Preference Dataset

o LETOR Benchmark Collection for Learning to Rank
+ Label ranking data (semi-synthetic)

e Car Preference Dataset

Research Groups
* Univ. degli Studi di Padova (Fabio Aiolli)
* Universiteit Gent (Bernard De Baets)
* TU Darmstadt (Johannes Farnkranz)
» Philipps-Universitat Marburg (Eyke Hillermeier)
» Cornell University (Thorsten Joachims)
» Microsoft Research Asia (Tie-Yan Liu)
* MIT (Cynthia Rudin)
» Austalian National University (Scott Sanner)

» Institute of Digital Games (Georgios Yannakakis)

Workshops

Tutorials

Login

Books Publications

CONTENTS

1. Datasets

2. Research Groups
3. Workshops

4. Tutorials

5. Special Issues

6. Books

» Reinforcement Learning with Generalized Feedback: Beyond Numeric Rewards (PBRL-13) at ECML/PKDD-13

» Preference Leaming: Problems and Applications in Arificial Inteligence (PL-12) at ECAI-12

» Choice Models and Preference Learning (CMPL-11) at NIPS-11

o Menfmrnmnn 1 mmnioe (T AN A TR IDLADM ANA N

32
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Y “The” Recommended Book @ HCI-KDD o£-

Iueniwei Furide g
y b bl ey il

Preference
Learning

; Springer

Fuernkranz, J. & Hillermeier,
E. 2010. Preference learning,
Berlin Heidelberg, Springer.
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What are “preferences”? @ HCI-KDD :£-

Interactive Machine Learning

iml.media mit edu/ ~ s “Clicked”

This course focuses on interactive machine learning (IML), which | define to be machine learning with
a human in the learning loop, observing the result of ...

Machine Learning Needs A Human-In-The-Loop - Forbes

www forbes.com/sites/._/2016/03/07/machine-learning-needs-a-human-in-the-loop/ ~

Mar 7, 2016 - Artificial Intelligence (Al) has a problem — it's artificial. To be fair, Al and its sister disciplines
of machine learning, cognitive computing, ...

“ : ”
Human-in-the-Loop is the Future of Machine Learning - insideBIGDATA — NOT clicked
insidebigdata.com/2016/01/11/human-in-the-loop-is-the-future-of-machine-learning/ ~

Jan 11, 2016 - lukas-biewald In this special guest feature, Lukas Biewald, co-founder and CEO

CrowdFlower, discusses how machine learning will be the ... Kundenrezensionen

b e e 0 s &
Why human-in-the-loop computing is the future of machine learning ... P
www.computerworld.com/... ;iwhy-human-in-the-loop-computing-is-the-future-of-ma... = peeme E—— | seeensielme ienung 2y desem Ak
Mov 13, 2015 - Now that machine learning is becoming more and more mainstream, some design asteme [ o | Kundenrezension verfassen
patterns are starting to emerge. As the CEQ of CrowdFlower, __. Lo .

Siehe die Kundenrezension *

Human-in-the-loop machine learning - O'Reilly Radar Top-Kundenrezensionen
radar.oreilly.com/2015/02/human-in-the-loop-machine-learning.html - Sedrdedrde Perfekte Erginzung zur LV

Feb 5, 2015 - In our latest free report Real-World Active Learning: Applications and Strategies for Von student am 31. Oklober 2012

Human-in-the-Loop Machine Learning, we examine the ___ Dom Buchcamirtden gesamten Stoffumfang der zugeherigen Lehrveranstaliung auf ansch

enthalten, sodass sich das Buch ausgezeichnet zur Prifungsvorbereitung eignet.

Besonders erwahnenswert: am Beginn jedes Kapitels sind die Lernziele angegeben und eil

Interactive machine learning for health informatics: when do we need ... Jeces Kapiel it ciner Auswahi an beispiehaten Prafungsiiagen.
link springer.com/article/10.1007/s40708-016-0042-6 Kommentar . Vielen Dank fur Inr Feedback. Missbrauch melden
hw A Holzinner - 20118 - Cited bv A - Related artirles
’\ & » Premier Inn London King's Cross Fabulous 8.7
- WL . Islington, London Location 9.3

ra
~ " You last booked a stay here on 21 May 2011. % A0D TS
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Is Preference Learning relevant for Health Informatics ?

