TU  science is to test crazy ideas — Engineering is to put these ideas into Business G HCI-KDD +%-

Andreas Holzinger
706.315 Selected Topics on Knowledge Discovery:
Interactive Machine Learning
2015W, SE, 2.0 h, 3.0 ECTS
Week 45 - 06.11.2015 10:00-11:30
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Reinforcement Learning (RL)

a.holzinger@hci-kdd.org
http://hci-kdd.org/lv-706-315-interactive-machine-learning

A

-\ i B " Ll
T | | Jf |
M (Maa'sia
m lll[ *1 |rﬁ
| I ! |
— ] Wy o
r | ., = i | il
" ‘ I i P L gy
) | T 1=
.y -
. el il . \

Holzinger Group 1 iML 03



TU ML needs a concerted effort fostering integrated research @HCI-KDD

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.ho]zinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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TU Standard Textbooks for RL

Grazm

Reinforcement
Learning

Sutton, R. S. & Barto, A. G. 1998.

Reinforcement learning: An
introduction, Cambridge, MIT
press

http://webdocs.cs.ualberta.ca/~su

tton/book/the-book.html
Second edition in preparation:

people.inf.elte.hu/lorincz/Files/RL

_2006/SuttonBook.pdf

Holzinger Group

ervé: MORGAN S&CLAYPOOL PUBLISHERS

Algorithms for
Reinforcement
Learning

Csaba Szepesviri

SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

Szepesvari, C. 2010.
Algorithms for reinforcement
learning. Synthesis lectures on
artificial intelligence and
machine learning, edited by
R.J. Brachman and T. G.
Dietterich, Morgan &
Claypool.
http://www.ualberta.ca/~szep
esva/RLBook.html

3

MULTI-AGENT
MACHINE LEARNING

A, ?"fi_—_i""I'-i wroement Approach

WILEY

Schwartz, H. M.
(2014). Multi-agent
machine learning: A
reinforcement
approach: John
Wiley & Sons.
http://www.sce.carl
eton.ca/faculty/sch
wartz/index.html

iML 03



TU Red thread through this lecture GHCI-KDD -

" 1) What is RL? Why is it interesting?

= 2) Decision Making under uncertainty
= 3) Roots of RL

= 4) Cognitive Science of RL

" 5) The Anatomy of an RL agent

" 6) Example: Multi-Armed Bandits

= 7) RL-Applications in health

= 8) Future Outlook

Holzinger Group 4 iML 03



TU Quiz (Supervised S, Unsupervised U, Reinforcement R) GHa-kpD:A

1) Given x,y; find f thatmapanewx — y
(S/U/R?)

2) Finding similar points in high-dim X (S/U/R)?

3) Learning from interaction to achieve a goal
(S/U/R)?

4) Human expert provides examples (S/U/R)?

5) Automatic learning by interaction with
environment (S/U/R)?

6) The agent gets a scalar reward from the
environment (S/U/R)?

Solution on top of page 7

Holzinger Group 5 iML 03



TU G HCI-KDD =%

Grazm

1) What is RL?
Why is it
interesting?

“I want to understand intelligence and how | ‘ i
<’ COMPUTER
orn | SCIENCE

minds work. My tools are computer science,
statistics, mathematics, and plenty of thinking” W : ﬁ Googi D

Nando de Freitas, Univ. Oxford and Google.”

iML 03
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TU Remember: Three main types of Machine Learning @ HCI-KDD o

. . . pe . 1-S; 2-U; 3-R; 4-S; 5-R; 6-R
= |) Supervised learning (classification)

"y = fx)
" Given x, y pairs; find a f that map a new x to a proper y
= Regression, logistic regression, classification
= Expert provides examples e.g. classification of clinical images
= Disadvantage: Supervision can be expensive
= |I) Unsupervised learning (clustering)
= f(x)
= Given x (features only), find f that gives you a description of x
" Find similar points in high-dim X
= E.g. clustering of medical images based on their content
= Disadvantage: Not necessarily task relevant
= |ll) Reinforcement learning
"y = fx)
= more general than supervised/unsupervised learning
= |earn from interaction to achieve a goal
= Learning by direct interaction with environment (automatic ML)
= Disadvantage: broad difficult approach, problem with high-dim data

Holzinger Group 7 iML 03



TU Why is RL interesting? @HCI-KDD 2%

Grazm

= Reinforcement Learning is the oldest approach,
with the longest history, thus can provide insight
into understanding human learning [1]

= RLis the “Al problem in the microcosm” [2]

" Future opportunities are in Multi-Agent RL
(MARL), Multi-Task Learning (MTL),
Generalization and Transfer-Learning [3], [4].

[1] Turing, A. M. 1950. Computing machinery and intelligence. Mind, 59, (236), 433-460.

[2] Littman, M. L. 2015. Reinforcement learning improves behaviour from evaluative
feedback. Nature, 521, (7553), 445-451, doi:10.1038/nature14540.

[3] Taylor, M. E. & Stone, P. 2009. Transfer learning for reinforcement learning domains:
A survey. The Journal of Machine Learning Research, 10, 1633-1685.

[4] Pan, S. J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, d0i:10.1109/tkde.2009.191.
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" General Purpose Learning Machines
" Learning and General
= AGI = Artificial General Intelligence

= Remember the General Problem Solver (GPS) by
Newell & Shaw

Brooks, R., Hassabis, D., Bray, D. & Shashua, A. 2012. Turing centenary: Is the brain a good model
for machine intelligence? Nature, 482, (7386), 462-463, doi:10.1038/482462a.

Holzinger Group 9 iML 03



TU RL is key for ML according to Demis Hassabis - Deepmind GHe1-kDD %

Grazm

THE

| ROYAL
Reinforcement Learning Framework SOC l ETY

OBSERVATIONS ‘rnnsformmg our future

- - -i
walsockety orglevents 4 Q Fh_,
7 ¢ '
Agent Environment ! 4
7 “ _
. P I

S, B

Watch more videos at:
royalsociety.org/videos ROYAL

SOCIETY

4 P Pl o) 1:32:00/1:56:50 B &« O L1

Future directions of machine learning: Part 2
The Royal Society

ROYAL
SOCIETY 16,807 10,704 views
+ Add to ¥ Share ese NMore I‘ ” ,I ’

https://youtu.be/XAbLn66iHcQ?t=1h34m
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@ HCI-KDD -
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TU_ Deep Learning for Learning Representations=Features @ HCI-KDD %

