TU  science is to test crazy ideas — Engineering is to put these ideas into Business @HCI-KDD +£-
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TU In the Knowledge Discovery pipeline ML is the heart... @HCI-KDD A

Grazm

Data
Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
© a.holzinger@htlzi-kdd_org o !

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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TU Agenda @ HCI-KDD =£-

" 01 Why is Cognitive Science important for ML?
" 02 When are humans better than computers?
" 03 On Human Information Processing

" 04 Decision Making under Uncertainty

® 05 Graphical Models and Decision Making

" 06 Probabilistic Programming

= 07 Conclusion

= 08 Questions

= 09 Appendix

Holzinger Group 3 iML 01



TU Quiz: In which tasks are humans better than computers? @HcI-KDD -

Grazm

“I think you should be more explicit here n
step two.”

Holzinger Group 4 Solutions in the Appendix iML 01



TU 01 Cognitive Science

raz

@ HCI-KDD

Holzinger Group

01 Why is
Cognitive Science
important for ML ?



TU  Cognitive Science vs. Computer Science @ HCI-KDD +£-

= Cognitive Science — human intelligence

= Study the principles of human learning to understand
biological intelligence

" Human-Computer Interaction — the bridge

" |nteracting with algorithms that learn shall enhance
user friendliness and let concentrate on problem
solving - Opening the “black-box” to a “glass-box”

= Computer Science - computational intelligence

= Study the principles of machine learning to
understand artificial intelligence

Holzinger Group 6 iML 01



TU  What is this: Cognitive Science? @ HCI-KDD s

Grazm

= “By 1960 it was clear that something'>
interdisciplinary was happening. At Harvard we
called it cognitive studies, at Carnegie-Mellon

they called it information-processing psychology,

and at La Jolla they called it cognitive science. “

George A. Miller (1920-2012), Harvard University,
well known for:

The magical number seven, plus or minus two: Some limits on our capacity for

processing information.

GA Miller - Psychological review, 1956 - psycnet apa.org

Abstract 1. A variety of researches are examined from the standpoint of information theory. It
Is shown that the unaided observer is severely limited in terms of the amount of information
he can receive, process, and remember. However, it is shown that by the use of various ..

Zitiert von: 23560 Ahnliche Artikel Alle 70 Versionen Web of Science: 7697  In EndMNote importierer
Holzinger Group 7 iML 01



TU  Why fitting Cognitive Science with Machine Learning?  @HCI-KDD -

Grazm

= ML provides powerful sources of insight into
how machine intelligence is possible.

= CS therefore raises challenges for, and draws
inspiration from ML;

= ML could inspire new directions by novel
insights about the human mind

Holzinger Group 8 iML 01



TU

Grazm

Some definitions in Cognitive Science (very incomplete) @HCI-KDD A

Intelligence

= Hundreds of controversial definitions — very hard to define; related terms
include the ability to solve problems, make decisions and acquire and
apply knowledge and skills.

Learning

= Different definitions — basically acquisition of knowledge through
experience, study or being taught

Problem Solving

= Process of finding solutions to complex issues
Reasoning

= ability of our mind to think and understand things
Decision Making

= Process of “de-ciding
Sense Making

= Process of giving meaning to experience
Causality

= Relationship between cause and effect

”n (ll

ent-scheiden”) between alternative options

Holzinger Group 9 iML 01



TU  Typical Questions of Cognitive Science Research @ HCI-KDD o4

Grazm

= How does our mind work?

= How do we process information?

= How do we learn and generalize?

= How do we solve complex problems?

" How do we reason and make decisions?

" How do we make predictions?

= How do we behave in nhew situations?

= How can we build intelligent agents?