G HCI-KDD =%-

Evaluation | CoHRA

Jé Evaluation | CoHRA L+
(4 ) Suche oder Adresse eingeben & | (B3~ GoocQ ) \§v| ® \_m;'_ ® v @& [d]
CoHRA in English
Collaborative Health Recommender Assessment
Hauptmeni Fallbewertung Abmelden
Evaluation D
Benutzen Sie dieses Formular, um die Empfehlungen auf der rechten Seite hinsichtlich ihrer Relevanz fiir den Arztbrief | Speichern | Abbrechen |

linker Hand zu bewerten.

A

Hauptdiagnose

NSTEMI

Nebendiagnosen

Z.n. TIA xxx

Anamnese

Vorstellung Gber Praxis xxx mit pos. Tnl-Schnelitest und
typischen AP-Beschwerden mit vegetat. Symptomatik lber
30min gestern Abend. Letzte Kontrolle bel xxx letztes
Jahr, im Echo anamn. geringgradige Klappeninsuff.,
Ergometrie 0.p.B. Keine klinischen Infektzeichen. Allergie:
keine bekannt

Epikrise
Vorstellung idiber xxx mit typischer AP-Symptomatik und

pos. Troponin-Schnelitest. LDH 487, CK 897, TnT 2,67,
Leukos 15 bel CRP 5.

Medikamentenliste

Plavix, 600 mg, , xxx Lopresor, 2,5 mg, , xxx Aspisol, 500
mg, , Xxx

B

C Herzinfarkt

Potentielle Texte lhre Auswahl

- Herzinfarkt
Hepatitis

i Ploetzlicher Herztod
Herzbeutelentzuendung

Herzinfarkt
Herzinsuffizienz

Harzllannanfahlar

= Quelle [ Volltext

Ein Herzinfarkt, auch Myokardinfarkt oder Herzmuskelinfarkt genannt,
bezeichnet das Absterben (= Infarkt) eines Teils des Herzmuskels (=
Myokard). Die Ursachen ?e en auf einen Gefaliverschluss in mindestens einem
dergrn&en HerzkranzgefiRe (Koronararterien) oder einem GefdRast zuriick,
die das Herz mit Nahrstoffen und Sauerstoff versorgen: Der Gefalverschluss
hat zur Folge, dass das Herzmuskelgewebe nicht mehr ausreichend
durchblutet wird und abstirbt. Bei Verdacht auf einen Herzinfarkt
(Myokardinfarkt) sollte so schnell wie mdglich eine Therapie erfolgen. Ist dies
nicht der Fall, entsteht an der mit Blut unterversorgten H...

3

aQ: provided
.
by PHRDB T 5: recommended HiAs
f
HRS
Query- |

Database(s) Index Search
v
= e i ol Lovene

Wiesner, M. & Pfeifer, D. 2014. Health recommender systems: concepts, requirements, technical basics and
challenges. International journal of environmental research and public health, 11, (3), 2580-2607.
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Preference Learning is relevant for Health Informatics @ HCI-KDD -

= Deals with the learning of predictive preference
models from observed (extracted) preference
information — highly relevant for decision theory

= User preferences play a key role in
= Recommender systems
= Autonomous agents and games

= Adaptive user interfaces
= Adaptive .... x ... systems

MACHINE Preference Learning PREFERENCE MODELING
LEARNING and DECISION ANALYSIS

Fuernkranz, J. & Hillermeier, E. 2010. Preference learning, Berlin Heidelberg, Springer.
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PL Basics pose a lot of learning problems

= Single vs. multi-dimensional

= Explicit vs. implicit (e.g. direct vs. click-through)

= Absolute vs. relative (e.g. assessing vs. comparing)
= Structured vs. unstructured (ratings vs. free-text)
= Single-User vs. multiple users (social tagging)

= Binary vs. graded (relevance judges vs. ratings)

= Three main types of problem dimensions: " @ T “ 0
= 1) Representation of preferences

= Utility function (e.g. ordinal, numeric, ...)