Grazm

" “Deep Learning” is a buzzword for rebranding
neural networks, in particular deep belief
networks made of multiple layers

http://www.forbes.com/sites/kevinmurnane/2016/04/01/what-is-deep-
learning-and-how-is-it-useful /#6271f90510f0

http://www.forbes.com/sites/kevinmurnane/2016/04/01/thirteen-companies-
that-use-deep-learning-to-produce-actionable-results/#7e42ab467967

http://www.deeplearningbook.org/
Holzinger Group 12 iML 03



TU Deep Representations G@HCI-KDD o

Grazm

» A deep representation is a composition of many functions

X—s>h——>...—h,—sy——>|

| |

Wi Wp
» Its gradient can be backpropagated by the chain rule
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@ HCI-KDD -
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TU A very recent approach is combining RL with DL G@HCI-KDD o

Grazm

= Combination of deep neural networks with reinforcement
learning = Deep Reinforcement Learning

= Weakness of classical RL is that it is not good with high-
dimensional sensory inputs

= Advantage of DRL: Learn to act from high-dimensional sensory
inputs '

Volodymyr Mnih et al (2015), https://sites.google.com/a/deepmind.com/dqgn/
https://www.youtube.com/watch?v=igXKQf2BOSE
Holzinger Group 15 iML 03



TU Reinforcement Learning in a nutshell G HCI-KDD o

" RL = general framework for decision making
= An agent is able to act

" Each action influences the agents future
state

" The success of learning is measured by a
scalar

m Goal: Select actions to maximize future
rewards

Holzinger Group 16 iML 03



TU Deep Learning in a nutshell @HCI-KDD o5

" DL is a general framework for
representation learning

" 1) Given an objective

" ?2) Learn representation required to
achieve 1)

" Directly from raw input signals
= Using minimal domain knowledge

Holzinger Group 17 iML 03



-!;,E!_ DRL = RL+DL ﬁHﬂ-ﬁﬂDg{e

= Single agent shall solve any human-level task

R
D
R

_ defines the objective
_ provides the mechanism

.+ DL — General intelligence

this is the grand goal of Google Deepmind:
Solve intelligence ... then solve everything else!

Holzinger Group 18 iML 03



TU Application Examples of DRL by Google Deepmind GHCI-KDD 2%

Grazm

" Playing games: Atari [1], Go [2], ...
= Exploring worlds: Labyrinths, 3D-worlds, ...
= Controlling physical systems: manipulate, ...

" |nteracting with humans: recommender, ...

[1] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. & Riedmiller, M. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[2] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T. & Hassabis, D. 2016. Mastering the game of Go with deep neural networks and tree search.
Nature, 529, (7587), 484-489, doi:10.1038/nature16961.

Holzinger Group 19 iML 03



TU Learning to play an Atari Game @ HCI-KDD o

Grazm

nature

g Viy

f x
observation 4 action

% il L

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D.
2015. Human-level control through deep reinforcement learning. Nature, 518, (7540), 529-533, d0i:10.1038/nature14236

Holzinger Group 20 iML 03



TU Example Video Atari Game @HCI-

Grazm

= Youlllli reinforcement learning space invaders

Deep Q network playing Space Invaders

L eldubro

= 1 1,855

+ Add to A Share eee More ]‘ 1 ,i 0
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TU Goal: Select actions to maximize total future reward G HCI-KDD o

Grazm

o . AT LS
p "’ v ,_4\ ;r" ‘.f/ ‘ N | m“\
e P . =
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observation /R W AN * A

Image credit to David Silver, UCL
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TU Standard RL-Agent Model goes back to Cybernetics 1950 @HCI-KDD =

Grazm

initialize V' (s) arbitrarily
loop until policy good enough
loop for sc &
loop for ac A
(s a):=R(s,a) +7Y ges T8 a, &)V
Vis) i=max, () (= a)
end loop
end loop

Kaelbling, L. P, Littman, M. L. & Moore, A. W. 1996. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237-285.

Holzinger Group 24 iML 03



TU RL-Agent seeks to maximize rewards G HCI-KDD o1

Grazm

for t— 1. ndo Intelligent behavior arises from the actions of an
The agent perceives state s;

The agent performs action 2. | INAiVidual seeking to maximize its received reward

The environment evolves to 5.,

The agent receives reward r; S|gnals |n a complex and Changing World

end for

Agent
> Representation
] Learning algorithm
P‘*‘T‘;;“'{l Action selection policy
State I Action
{,.{f} T,[f+]_] ”{”
: 1 |
I
I E . Pe——
. nvironment
I
0 . (t41)

£

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press
Holzinger Group 25 iML 03



TU RL - Types of Feedback (crucial!) @ HCI-KDD +%

Grazm

= Supervised:
Learner told best a

= Exhaustive:
Learner shown every
possible x

" One-shot: Current
x independent of
past a

Littman, M. L. 2015. Reinforcement learning
improves behaviour from evaluative feedback.
Nature, 521, (7553), 445-451.

Holzinger Group 26 iML 03




TU Problem Formulation in a MDP G HCI-KDD +%

Grazm

= Markov decision processes specify setting and tasks

" Planning methods use knowledge of P and R to
compute a good policy i

= Markov decision process model captures both

sequential feedback and the more specific one-shot
feedback (when P(s’|s, a) is independent of both

s and a

A’ls. a)

Q%(s, a) = R(s, a) + yLP(s'ls, a) max_ Q*(s’, &)

Littman, M. L. 2015. Reinforcement learning improves behaviour from evaluative feedback.

Nature, 521, (7553), 445-451. _
Holzinger Group 27 iML 03



TU Agent observes environmental state at each step t @ HCI-KDD %
= 1) Overserves
- 2) Executes Observation Oy = ({7
= 3) Receives Reward wwe A A ) sete
e T EANAL Sy A
- i - Sy ¢
Executes action Ag: e
" 0, =sa; =Sse; 3
= Agent state =
environment state =
information state ==
= Markov decision

process (MDP)

Image credit to David Silver, UCL

Holzinger Group 28 iML 03



TU Environmental State is the current representation @ HCI-KDD %

Grazm

= j.e. whatever data the
environment uses to pick SO
the next — (X
observation/reward

" The environment state is
not usually visible to the
agent

= Even if S is visible, it may
contain irrelevant
information

= AState S; is Markov iff:

[P)[St+1‘5t] — P[St+1‘51' ---:St]

Holzinger Group 29 iML 03
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TU Agent State is the agents internal representation @ HCI-KDD
" j.e. whatever
information the agent sgent e
uses to pick the next e W
action = [ Y~
= it is the information =
used by reinforcement ovard | 5,
learning algorithms
" |t can be any function
of history:
" S=f(H)
H[- — Ol. R]_. A]_. Ar...]_. Ot. Rr

Holzinger Group
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TU Components of RL Agents and Policy of Agents @ HCI-KDD oL

= RL agent components:
= Policy: agent's behaviour function
= Value function: how good is each state and/or action
" Model: agent's representation of the environment

= Policy as the agent's behaviour
" js a map from state to action, e.g.
= Deterministic policy: a = (s)
= Stochastic policy: (ajs ) = P[At=ajSt=s
= Value function is prediction of future reward:

V?r(s) = Kr [Rt+1 4+ A/Rt+2 23 ’7’2Rt—|—3 T .. ‘ Sf = S]

Holzinger Group 31 iML 03



TU What if the environment is only partially observable?  @Heci-kpp %

= Partial observability: when agent only indirectly
observes environment (robot which is not aware
of its current location; good example: Poker play:
only public cards are observable for the agent):

" Formally this is a partially observable Markov
decision process (POMDP):
" Agent must construct its own state representation S,
for example:

m Complete history: $7 = H,
m Beliefs of environment state: S? = (P[S¢ = s'],..., P[S¢ = s"])
m Recurrent neural network: S¢ = o(57_ W + O, W,,)

Holzinger Group 32 iML 03



TU RL is multi-disciplinary and a bridge within ML G HCI-KDD o

Decision Making

Economics

Reinforcement

Learning

Cognitive Science
92UdI12§ 493ndwo)

Mathematics

|

U
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TU G HCI-KDD =%

GGGGG

2) Decision Making
under uncertainty

Holzinger Group



TU Decision Making is central in Health Informatics @ HCI-KDD o

Grazm

Source: Cisco (2008). f '

LISCO I

Holzinger Group 35



TU_ Reasoning Foundations of Medical Diagnosis

G HCI-KD

3 July 1859, Volume 130, Number 3366

Reasoning Foundations of

Medical Diagnosis

Symbolic logic, probability, and value theory

aid our understanding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to ana-
Iyze the complicated reasoning processes
inherent in medical diagnosis. The im-
portance of this problem has received
recent emphasis by the increasing inter-
est in the use of electronic computers as
an aid to medical diagnostic processes

fitted into a definite disease category, or
that it may be one of several possible dis-
eases, or else that its exact nature cannot
be determined.” 'This, obviously, is a
greatly simplified explanation of the
process of diagnosis, for the physician
might also comment that after seeing a

SCIENCE

ance are the ones who do remember and
consider the most possibilities.”

Computers are especially suited to
help the physician collect and process
clinical information and remind him of
diagnoses which he may have over-
looked. In many cases computers may be
as simple as a set of hand-sorted cards,
whereas in other cases the use of a large-
scale digital electronic computer may be
indicated. There are other ways in which
computers may serve the physician, and
some of these are suggested in this paper.
For example, mecdical students might
find the computer an important aid in
learning the methods of differential di-
agnosis. But to use the computer thus
we must understand how the physician
makes a medical diagnosis. This, then,
brings us to the subject of our investiga-
tion: the reasoning foundations of med-
ical diagnosis and treatment.

Medical diagnosis involves processes
that can be systematically analyzed, as
well as those characterized as “‘intan-
gible.” For instance, the reasoning foun-
dations of medical diagnostic procedures



TU_Clinical Medicine is Decision Making! @ HCI-KDD o

Grazm

EVIDENCE PATIENT/
-Patient data CLINICIAN
-Basic, clinical, PREFERENCES
and epidemiological -Cultural beliefs
research -Person_al values
-Randomized -Educqtlon
controlled trials -Experience
-Systematic

CLINICAL
DECISION

reviews

CONSTRAINTS
-Formal policies and laws
-Community standards
-Time
-Financial
Hersh, W. (2010) Information
Retrieval: A Health and Biomedical

Perspective. New York, Springer.

Holzinger Group 37 iML 03



TU Human Decision Making QHCI-KDD

UNCERTAINTY
Cues
—
» DIAGNOSIS CHOICE
Working A
—_—’ . “"_’ . H1 1 »
Selectolve >Percept|on >+ H, Memory 4 Action » Outcome >
= Attention > A e » A,
_______
— y =
\
Cz-; A i®Possible |
H Long-Term | outcomes !
> H Memory \AJA '?4 | ® Likelihood and:
H A ! consequences
Hy"™ (H) Hypothesis /Q_Dq  ofoutcomes ,
(A) Action
Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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TU History of DSS is a history of artificial intelligence @ HCI-KDD o

Grazm

Stanford Heuristic Programming Project February 1978
Memo HPP-T78-I

Computer Science Department
Report No, STAN-CS-78-649

E. Feigenbaum, J. Lederberg, B. Buchanan, E. Shortliffe DENDRAL AND META-DENDRAL
THEIR APPLICATIONS D IMENS [ON

by
Bruce G. Buchanan and Edward A. Feigenbaum

Rheingold, H. (1985) Tools for
thought: the history and future
of mind-expanding technology.
New York, Simon & Schuster.

COMPUTER SCIENCE DEPARTMENT
Schaol of Humanities and Sciences
STANFORD UNIVERSITY

Buchanan, B. G. & Feigenbaum, E. A. (1978) DENDRAL and META-DENDRAL: their applications domain.
Artificial Intelligence, 11, 1978, 5-24.

iML 03
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TU
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@ HCI-KDD -
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3) Roots of RL



TU Pre-Historical Issues of RL

Ivan P. Pavlov (1849-1936) Edward L. Thorndike Burrhus F. Skinner
1904 Nobel Prize (1874-1949) (1904-1990)
Physiology/Medicine 1911 Law of Effect 1938 Operant Conditioning
Operant Conditioning
Punishment Reinforcement | |
(decreasing behavior) {increasing behavior)
Reinforcement Punishment
Increase Behavior Decrease Behavior
add methi adding somethin
Positive i"‘:: MR oo 2 | |
{adding] decrease behavior increase behavior | I I |
Positive Negative Positive Negative
Add appetative stimulus Add noxious stimuli Remove appetative stimulus
Negative subtracti :ll something | su W'“I: somethin Oléﬁmﬂ:?mi?;:::}hlzﬂ;asﬂm Iﬂlﬂi‘;’? ?mgﬂ-ﬂf:rﬁ; Telling mﬁiﬁaﬂzg eﬂﬁ;lm{fr;fmﬂ;
o
(subtracting) | decrease behavior increase behavior | |
Escape Active Avoidance
Remove noxious stimuli Behavior avoids noxious
following correct behavior stimulus
Turning off an alarm clock by pressing Studying to avoid getting a bad grade
the snooze button.

Holzinger Group 42 iML 03



TU_ Classical Experiment with Pavlov’s Dog

Grazm

Ui

» Classical (human and) animal conditioning: “the magnitude

Holzinger Group

and timing of the conditioned response changes as a result of
the contingency between the conditioned stimulus and the

unconditioned stimulus” [Pavlov, 1927].