Holzinger Group 10 iML 01



TU Motto of Google Deepmind: “Solving Intelligence ...” @ HCI-KDD

“Solve intelligence — then
solve everything else”

THE

ROYAL Demis Hassabis, 22 May 2015

SOCIETY

Our Mission

The Royal Society,

1+ Solve intelligence Future Directions of Machine Learning Part 2

2 + Use it to solve everything else

https://youtu.be/XAbLn66iHcQ?t=1h28m54s

Holzinger Group 11 iML 01



TU Do we understand how our brain works? G HCI-KDD -

Grazm

PRINCIPLES
OF NEURAL This book doubled
SCIENCE The Nobel Prize in in Volume every

Fifth Edition Physiology or Medicine decade ...

.

Arvid Carlsson Paul Greengard Eric R, Kandel
Prize share: 173

Number of Pages ->

-

-

1"
ha 3

Prize share: 1/3 Prize share: 1/

1980 1986 1992 1998 2004 2010

Editions ->
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. 2012. Principles
of neural science, 5th Edition (1760 pages), New York: McGraw-Hill.

" Facts # Knowledge, Descriptions # Insight

= Our goal should be the opposite:
To make this book shorter!

Holzinger Group 12 iML 01



TU CS vs ML did NOT harmonize in the past @ HCI-KDD -

" CS had its focus on specific experimental
paradigms because it was embedded deeply in
Psychology and Linguistics; and aimed to be
cognitively/neutrally plausible ...

" ML had its focus on standard learning problems
and tried to optimize in the range of 1 % because
it was embedded in Computer Engineering; and
aimed to have working systems whether
mimicking the human brain or not ...

Holzinger Group 13 iML 01



Graz-

Wilhelm Wundt (1832 - 1920): Psychology as Science

@ HCI-KDD ==

" First experimental psychology
laboratory at Leipzig, in 1879

=  Structuralism: “Human
mental experience, no matter
how complex, can be viewed as
blends or combinations of simple
processes or elements.”

" Influenced by John Stuart Mill’s
— mental chemistry.

" rather than computational
components, building blocks are
subjective experience (qualia)

Holzinger Group 14
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TU David Marr (1945 — 1980) Neuroscientist @ HCI-KDD £

= Cerebellum: big memory to support motor
learning

= Neocortex: big memory flexibly learns
statistical structure from input patterns

= Hippocampus: big memory encoding
memory traces via Hebbian learning s

= Example Vision: process of discovering 10" Neurons
properties (what, where) of things in the A
real-world from 3D-images

= Vision = information processing task + rich VISION
internal representation

= Understanding of vision requires multiple S
levels of analysis: computational —
algorithmic and implementational e

Holzinger Group 15 iML 01



TU_ Marr: Three Levels of Information Processing Systems  @HcI-KpD A

= Computation

= “What is the goal of the computation, why
is it appropriate, and what is the logic of
the strategy by which it can be carried

out?”
= Representation and algorithm vogy R el
" “What is the representation for the input B
and output, and the algorithm for the o
transformation?” AR

" Implementation

" “How can the representation and
algorithm be realized physically?”

Holzinger Group 16 iML 01



@ HCI-KDD 4=
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TU  We pick one example ... @ HCI-KDD +£-

Grazm

= Causal learning - how can we get insights from
studying CL and what might make better ML
systems from studying causal learning

How to Grow a Mind: Statistics, Structure and Abstraction

Joshua B. Tenenbaum, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, MIT
Aug. 17, 2012, Juby 2012, 5559 Al for Good Fo
Intelligence to Help the World

Categories

i Switch off the lights

Acknowledgments

Tom Griffiths Peter Battaglia

Charles Kemp Chris Baker
Tomer Ullman

Noah Goodman Steve Piantadosi

Vikash Mansinghka

Dan Roy

Cameron Freer

Lecture popularity: # WM d;  You need to login to cast your vote.
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a mind: statistics, structure and abstraction -
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TU Is the human brain a inference engine ? @ HCI-KDD s

Grazm

" Learning concepts from examples (babies!)
" Causal inference and reasoning
" Predicting everyday events

= Even little children solve complex problems
unconsciously, effortlessly, and ... successfully

= Compare your best Machine Learning algorithm
with a seven year old child!