= Preference relation (partial order, ranking, ...) celadediilny

. . L0002 W Above Average

= Logical representation S eI de Aveiogs

= 2) Description of individuals/users and alternatives/items =& Below Average
RS & & W

= |dentifiers
=  Feature vectors

o eleleler ]
= 3) Type of training input

= Direct or indirect feedback o e g un’{‘é".i%as EVEN MoRE m'*é‘.f‘a“[‘m

= Complete or incomplete relation —_t :!u
ey e No pain Mild Moderate Severa Worst Pain

= Utilities, ... imaginable

Fuernkranz, J. & Hillermeier, E. 2010. Preference learning, Berlin Heidelberg, Springer.
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Overview (Assessing/Comparing) @ HCI-KDD %=

Preferences
assessing comparing

absolute
B
Sl

ABCD A-B>C>D N

A B € D A B C D

Fuernkranz, J. & Hillermeier, E. 2010. Preference learning, Berlin Heidelberg, Springer.
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Learning to order objects @ HCI-KDD o

Lif f(u) > /(0)
’ Ry(u,v) =4 0 if f(u) < f(0)
J_ .
5 otherwise.
®@ ¢ W :
f(a)=1 f(b)=2 g(a)=0 g(b)=2
f{c)=0 f(d)=L g§c)=1 g(d)=2

We call R a rank ordering for X into S. If R, (u; v) = 1, then
we say that u is preferred to v, or u is ranked higher than v.

Cohen, W. W.,, Schapire, R. E. & Singer, Y. 1999. Learning to Order Things. Journal of
Artificial Intelligence Research, 10, 243-270.
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B4 Learning to order objects: Online-Weight Allocation

G HCI-KDD =%~

Cohen, W. W.,, Schapire, R. E. & Singer, Y. 1999. Learning to Order Things. Journal of

Artificial Intelligence Research, 10, 243-270.

Holzinger Group

Allocate Weights for Ranking Experts
Parameters: 3 € [0, 1], initial weight vector w' € [0,1]" with Z,‘-\_, w =1
N ranking experts, number of rounds 7’

Do fort=12...,T

1. Receive a set of elements X' and ordering functions fi,..., fy. Let R: denote the
preference function induced by f!.

~ | . .
2. Compute a total order p° which approximates

N
PREF'(u,v) = ) w;R}(u,v)

=]

(Sec. 4 describes several ways of approximating a preference function with a total
order.)

3. Order X' using p'.
4. Receive feedback F' from the user.
5. Evaluate losses Loss( 1?2.1"' ) as defined in Eq. (1).

6. Set the new weight vector
oy wlh - GLOS(RLFY)
w'. =

' Z

where Z is a normalization constant, chosen so that ¥°7* , w!*! = 1.
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Collaborative Filtering G HCI-KDD +£-

Doecumants

Filtarer |-——0H

= —
Little Box

Server
Client

Appraiser Appraiser
Tapestry :
Browasr Mail Reader

(d) Collaborative filtering &5

(c) Conventional filtering

Goldberg, D., Nichols, D., Oki, B. M. & Terry, D. 1992. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35, (12), 61-70.
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Preference Learning Tasks @ HCI-KDD %

OBJECT RANKING COLLABORATIVE FILTERING

product description features identifier
preference description relative absolute
predictions ranking utility degrees
number of users/models single many
induction  learning ... used for
principle algorithm = prediction, classifiction

= adaptation, control

= systems analysis
background knowledge =———>» MODEL

INDUCTION

data/observations =——>
N
I
I

Fuernkranz, J. & Hillermeier, E. 2010. Preference learning, Berlin Heidelberg, Springer.
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How to learn a label ranker h: X — S, @ HCI-KDD -

= 1) Reduction to simpler problems
= transform the problem to apply standard ML

= 2) Extension of classification algorithms

= Generalization of standard ML — so to make them
applicable to label ranking data

= 3) Probabilistic modeling and statistical inference

= Using statistical models for ranking data and
parameter estimation methods

Fuernkranz, J. & Hillermeier, E. 2010. Preference learning, Berlin Heidelberg, Springer.
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G HCI-KDD -