43 iML 03



TU Back to the rats ... roots © GHCI-KDD o2

Grazm

1\

\‘f

Q ! (‘)&

\ 7
/ 2

= What if agent state = last 3 items in sequence?
= What if agent state = counts for lights, bells and levers?
= What if agent state = complete sequence?
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TU Historical Issues of RL in Computer Science

Grazm

@ HCI-KDD -

Turing, A. M. 1950.
Computing
machinery and

intelligence. Mind,
59, (236), 433-460.

Excellent Review Paper:

Richard Bellman
1961. Adaptive
control processes:
a guided tour.
Princeton.

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

[Choose action from Q]

Watkins, C. J. &
Dayan, P. 1992.
Q-learning.
Machine
learning, 8, (3-
4), 279-292.

Sutton, R.S. &
Barto, A. G. 1998.
Reinforcement
learning: An
introduction,
Cambridge, MIT

Back on its feet

Littman, M. L.
2015.
Reinforcement
learning improves
behaviour from
evaluative
feedback. Nature,
521, (7553), 445-
451.

Kaelbling, L. P., Littman, M. L. & Moore, A. W. 1996. Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237-285

Holzinger Group
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TU This is still state-of-the-art in 2015 G HCI-KDD +%

Grazm
Learning Rate Learning Rate
= Fixed ‘ ‘ ® Fixed
Individual \ 72% ’ \ 78% ' Individual
Paradigm Paradigm
® Pavlovian | Pavlovian
B Instrumental B Instrumental
Reward Modality Reward Modality
B Cognitive B Cognitive
B Liquid ® Liquid
= Monetary B Monetary
m Social m Social
m Other B Other

Prediction Error Timing

B Qutcome PE
B TD Error

Chase, H. W., Kumar, P., Eickhoff, S. B. & Dombrovski, A. Y. 2015. Reinforcement learning models
and their neural correlates: An activation likelihood estimation meta-analysis. Cognitive,
Affective & Behavioral Neuroscience, 15, (2), 435-459, doi:10.3758/s13415-015-0338-7.

Prediction Error Timing

B Qutcome PE

B TD Error
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TU 2015 - the year of reinforcement learning © @HCI-KDD %

Grazm

Deep Q-networks (Q-Learning is a model-free RL
approach) have successfully played Atari 2600 games at
expert human levels

Convolution Convolution Fully connected
- - v

n
=4
=3
8
5
=
i
0
]
(%3

SCORE<1>» HI-SCORE SCORE<2>»

Be7a

a 0 3/ m
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- 8 8 @9
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8 B & F 8 B B 8 8 B BB RS

DHOHD B DSOS :
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aoee s oo 0 e Swm Q

0 | 0O v /3

1 MmN _ /)
e ) 8 ] - e

S s T CREDIT 64 3 .

nGac wl=] ]
+ & &
CLEEEEEEEE ]

namre

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D.
2015. Human-level control through deep reinforcement learning. Nature, 518, (7540), 529-533, d0i:10.1038/nature14236
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TU Typical Reinforcement Learning Applications: aML G HCI-KDD o

Digital camera
‘o vy nithesis
Vinlc# rcognition
I pranetiony
Sigeabie fkeo
Ermbedded TP
b WI-Fi
Wt Prehemive haind
Lifg battery Run Linus 05
15 Degier of Fresdom 11 incives

httpimages.computerhisto
ry.orgtimelinetimeline_ai.r 1985
obotics_1939 elektro.jpg

http://cyberneticzoo.com/robot-time-line/
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TU Autonomous Robots

Grazm

Holzinger Group

http://www.neurotechnology.com/res/Robot2.jpg
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TU Is your home a complex domain? GHCI-KDD 5%

Grazm

https://royalsociety.org/events/2015/05/breakthrough-science-technologies-machine-learning

Kober, J., Bagnell, J. A. & Peters, J. 2013. Reinforcement Learning in Robotics: A Survey.

The International Journal of Robotics Research.
Holzinger Group 50 iML 03



TU_ This approach shall work here as well? Q@ HCI-KDD o

Grazm

: i : o EAEE o sen Mews Sport  Weather Shop  Earth  Travel M

Technology

Robotic surgery linked to 144 deaths in the

Nogrady, B. 2015. Q&A: Declan Murphy. Nature, 528, (7582), S132-5S133, doi:10.1038/5285132a.

Holzinger Group 51 iML 03



TU Timeline @HCI-KDD o

" 1943 McCulloch & Pitts — artificial neuron
" 1949 Hebb — learning as synapse modification
= 1957 Rosenblatt — Perceptron (SVM)

" 1969 Minsky & Papert — limits of perceptrons
(begin of Al winter)

= 1974 Backpropagation — renaissance of NN
= 1982 Hopfield Network (recurrent NN)
= 1985 Boltzmann machine (stochastic RNN)

= 2010 Backpropagation
(GPU’s — deep learning is hype)
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TU G HCI-KDD =%
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4) Cognitive Science
of RL
Human Information
Processing

Holzinger Group



TU How does our mind get so much out of it ... G HCI-

Grazm

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical
nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.
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TU  Learning words for objects — concepts from examples @HCI-

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric
Bayesian model. Journal of Machine Learning Research, 27, 195-207.
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TU How do we understand our world ... G HCI-KDD oL

Grazm

A ) + s % B I~ P(d\P(h)

) : o P(hld) = , — o< P(d|h)P(h)
o | S é R R © )= s p@inEm) - )
v & I 2e B2

- ; o7 I:l . A

p | o = '&' 4

" ,‘ % @/' A g Abstract tree: -0 = —*{8
- . Q principles

i

¥ : '
3: 802z
L e
:_ <
2 i » <
Y
B Structure
Y
:? == Data E i
A : <
T3z A RL
o | ol § _*-:“'l’ Features

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind:

Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285.
56
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TU One of the unsolved problems in human concept learning G@Ha-kpD 2%

Grazm

= which is highly relevant for ML research,
concerns the factors that determine the
subjective difficulty of concepts:

" Why are some concepts psychologically
extremely simple and easy to learn,

= while others seem to be extremely difficult,
complex, or even incoherent?

" These questions have been studied since the
1960s but are still unanswered ...

Feldman, J. 2000. Minimization of Boolean complexity in human concept learning. Nature, 407,
(6804), 630-633, doi:10.1038/35036586.
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TU A few certainties G HCI-KDD 4

©
Wo Wi é h,

" Cognition as probabilistic inference

= Visual perception, language acquisition, motor learning,
associative learning, memory, attention, categorization,
reasoning, causal inference, decision making,
theory of mind

= Learning concepts from examples

" Learning and applying intuitive theories
(balancing complexity vs. fit)
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TU Modeling basic cognitive capacities as intuitive Bayes G@HCI-KDD o

Grazm

= Similarity
= Representativeness and evidential support
= Causal judgement

= Coincidences and causal discovery

= Diagnostic inference

. . L
Predicting the future ¢ l oprncples | )
e
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. E Absiract domain principles
2006. '.I'heory-b-ased Baye5|an.models of | l PStructurs | Principles)
inductive learning and reasoning. Trends in
cognitive sciences, 10, (7), 309-318. Structured probabilistic model

l P(Data | Structure)

Observable data
Holzinger Group 59 iML 03



TU Drawn by Human or Machine Learning Algorithm?

Grazm
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Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. 2015. Human-level concept learning through
probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.

Holzinger Group
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TU Human-Level concept learning — probabilistic induction @Ha-kpD:

Grazm

A Bayesian program learning (BPL) framework, capable of learning a
large class of visual concepts from just a single example and
generalizing in ways that are mostly indistinguishable from people

A B
i) primitives D ’\[J J‘ T _ O ('?,
procedure GENERATETYPE
/k A /\ K — P(k) > Sample number of parts
,Q fori=1...xdo

i) sub-parts - - n; +— P(n;|k) > Sample number of sub-parts

) 4 D :') L i - Jv L forj=1..n; do
\ / J \ / l vL L sij + P(s;;]s;j—1)) > Sample sub-part sequence

: end for
iii) parts 3 ’b L Q Ri + P(R;|S:1,...,5i-1) > Sample relation
L end for
\ / & o +— {r. R. S}

return @GENERATE TOKEN(}) > Return program

iv) object ;
template relation: relation: @ relation:
attached along attached along attached at start

type level 3'-)\) — fb

token level
procedure GENERATE TOKEN(1))
fori=1..x do
—

8™ P8™)8)) > Add motor variance
v) exemplars 311 b * m { 1 e ek
) P 3)“‘ FJ :b ¥ Li:m] — P(LE H]|Ri-Tliru]”."iﬂ.[:ul}}
H b ¢ L] -
l ‘|’ > Sample part's start location
l l \'r J4 end for _

3-L Alm)  p(Alm)) > Sample affine transform
SL 3]' n_, 10m) ¢ p(rlm)|Ttm) A(m) > Sample image

return /'

Vi) Faw data T (L™, 8™y > Compose a part’s trajectory

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. 2015. Human-level concept
learning through probabilistic program induction. Science, 350, (6266), 1332-1338,
Holzinger Group doi:10.1126/science.aab3050. 61 iML 03
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How does our mind
get so much out of
so little?

Holzinger Group



TU Human Information Processing Model (A&S) Q@ HCI-KDD o

ENVIRONMENTAL INPUT

[visuac] ]Aﬁmmnv |--eeeeeee e HAPTIC]
SENSORY REGISTERS

=
| .CONTROL PROCESSES |
_ | STS i REHEARSAL, : | RESF';ONSE
Atkinson, R. C. & Shiffrin, _ TEMPORARY | CDD:EIG.N .' I ‘  OUTPUT
R. M. (1971) The control A | RETRIEVAL : - '
processes of short-term N STRATEGIES I
memory (Technical Report L -

173, April 19, 1971).
Stanford, Institute for
Mathematical Studies in
the Social Sciences,
Stanford University.

LTS
PERMANENT MEMORY STORE
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TU General Model of Human Information Processing @HCI-KDD o

Grazm

Physics Perception Cognition Motorics

l |
|
l : | I : :
I | | b |
l | | S— |
| | i Long-Term | : :
{ | , Memory | : :
! | I | |
| | ov e |
1 | « [ Working : |
Selettipn | 4 Memory : |
&y | & : |
\ A 4 Cognitive A 4 \
'__)__;. Sensory —}—}- LR Response Response
[ % Pr::xsc_?ggng | rerception » Selection |  ”| Execusion |  ”
— Ea—
System
Environment
(Feedback) <

Wickens, C., Lee, J., Liu, Y. & Gordon-Becker, S. (2004) Introduction to Human Factors Engineering: Second
Edition. Upper Saddle River (NJ), Prentice-Hall.

Holzinger Group 64 iML 03



TU Alternative Model: Baddeley - Central Executive @ HCI-KDD

Grazm

» Switching
» Updating
» Inhibition
» Divided Attention

CENTRAL EXECUTIVE

Phonological Store Multimodal Store Visual Cache
Articulatory Rehearsal Rehearsal Inner Scribe
Semantic @ @ @
Retrieval
PHONOLOGICAL LOOP EPISODIC BUFFER VISUO-SPATIAL
SKETCHPAD
Semantic Verbal Episodic Memory Semantic Visual

Memory @ Memory

Quinette, P, Guillery, B., Desgranges, B., de la Sayette, V., Viader, F. & Eustache, F. (2003)
Working memory and executive functions in transient global amnesia. Brain, 126, 9, 1917-1934.
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TU Neural Basis for the

Grazm

“Central Executive System”

D'Esposito, M., Detre, J.
A., Alsop, D. C,, Shin, R.
K., Atlas, S. & Grossman,
M. (1995) The neural
basis of the central
executive system of
working memory. Nature,
378, 6554, 279-281.

Holzinger Group
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TU Slide 7-14 Central Executive — Selected Attention G HCI-KDD -

Grazm

CENTRAL EXECUTIVE
(directs attention and

controls voluntary processing)
ATTENTION CAN BE DIRECTED

QUTWARD, TO STIMULI, OR
INWARD, TO LONG-TERM

MEMORIES
CONTROLLED ACTIONS
*NG “FILTER" IS NEEDED: _/m M
PHYSICALLY UNCHANGED Do rocus
STIMULI DO NOT ELICIT \\\ b OF AUTOMATIC ACTIONS

ATTENTION (b,c), WITH THE
POSSIBLE EXCEPTION OF
SIGNIFICANT SIGNALS.
UNCHANGED STIMULI CAN
ENTER THE FOCUS OF
ATTENTION THROUGH
VOLUNTARY MEANS (a).

ATTENTION

LONG-TERM STORAGE OF SCME
CODED FEATURES QCCURS
AUTOMATICALLY (b, ). ATTENTIVE
PROCESSING (a, d) RESULTS IN MORE
ELABORATE ENCODING (CRITICAL FOR
VOLUNTARY RETRIEVAL, ERISODIC
STORAGE).