3) Active Preference
Learning
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Interactive Learning and Optimization (Brochu, 2007) Q@ HCI-KDD -

" Previous work: Optimizing the coffee taste
Herdy et al., 96

= Black box optimization:

" F:Q > RFindargmaxF

" The user in the loop replaces F

" Optimizing visual rendering Brochu et al., 07

= Optimal recommender Viappiani & Boutilier, 10

" Information retrieval Shivaswamy & Joachims, 12
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Programming by Feedback @ HCI-KDD 5%

= |Loop:

1. Algorithm presents an expert a pair of behaviours
2. Expert emits preferences y1 over y2

3. Algorithm learns expert’s utility function

4. Algorithm searches for behaviour with best utility

= Problem: Accounts for human noise

Schoenauer, M., Akrour, R., Sebag, M. & Souplet, J.-C. Programming by Feedback.
Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014
Beijing. 1503-1511.

Akrour, R., Schoenauer, M. & Sebag, M. 2012. APRIL: Active Preference Learning-Based
Reinforcement Learning. In: Flach, P. A., De Bie, T. & Cristianini, N. (eds.) Machine Learning and
Knowledge Discovery in Databases, Lecture Notes in Computer Science LNCS 7524. Berlin
Heidelberg: Springer, pp. 116-131.
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Problem of a Human-in-the-loop

= Humans are irrational, inconsistent,
lacking robustness, error-prone,
adaptive, subjective, ...

= Problem: Preferences often are
biased, subjective, constructed on the
fly, or even do not exist ...

= (Daniel Kahnemann, Nobel-Prize 2002)

The International
Bestseller

Bastanc oy Kahneman, D. 2011. Thinking, fast and slow,

e New York, Macmillan.
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Formal setting @ HCI-KDD %

X Search space, solution space controllers, RP
Y Evaluation space, behavior space trajectories, R
b X))

Utility function

U Yy—R U*(y) = (w"y) behavior space

Requisites
» Evaluation space: simple to learn from few queries

» Search space: sufficiently expressive
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G HCI-KDD =£-

Holzinger Group

4) Multi-Task
Learning



Ty G HCI-KDD =5
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Multi-Task Feature Selection
on Multiple Networks

via Maximum Flows

Mabhito Sugiyama’ %, Chloé-Agathe Azencott?, Dominik

Grimm?#, Yoshinobu Kawahara', Karsten Borgwardt**

'0saka University, ZMax Planck Institutes Tiibingen, *Mines ParisTech,
Institut Curie, INSERM, “Eberhard Karls Universitit Tubingen

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task
Feature Selection on Multiple Networks via Maximum Flows. SDM, 2014. 199-207.
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Goal @ HCI-KDD o

= Given multiple graphs

" Find features (=vertices), which are associated
with the target response and tend to be
connected to each other
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Result: New formulation of MTF-Selection @ HCI-KDD 32

argmaxE( fi(S) —:(50) = ) h(SuS)),

S1,-»SKCV

e e’ — | assoaatmn 1<j
K tasks - =
penalty
fi(5;) = E q;(v), 9i(S;) =41 E w;(e) + n|S;|,
N s/
VES; _ €EB; ~ sparsity

connevctivity

h(Si,S;) = pulS;aSj|=ul(SUSHN(ESNS)]

= efficiently solved by max-flow algorithms
= performance is superior to Lasso-based methods

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task Feature
Selection on Multlple Networks via MaX|mum Flows SDM, 2014. 199-207.
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Remember: Graphs are everywhere! @ HCI-KDD o

= Networks (graphs) are everywhere in health
informatics

" Biological pathways (KEGG), chemical compounds,
(PubChem), social networks, ...

= Question often: Which part of the network is
responsible for performing a particular function?

= > Feature selection on networks

= — Features = vertices (nodes)

= — Network topology = a priori knowledge of
relationships between features

= Multi-task feature selection should be
considered for more effectiveness
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Selecting Connected Explanatory SNPs SConES @ HCI-KDD o5

= Single task feature selection on a network
" Given a weighted graph G =(V, E)

» —Eachv € V has a relevance score q(v)

= — |f you have a design matrix X € RVXIV]

= and a response vectory € RY, g(v) is the
association of y and each feature of X

Goal: Find a subset S © V which maximizes

FS) =) aw)
vES while S is small and vertices are connected

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013. Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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Formulation of SConES @ HCI-KDD 32

e argmax. ., f(S)—g(S)
£(S) = Z a@w), 9(S) = A8,cpw(e) + NIS
VES connectivity sparsity

- B={{v,u}€eE|veV\S, ue€sS}(boundary)
- w : E = R* is a weighting function

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013. Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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Solution of SConES via Maximum Flow @ HCI-KDD 55

» The s/t-network M(G) = (VU {s,t},EUS UT) with
S={{s,v}1vev,qw)>n}, T={{t,v}IvevV, q(v) <n}
and set the capacityc : E' - R* to

- ifu € {s,t}andv €V,
c({v,u}) = {hqw((zgﬂ u?)l gt?\er\fl?se} v

» The minimum s/t cut of M(G) = the solution of SConES

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013. Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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Better performance @ HCI-KDD =£-

®
100.00— /

. @
v 10.00- /
E
=t &
-
£ 1.004 A
g . :-‘f:h‘: .

0.10 L

& --/A-- Grace
——— SConES
0.014€

| | |
1 2 5 10 20 50 100

Number of tasks

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013.
Efficient network-guided multi-locus association mapping with graph cuts.
Bioinformatics, 29, (13), i171-i179.
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G HCI-KDD -

5) Transfer Learning

Holzinger Group



Transfer Learning is an old topic @ HCI-KDD +%

= |Learning or performance on prior experience

* Thorndike & Woodworth (1901) explored how individuals
would transfer a knowledge in one context to another
context

= context that share similar characteristics.
= C++ —> Java
= Mathematics -> Computer Science

= Definition: Ability of a system to recognize and apply
knowledge and skills learned in previous tasks to novel
tasks or new domains, which share some commonalities

= Challenge: Given a target task: How to identify the
commonality between the task and previous (source)
tasks, and transfer knowledge from the previous tasks to
the target one?
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Traditional ML — Transfer ML (humans are much better) @Ho-kpD:%-

Traditional ML in Transfer of learning
multiple domains across domains

test items

training items
test items
training items

Humans can learn in many domains. Humans can also transfer from one
domain to other domains.

Pat Langley, 2006
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What is the difference? @ HCI-KDD -

Learning Process of Learning Process of
Traditional ML Transfer Learning

training items

training items

@ @)
o © o O
O o
Learning System Learning System Learning System

i ‘ Learning System
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Note: Major Assumption @ HCI-KDD o

" Training and future (test) data come from a same
task and a same domain.

= Represented in same feature and label spaces.

= Follow a same distribution.
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Distinguish between Domain and Task @ HCI-KDD :&

Domain:
It consists of two components: A feature space A , a marginal distribution

P(X), where X ={zy,25,....2,} € X

In general, if two domains are different, then they may have different feature spaces
or different marginal distributions.

Task:
Given a specific domain and label space )} for each '; inthe domain, to
predict its corresponding label . where ¢, € )

In general, if two tasks are different, then they may have different label spaces or
different conditional distributions

P(Y|X), whereY ={vyy.....,u,} and y; € Y
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Notations (according to Sinno Jialin Pan, 2010) @ HCI-KDD :£-

= Source domain:
P(Xs), where Xg = {xs,, Ts,, ..., T8, } e Xs
= Task in the source domain:

P(Ys|Xs), where Ys = {us,, ys,. .-, ys,, } and ys, € Vs

= Target domain:

P(Xr), where X7 = {71y, ..., 07, | € AT

" Task in the target domain
P(Yr|Xr), where Yr = {ur,, yr,. . ur,,  and yr, € Vr

Pan, S. J. & Yang, Q. 2010. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22, (10), 1345-1359.