ACTIVATED MEMORY
(SHORT-TERM STORE)

LONG-
TERM STORE

VOLUNTARILY ATTENDED

DISHABITUATED

HABITUATED
HABITUATED

*

INITIAL PHASE OF SENSORY STORAGE LASTS ONLY SEVERAL
BRIEF HUNDRED MILLISECONDS (LEFT). SECOND PHASE IS ONE TYPE OF
UNCHANGED SENSORY ACTIVATED MEMORY (ABOVE). BOTH SENSORY AND SEMANTIC
STIMULI STORE ACTIVATION MAY LAST SOME SECONDS.
NOVEL @

STIMULUS >
POST-STIMULWS TIME

Cowan, N. (1988) Evolving conceptions of memory storage, selective attention, and their mutual
constraints within the human information-processing system. Psychological Bulletin, 104, 2, 163.
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TU Selective Attention Test G HCI-

Grazm

‘fuum gorillas in our midst

Selective Attention Test

from Simons & Chabris (1999)

Selective Attention Test

from Simons &f Chabris (1999]

selective attention test

Daniel Simans
ﬁl St 14,459,912 view:

Y r "7

Note: The Test does NOT properly work if you know it
in advance or if you do not concentrate on counting

Simons, D. J. & Chabris, C. F. 1999. Gorillas in our midst: sustained inattentional blindness for
dynamic events. Perception, 28, (9), 1059-1074.
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Human Attention is central for decision making G HCI-KDD

Graz-

Perceptual Encoding Central Processing Responding
L Attention ------------
Resources [
y ~ : 4
— . : espons Response
— '( Perception <Select|on )'(Executlon =
-p | Register :
=—p | -Hearing
— | -Vision Thought
— | - Olfa(?tlon Decision Making
5 | -Haptic ;
Working
Memory

=

Long-Term Memory

Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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5) The Anatomy of
an RL Agent
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TU Why is this relevant for health informatics? @ HCI-KDD

Grazm

= Decision-making
under uncertainty

St+1

" Limited knowledge g,
of the domain ' fea
environment

critic

| - |
. environment ‘(—

= Unknown outcome —
unknown reward

= Partial or unreliable
access to “databases

of interaction”

Russell, S. J. & Norvig, P. 2009. Artificial intelligence: a modern approach (3rd edition), Prentice
Hall, Chapter 16, 17: Making Simple Decisions and Making Complex Decisions
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TU Decision Making under uncertainty @ HCI-KDD o

Grazm

<87 a, 8/7 7;>1
<37 a, s 7T>2

critic <S’ a, 3/, 7“>n

environment

<position, speed> <carpet, chair> » <new position, new speed>, advancement
Learning Curve mdmdRARAR

— i i Control
Y Y ] Policy

) |||

S 2

o

£

O

o Value

o Function

Experience
Image credit to Allessandro Lazaric
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TU Taxonomy of RL agents 1/2: 1) Components @ HCI-KDD o

" Policy: agent's behaviour function
e.g. stochastic policy =(als) = P[A; = a|S; = 5]

= Value function: how good is each state and/or action
e.g. Va(s) =Ex [Ret1 +YRe+2 + 7V’ Reas + .. | St = 5]

" Model: agent's representation of the environment
P predicts the next state; R the next reward

P:SI —_— ]P)[Sf-I-]. — SI ‘ St — .‘5j At — 3]
R? — ]E[Rt—[-l ‘ St = S, At — 3]
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TU Taxonomy of agents 2/2 2) Categorization

@ HCI-KDD -

= 1) Value-Based
(no policy, only value function)

= 2) Policy-Based

(no value function, only policy)
= 3) Actor-Critic

(both)

= 4) Model free
(and/or) — but no model

= 5) Model-based
(and/or — and model)

Holzinger Group 74
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TU Maze Example: Policy @ HCI-KDD o1

Grazm

Start |—»

EzsEsh
li=
= i
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Maze Example: Value Function @ HCI-KDD o2

Graz-

Start

B

Goal

Holzinger Group 76 iML 03



TU Maze Example: Model G HCI-KDD o

Grazm

Start

m Grid layout represents transition model P2,

m Numbers represent immediate reward R from each state s
(same for all a)
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TU_ Principle of a RL algorithm is simple GHCI-KDD o

Time steps t,, t,, ..., t,
= Observe the state x,

= Take an action a, (problem of exploration and exploitation)

= Observe next state and earn reward x;,1,7,

= Update the policy and the value function m;, Q,
Q(ze,at) = Q(zt,ar) + ary + 7 max Q(zr41,a) — Q(x¢, ar))

w(x) = argmax Q(z, a)

(L
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TU Example RL Algorithms G@HCI-KDD o

* Temporal difference learning (1988)
= Q-learning (1998)

= BayesRL (2002)

= RMAX (2002)

= CBPI (2002)

= PEGASUS (2002)

= [east-Squares Policy Iteration (2003)
= Fitted Q-lteration (2005)

= GTD (2009)

= UCRL (2010)

= REPS (2010)

= DQN (2014)
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@ HCI-KDD -

Holzinger Group

6) Example:
Multi-Armed
Bandits (MAB)



TU, Principle of the Multi-Armed Bandits problem (1/2) @HCI-KDD 24

* There are n slot-machines (“einarmige Banditen”)
* Each machineireturnsarewardy = P(y; 0;)
" Challenge: The machine parameter 0; is unknown

= Which arm of a -slot machine should a gambler pull to
maximize his cumulative reward over a sequence of
trials? (stochastic setting or adversarial setting)

Image credit and more information: http://research.microsoft.com/en-us/projects/bandits
Holzinger Group 81 iML 03



TU

Grazm

Principle of the Multi-Armed Bandits problem (2/2) G HCI-KDD o

Let a; € {1, ...,n} be the choice of a machine at time t
Let y; € R be the outcome with a mean of (y,;)
Now, the given policy maps all history to a new choice:

m. [(”11 Y1), (a2,92), ..., (az1, !}r-l)] = Qt

The problem: Find a policy 7 that max(yr)

Now, two effects appear when choosing such machine:
= You collect more data about the machine (=knowledge)
= You collect reward

Exploration and Exploitation
= Exploration: Choose the next action a; to min{(H (b;))
= Exploitation: Choose the next action a; to max(y;)

models an agent that simultaneously attempts to acquire new
knowledge (called "exploration") and optimize his or her
decisions based on existing knowledge (called "exploitation").
The agent attempts to balance these competing tasks in order to

maximize total value over the period of time considered.

More information: http://research.microsoft.com/en-us/projects/bandits
Holzinger Group 82 iML 03



Grazl

MAP-Principle: “Optimism in the face of uncertainty”

1.5

log(1/9) I
a; = max (ﬁ(a ) + 06 ) f

acA Tf (ﬂ-)

Reward
o
9
e

-0.5

@ HCI-KDD o3

1 (100) 2(10)
a; = max (rew;(a) + uncert(a))

Exploitation

Exploration

the higher the (estimated) the higher the (theoretical)

reward the higher the chance
to select the action

uncertainty the higher the
chance to select the action

Auer, P., Cesa-Bianchi, N. & Fischer, P. 2002. Finite-time analysis of the multiarmed band
problem. Machine learning, 47, (2-3), 235-256.