Holzinger Group 64 Machine Learning Health 10



Birds-Eye View on TL

Learning

Inductive Transfer

Labeled data are available
i in a target domain

Transfer
Learning

Labeled data are
i available only ina i

No labeled data in
! both source and
i target domain

@ HCI-KDD -
Case 1 > Self-tgught
< Learning
e Multi-task

L target tasks are .
Case 2 i learnt _) I—eammg

: simultaneously i

...............................

i source domain \

Transductive
Transfer Learning [<—

Assumption:
: different
: domains but

> Domain
{ single task '— Adaptation

Unsupervised
Transfer Learning

Holzinger Group
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Assumption: single domain
i and single task

ST \

Sample Selection Bias
/Covariance Shift
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4 different TL approaches

G HCI-KDD =%-

Transfer learning approaches

Description

Instance-transfer

To re-weight some labeled data in a source
domain for use in the target domain

Feature-representation-transfer

Find a “good” feature representation that
reduces difference between a source and a
target domain or minimizes error of models

Model-transfer

Discover shared parameters or priors of models
between a source domain and a target domain

Relational-knowledge-transfer

Build mapping of relational knowledge between
a source domain and a target domain.

Holzinger Group
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3 types of TL on the 4 TL approaches

G HCI-KDD =5~

Inductive Transductive Unsupervised
Transfer Transfer Transfer
Learning Learning Learning
Instance-transfer © ©
Feature- © © ©
representation-
transfer
Model-transfer ©
Relational- ©

knowledge-transfer

Holzinger Group
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Inductive TL @ HCI-KDD %

= Assumption: the source domain and target
domain data use exactly the same features and
labels.

" Motivation: Although the source domain data
can not be reused directly, there are some parts
of the data that can still be reused by re-
weighting.

" Main ldea: Discriminatively adjust weighs of data
in the source domain for use in the target
domain.
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Inductive TL (Instance Transfer Approach) @ HCI-KDD -

Uniform weights Correct the decision boundary by re-weighting

Loss function on the

.. Loss function on the

target domain data

e
.
cen,
°e
.

i

+ + ++
+ \
+ + + + + + o+ + 'b//
+ +
+ o+ .,./{ + + \T/f
s
+ Iy

source domain data

ﬂTf\ ...................... . ...,;i'ls ............................ e ‘,
J(h) = L(h(xr). '_Ej]}.} + /‘\ L(I(xs,), ur, ).+ R(h):
"} ............................. res

Wu, P. & Dietterich, T. G. Improving SVM accuracy by training on auxiliary data sources. Proceedings of
the twenty-first international conference on Machine learning, 2004. ACM, 110.
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Inductive TL Instance transfer approach TrAdaBoost

AdaBoost
[Freund et al. 1997]

Hedge ( /3)
[Freund et al. 1997]

I To decrease the welg
" of the misclassifled da

whole
training data set

Classifiers trained on
re-weighted labeled data

Target domain
unlabeled data

Dai, W., Yang, Q., Xue, G.-R. & Yu, Y. Boosting for transfer
learning. Proceedings of the 24th international
conference on Machine learning, 2007. ACM, 193-200.
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Algorithm 1 TrAdaBoost

Input the two labeled data sets Ty and T, the unla-
beled data set 5. a base learning algorithm Learner,
and the maximum number of iterations N,

Initialize the initial weight wvector, that w! =
(w}],....wph.). We allow the users to specify the
initial values for wl.

Fort=1,....] N

1. Set pt = wt /(310" wh).

2. Call Learner, providing it the combined training
set T with the distribution p* over T and the un-
labeled data set 5. Then, get back a hypothesis
hy: X — Y {or [0,1] by confidence).

3. Calculate the error of hy on T,

| f i
(o = Z w lzl:ini.nz L:{r]|.

i=n+l i=n+1

4. Set @y = f{l — ) and 3= 1/(1 + +/2lnn/N).

Mote that, ¢, is required to be less than 1/2.

5. Update the new weight vector:

it e (o),
FEST B
;™ -{ it g = —e(l

l<i<mn
n+l<i1<n+m

Output the hypothesis

N a—hax) N =
he(z) = 1, H!:[N,-’z] L = n‘=r-'\'f2'| i
0, otherwise

Machine Learning Health 10
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Self-Taught Learning

G HCI-KDD =£-

Self-taught Learning: Transfer Learning from Unlabeled Data

Rajat Raina
Alexis Battle
Honglak Lee
Benjamin Packer
Andrew Y. Ng

Computer Science Department, Stanford University, CA 943056 USA

Holzinger Group

Abstract

We present a new machine learning frame-
work called “self-tanght learning” for using
unlabeled data in supervised classification
tasks. We do not assume that the unla-
beled data follows the same class labels or
generative distribution as the labeled data.
Thus, we would like to use a large number
of unlabeled images (or audio samples, or
text documents) randomly downloaded from
the Internet to improve performance on a
given image (or andio, or text) classification
task. Such unlabeled data is significantly eas-
ier to obtain than in typical semi-supervised
or transfer learning settings, making self-
taught learning widely applicable to many
practical learning problems. We describe an
approach to self-taught learning that uses
sparse coding to construct higher-level fea-

-kl e e T ST d Jeaa ML e Do
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RAJATREECS. STANFORD.EDU
AJBATTLEfCS . STANFORD.EDU
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ANGEECS.STANFORD.EDU

ately also provide the class labels.) This makes the
classification task quite hard with existing algorithms
for using labeled and unlabeled data, including most
semi-supervised learning algorithms such as the one
by Nigam et al. (2000). In this paper, we ask how un-
labeled images from other object classes—which are
much easier to obtain than images specifically of ele-
phants and rhinos—can be used. For example, given
unlimited access to unlabeled, randomly chosen im-
ages downloaded from the Internet (probably none of
which contain elephants or rhinos), can we do better
on the given supervised classification task?

Our approach is motivated by the observation that
even many randomly downloaded images will contain
basic visual patterns (such as edges) that are similar
to those in images of elephants and rhinos. If, there-
fore, we can learn to recognize such patterns from the
unlabeled data, these patterns can be used for the su-
pervised learning task of interest, such as recognizing

=
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Y] Self Taught Learning @ HCI-KDD

Algorithm 1 Self-taught Learning via Sparse Coding
input Labeled training set
1 2 m)  (m
T = {(=f", 5. (2{7.y@), ... (=™ .y}
Unlabeled data {rEL]}_:r.'S‘ZJ. A rg'-]}_
output Learned classifier for the classification task.

. ,:I'I F 2 i algorithm Using unlabeled data {J‘E]}_, solve the op-

(] I J— . -] ; j ) timization problem (1) to obtain bases b.
Step 1 ° ll]']']']' | | r S-;_ Zj‘ {'{ S'E. '}j | | 2 —|_ JI | | {! '5"3. 1 Compute features for the classification ) task
i _ub to obtain a new labeled training set T =

1 {(a(x{?). yt)}m, . where

st blla<1,¥) €

. ﬁ(rgll} = arg min, ||2:4[‘]I - aj[;‘}bj"% + 3 [[a"|;.-

_I_ ______ ] Learn a classifier C by applying a supervised learning
algorithm (e.g., SVM) to the labeled training set T'.
return the learned classifier C.

Input: Source domain data Xs ={X; Jand coefficient S
Output: New representations of the source domain dataA, ={a. }
and new bases B={b}

Step2: aj = arg min ||zg, — Z Hé—.%_hj 12 4+ Bllaz, |1

ar, F
Input: Target domain data X; ={x }coefficient fAnd bases B={b}
Output: New representations of the target domain dataA: ={a; }

Raina, R., Battle, A., Lee, H., Packer, B. & Ng, A. Y. Self-taught learning: transfer learning from unlabeled data.
Proceedings of the 24th international conference on Machine learning, 2007. ACM, 759-766.
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Inductive Transfer Learning (Model transfer approach)  @Hci-kpp:£-

Assumption: If t tasks are related to each other, then they may share some
parameters among individual models.

Assume ft =W, - X be a hyper-plane for task , where t G{T, S}and

Common part Specific part for individual task

Regularization terms

Encode them into SVMs: for multiple tasks

min {J(w0, 0. 6) = Cregsm) Yt & +@sf} lell + Aslfewo[]
wo,ve &t

st oy, (wo+vg)-xy, 21 =86, & >0, i€ {1,2,...ni} andt € {S,T}

Evgeniou, T. & Pontil, M. Regularized multi-task learning. Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, 2004. ACM, 109-117.
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Domain Adaptation: Structural Correspondence Learning @HCI-KDD:%-

= Motivation: If two domains are related to each
other, then there may exist some “pivot” features
across both domain.