Holzinger Group
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TU Knowledge Representation in MAB G HCI-KDD -4

= Knowledge can be represented in two ways:

= 1)asfull history  h; = [(a1,11), (a2, v2), ..., (@r1, Y1)
or

= 2)as belief b,(0) = P(0|h)

where 0@ are the unknown parameters of all machines

The process can be modelled as belief MDP:

232328

1 if b’ = by
P(V|y, a,b) = bavl " P(yla,b) = [, b(8a) P(y]6a)
0 otherwise !
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TU, The optimal policies can be modelled as belief MDP @ HCI-KDD o4

Grazm

1 ifb =bls,s,¢ ,
P(b'|s', s,a,b) = 15550 ,  P(s'|s,a,b) = [,b(8) P(s'|s,a,0)

0 otherwise

V (b, s) = max [E(T“H: a,b)+> ., P(s'|a,s,b) V(¢ b’)}

Poupart, P., Vlassis, N., Hoey, J. & Regan, K. An analytic solution to discrete Bayesian
reinforcement learning. Proceedings of the 23rd international conference on Machine learning,

2006. ACM, 697-704.
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TU Applications of MABs @HCI-KDD 24

= Clinical trials: potential treatments for a disease
to select from new patients or patient category
at each round, see:

W. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Bulletin of the American Mathematics Society, vol. 25, pp. 285-294, 1933.

= Games: Different moves at each round, e.g. GO

= Adaptive routing: finding alternative paths, also
finding alternative roads for driving from Ato B

= Advertisement placements: selection of an ad to
display at the Webpage out of a finite set which
can vary over time, for each new Web page
visitor
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7) Applications in
Health



TU Example for Health G HCI-KDD %

'fﬂl.l' - health robots

Basically, this roboticanimove people f l

romiaj bEd

to a wheelchair or a'wheelchair to a bed, and |’

!

Top 9 Medical Robots That Could Change Healthcare

L;‘ Robots movie

== 10,653
+ Adil to A Shar snm o t* ,I '

Published on Sep 22, 2015 https://www.youtube.com/watch?v=20sj7rRfzm4
Top 9@ Medical Robots That Could Change Healthcare
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TU G HCI-KDD =%

Input layer

Pattern layer

Summation layer

(73] Y2 [Te}

Output layer G* (x) = argmax {y, (x)}
g

Kusy, M. & Zajdel, R. 2014. Probabilistic neural network training procedure based on Q(0)-
learning algorithm in medical data classification. Applied Intelligence, 41, (3), 837-854,
doi:10.1007/s10489-014-0562-9.
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Grazm ﬁ HC.'I 'mﬁ“

— Wisconsin breast cancer database [24] that consists of
683 instances with 9 attributes. The data is divided into
two groups: 444 benign cases and 239 malignant cases.
Pima Indians diabetes data set [36] that includes 768
cases having 8 features. Two classes of data are consid-
ered: samples tested negative (500 records) and samples
tested positive (268 records).

Haberman’s survival data [21] that contains 306 patients
who underwent surgery for breast cancer. For each
instance, 3 variables are measured. The 5-year survival

10 = status establishes two input classes: patients who sur-

vived 5 years or longer (225 records) and patients who
died within 5 years (81 records).
Cardiotocography data set [3] that comprises 2126 mea-

05 surements of fetal heart rate and uterine contraction

features on 22 attribute cardiotocograms classified by

expert obstetricians. The classes are coded into three
states: normal (1655 cases), suspect (295 cases) and
pathological (176 cases).

Dermatology data [13] that includes 358 instances

each of 34 features. Six data classes are considered:

psoriasis (111 cases), lichen planus (71 cases), sebor-
rheic dermatitis (60 cases), cronic dermatitis (48 cases),
pityriasis rosea (48 cases) and pityriasis rubra pilaris

(20 cases).

= (.5

Time steps
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TU Example G@HCI-KDD o

Grazm

External information Closed-loop control

Meals,
exercise, . Body

Changes in
(blood) glucose levels
measured by CGM

L fiss ""." 1‘*:_5“
{rapid-acting, short-acting,...)
= 30 min

Bothe, M. K., Dickens, L., Reichel, K., Tellmann, A., Ellger, B., Westphal, M. & Faisal, A. A. 2013.
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas.
Expert Review of Medical Devices, 10, (5), 661-673, doi:10.1586/17434440.2013.827515.
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TU Example

Grazm

G HCI-KDD %

Caleutated

ol — — B
P parameler

|

I
— =

Desired
outpul parameter

3

"

Performance potential

(glucose control, amount of delivered insulin reaction time of the system)

MB =

Reinforcment
learming

38, 39] Ll

[1, 15, 40-53]

(13 54-56]

1-fits-all Coarse tuning Patient Individual patient's
patient {weight, height) profile momentary slate
Personalization potential

Bothe, M. K., Dickens, L., Reichel, K., Tellmann, A., Ellger, B., Westphal, M. & Faisal, A. A. 2013.
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas.
Expert Review of Medical Devices, 10, (5), 661-673, doi:10.1586/17434440.2013.827515.
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TU Example G@HCI-KDD o

Grazm

State:
i (blood) glucose
level

MNumerical reward
reflecting the

outcome of the
previous action
Agent:
decision for insulin

Environment:

glucose-insulin

Action:

Insulin injection -
or no treatment

Bothe, M. K., Dickens, L., Reichel, K., Tellmann, A., Ellger, B., Westphal, M. & Faisal, A. A. 2013.
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas.
Expert Review of Medical Devices, 10, (5), 661-673, doi:10.1586/17434440.2013.827515.
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TU Example of a work with MABs GHCI-KDD -

120 4

191 S
2 60 i
E V4
g0l
2 1"{;‘\..-\;,_,}"‘ .-'*-"""I‘ "1“'-“\!»—.-r'-1

0 10 20 30 40 50
Time (min)

Joutsa et al. Mesolimbic dopamine release is linked to symptom severity in pathological

gambling. Neurolmage, 60, (4), 1992-1999, doi.org/10.1016/j.neuroimage.2012.02.006.
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8) Future Outlook
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TU Grand Challenge: Transfer Learning @ HCI-KDD o

Grazm
7" Generalization Improvemen@

Experience

Performance

learning
Knowledge transfer

. Speed Improvement
Learning Curve

B o ad

Experience

Performance

Performance

Experience

Offset Improvement

= To design algorithms able to learn from
experience and to transfer knowledge
across different tasks and domains to
improve their learning performance
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TU Example for Transfer Learning

Grazm

Task 1 Task 2 Task 3
OOOO*OOOO eRoNoNoNoNoRoNG) OQ0O0O00O0O0O0
INPUTS INPUTS INPUTS
V. Mnih et al., “Playing Atari with Deep j‘:;:ft:;;;:_ Y .'
Reinforcement Learning”, Nature (2015) 00 O ( 0C
Rich Caruana, “Multi-task Learning”, MLJ (1998) : WAV A/ Vi y