= Pijvot features are features that behave in the same
way for discriminative learning in both domains.

" Main Idea: To identify correspondences among
features from different domains by modeling their
correlations with pivot features.

= Non-pivot features form different domains that are
correlated with many of the same pivot features are
assumed to correspond, and they are treated
similarly in a discriminative learner.
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SCL Blitzner et al. (2006)

G HCI-KDD =%-

Input: labeled source data {(x;, v¢)i_1 ],
unlabeled data from both domains {x; }

Output: predictor f : X — Y

| _ _ prediction problems, pe(x), £=1..m_ |

2, Fori{=1tom \\

| X . I

I Wy = argmin (Z} L(w - xj,pe(x5))+,

I w P
| Alfwl[?) |

I\ end /I

ST fel el 0D VT = svD(n)

I 77T I‘
I 0 = Up.p, !

)

b) Transform each vector of pivot
| ) P

a) Heuristically choose m pivot
features, which is task specific.

feature to a vector of binary
values and then create
corresponding prediction
problem.

Learn parameters of each
prediction problem

Do Eigen Decomposition

| on the matrix of

parameters and learn the
linear mapping function.

Holzinger Group 75

Use the learnt mapping function to
construct new features and train
classifiers onto the new
representations.
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Conclusion
N\ O\

Inductive Transductive supervise
Tfansfer Learning Transfer Learning Transfer LearniRg
| — S—
< Instance-transfer D \ S \

— —
Ure-representati \ \ N —

transfer

\ ]

\ IR

—

—

Model-transfer

Relational-knowledge- / N

How to avoid negative transfer need to be attracted more attention!
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Holzinger Group

Big Problem:
How to avoid
negative transfer?
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k you!
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Sample Questions @HCI-KDD

" What is Active Learning?

= Where are the advantages of AL?

= Describe a few scenarios for AL?

= How does the robot scientist by King et al (2004) work?
= What does “Probable Approximate Correct” mean?

= What is the basic assumption of PL?

= What is the core essence of the “programming by feedback”
approach?

* What could be huge disadvantages with the “human-in-the-
loop”?

= What is a utility function?

= Why is multi-task learning of extreme importance for future
research?

= When are humans better in TL ?
= Explain the 3 types of TL and the 4 TL approaches!
= What is the main idea of inductive TL?
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Recommended Book

G HCI-KDD =£-

Holzinger Group

PROBABLY
APPROXIMATELY
CORRECT

DAPADAPIPC 53589083

LESLIE VALIANT

Valiant, L. 2013. Probably Approximately
Correct: Nature's Algorithms for Learning and

Prospering in a Complex World, New York,
Basic Books.

http://people.seas.harvard.edu/~valiant/
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Solutions to the Quiz @ HCI-KDD -

= ad 1) the typical ML-tasks: right=class prediction supervised learning;
left=class discovery, unsupervised learning;

= ad 2) Bird flocking behaviour is a good example for evolutionary computing;
the simple rules of birds are: Separation - avoid crowding neighbors;
alignment - towards average heading of neighbors, and cohesion - steer
towards average position of neighbors;

= ad 3) Experiment by Wilson et al. (2015) participants were asked to
extrapolate from several functions, where the true underlying relationships
were draws from a Gaussian process with a rational quadratic kernel

= ad 4) MAB problem models an agent that simultaneously attempts to acquire
new knowledge (called "exploration") and optimize the decisions based on
existing knowledge (called "exploitation"). The agent attempts to balance the
competing tasks in order to maximize a value over time; this is very important
e.g. for clinical trials investigating the effects of different experimental
treatments whilst min. patient loss

= ad5) Ants are food foraging, algorithmically this can be used as probabilistic
method to find optimal paths through graphs

= ad 6) TSP appears as NP-hard problem in many domains, e.g. DNA, protein
folding, etc.

= ad 7) similarity is an important concept and similarity learning is a type of
supervised learning related to regression and classification — the goal is to
learn a similarity function from examples (very important in recommender
systems).
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