Holzinger Group 97
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TU G HCI-KDD =%

Grazm

4

» Self-taught
Casel <« Learning

No labeled data in a source domain

T — T i

Inductive Transfer
Learning

ey
H

H : ; T
¢ Labeled data are available in a source domain
H H

gt emmen e s e ——————

i Labeled data are available §

i Sourceand §  Multi-task

in a target domain : \ - | % .
Ansmsssism e s s T s s T : i % - ;
Case 2 [ fargettasksare i _
/ —’_: leami  § Learning

i simultancously §
H

llllllllllllllllllllllllllllllll B ————
) ! E ---------------------- g
Trans?er L_ﬂﬁeg'id d;altlar grc B — ; Assumption: =
Learning Boemmminge Transductive difftrent  » Domain
b J Transfer Learning < domainsbut & Adaptation
! single task
No labeled data in s S e
both source and  § i Assumption: single i
E tareet domain E i domain and Si.ugff task ;
\ Unsupervised Sample Selection Bias
Transfer Learning /Covariance Shift

Pan, S. J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.
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TU Transfer Learning is studied for more than 100 years @ HCI-KDD o

* Thorndike & Woodworth (1901) explored how individuals
would transfer in one context to another context that share
similar characteristics:

* They explored how individuals would transfer learning in
one context to another, similar context

= or how "improvement in one mental function" could
influence a related one.

* Their theory implied that transfer of learning depends on
how similar the learning task and transfer tasks are,

= or where "identical elements are concerned in the
influencing and influenced function", now known as the
identical element theory.

= Today example: C++ -> Java; Python -> Julia
= Mathematics -> Computer Science
" Physics -> Economics
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TU Domain and Task G HCI-KDD o4

e Feature space A'; e Given A" and label space V:

o P(xz), where x € X. e Tolearn f : x — vy, or estimate P(y|z).

where z € A and y € ).

Two domains are different = Two tasks are different =

Xs # Xr, or Ps(z) # Pr(z). Vs # Yr, or fs # fr (Ps(y|z) # Pr(y|z)).

Pan, S. J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.
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Grazm et R T

e ﬁ,m_mﬁ,

.
.®

Heterogeneous
Transfer Learning

.
. .
.....
. o®
""""""
ooooo
oooooooooooooooooo

Transfer Feawure IEEEEEEEE
Homogeneous

Learnin space JEESERSHe -

___________ ; I_Focus on optlmlzmg a target task |

IDomain difference is

I_caused by sample bias

LTasks are learned simultaneously |

Samyle Selection Bias

/ Covariate Shift Domain Adaption Multi-Task Learnir.g
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TU G HCI-KDD =%

Grazm

Single-Task Transfer Learning m

............. — e Vg =Vr,

!Domain difference is caused .
by feature representations

I e e s e e =

IDomain difference is

Lcaused by sample bias !

o Ps(y

xr) = Pr(y

e But, X 75 X or PS(SE) 7£ PT(m)

Sample Selection Bias
/ Covariate Shift

Domain Adaption
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TU |s this a complex domain? G@HCI-KDD o

Grazm

"Medicine is so complex, the challenges are

o greal... we need everything that we can
bring to make our diagnostics more precise,
more accurate and our therapeutics more

focused on that patient” THE
ROYAL
Sir Malcolm Grant. NHS England. SOC [ ETY

https://royalsociety.org/events/2015/05/breakthrough-science-technologies-machine-learning
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TU Sample Questions @HCI-KDD 24

= Why is RL for us in health informatics interesting?

= What is a medical doctor in daily clinical routine
doing most of the time?

= Please explain the human decision making process
on the basis of the model by Wickens (1984) |

=W
=W
=W

nat is the underlying principle of DQN?
nat is probabilistic inference? Give an example!

ny is selective attention so important?

" Please describe the “anatomy” of a RL-agent!

= What does policy-based RL-agent mean? Give an
example!

= What is the underlying principle of a MAB? Why is it
interesting for health informatics?
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TU Keywords @ HCI-KDD o

= Reinforcement Learning

" Trial-and-Error Learning

» Markov-Decision-Process

= Utility-based agent

= Q-Learning

= Passive reinforcement learning
= Adaptive dynamic programming
= Temporal-difference learning

= Active reinforcement learning

" Bandit problems
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TU

Grazm

Advance Organizer (1) G HCI-KDD

= RL:=general problem, inspired by behaviorist psychology;

how software agents learn to make decisions from success
and failure, from reward and punishment in an
environment — aiming to maximize cumulative reward.

RL is studied in game theory, control theory, operations
research, information theory, simulation-based
optimization, multi-agent systems, swarm intelligence,
genetic algorithmes.

Aka: approximate dynamic programming.

The problem has been studied in the theory of optimal
control, though most studies are concerned with the
existence of optimal solutions and their characterization,
and not with the learning or approximation aspects. In
economics and game theory, reinforcement learning may
be used to explain how equilibrium may arise under
bounded rationality.
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TU Unsupervised — Supervised — Semi-supervised @ HCI-KDD oL

A) Unsupervised ML: Algorithm is applied on the raw data and learns fully
automatic — Human can check results at the end of the ML-pipeline

@ #é . eﬁ;e Var[ufx]: { (X ‘*Z J}z e .I

B) Supervised ML: Humans are providing the labels for the training data
and/or select features to feed the algorithm to learn — the more samples the
better — Human can check results at the end of the ML-pipeline

- 2
Q ¢ o€ i € QN S
&

C) Semi-Supervised Machine Learning: A mixture of A and B — mixing labeled and
unlabeled data so that the algorithm can find labels according to a similarity
measure to one of the given groups

Q g e ikt e~ QEe ;‘?Ji

—aVa
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Reinforcement Learning @HCI-KDD o2

Graz-

D) Reinforcement Learning: Algorithm is continually trained by human input, and
can be automated once maximally accurate

@ o e Varla X = z{ (x-txx,)

= Advantage: non-greedy nature
" Disadvantage: must learn model of environment
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TU The difference to interactive ML @ HCI-KDD o

Grazm

E) Interactive Machine Learning: Human is seen as an
agent involved in the actual learning phase, step-by-step
influencing measures such as distance, cost functions ...

@ = vaisx1- z{ (x-txx) '33' @ﬁ = xr"?&

—aVa

—

4. Check

L

2. Preprocessing 1. Input

—

3. iML
Constraints of humans: Robustness, subjectivity, transfer?
Open Questions: Evaluation, replicability, ...

Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2016. Towards
interactive Machine Learning (iML): Applying Ant Colony Algorithms to solve the Traveling
Salesman Problem with the Human-in-the-Loop approach. Springer Lecture Notes in

Computer Science LNCS 9817. Heidelberg, Berlm New York: Springer, pp. in print. ,
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