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a
mind: Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285,
doi:10.1126/science.1192788.

Griffiths, T. L. Connecting human and machine learning via probabilistic models of
cognition. Interspeech 2009, 2009 Brighton (UK). ISCA, 9-12. available online via:
https://cocosci.berkeley.edu/tom/papers/probmods.pdf

Holzinger Group 19 iML 01



TU RL is multi-disciplinary and a bridge within ML

Grazm

@ HCI-KDD 4=

Holzinger Group

Cognitive Science

Economics

Reinforcement

Learning

Mathematics
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TU 02 Human Cognitive Capacities

raz

@ HCI-KDD

Holzinger Group

02 When is the
human better
than a computer?



TU  People are awesome ... @ HCI-KDD s

Grazm

= YoulimMitl" people are awesome

People are Awesome - BEST OF THE BEST
SoapProd

1,928,262 views
A Shue sss More I‘ T.B6A ,1 14§

Published on Feb 21, 2014
A compilation of extrem sports and others awesome people around the world.

See Youtube: “people are awesome” ... hundreds of examples
Holzinger Group 22 iML 01



TU  Problem Solving: Humans vs. Computers

Grazm

@ HCI-KDD -4~

When is the human *) better?

*) human intelligence/natural
intelligence/human mind/human
brain/human learning

= Natural Language Translation/Curation

Machine cannot understand the
context of sentences [3]

= Unstructured problem solving

Without a pre-set of rules, a machine
has trouble solving the problem,
because it lacks the creativity required
forit [1]

= NP-hard Problems

Processing times are exponential and
makes it almost impossible to use
machines for it, so human still stays
better [4]

When is the computer **) better?

**) Computational intelligence, Artificial
Intelligence/soft computing
Machine Learning algorithms

= High-dimensional data processing

Humans are very good at dimensions
less or equal than 3, but computers can
process data in arbitrarily high
dimensions

= Rule-Based environments

Difficulties for humans in rule-based
environments often come from not
recognizing the correct goal in order
to select the correct procedure or
set of rules [2]

= |mage optimization
Machine can look at each pixel and

apply changes without human personal
biases, and with more speed [1]

[1] https://www.instartlogic.com/blog/man-vs-machine-learning-based-optimizations
[2] Cummings, Mary Missy. "Man versus machine or man+ machine?." Intelligent Systems, IEEE 29.5 (2014): 62-69.
[3] Pizlo, Zygmunt, Anupam Joshi, and Scott M. Graham. "Problem Solving in Human Beings and Computers (formerly: Heuristic Problem

Solving)." (1994).

[4] Griffiths, Thomas L. "Connecting human and machine learning via probabilistic models of cognition." INTERSPEECH. 2009.

Holzinger Group
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TU

Grazm

Human Cognitive capacities of Inference and Prediction @HCI-KDD A

ii) Prototype

Similarity [1] % % %

Representativeness and evidential support
Causal judgment [2]

Coincidences and causal discovery

Clinical diagnostic inference [3]

Predicting the future

[1] Kemp, C., Bernstein, A. & Tenenbaum, J. B. A generative theory of similarity. Proceedings of the 27th Annual
Conference of the Cognitive Science Society, 2005. 1132-1137.

[2] Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J. & Blum, B. 2003. Inferring causal networks from
observations and interventions. Cognitive science, 27, (3), 453-489.

[3] Krynski, T. R. & Tenenbaum, J. B. 2007. The role of causality in judgment under uncertainty. Journal of
Experimental Psychology: General, 136, (3), 430.

Holzinger Group 24 iML 01



TU A central question in cognitive science @ HCI-KDD s

Grazm

= How does the human mind get so much out of so little?

= Our minds build rich models of the world and make strong
generalizations from input data that is sparse, noisy, and
ambiguous — in many ways far too limited to support the
inferences we make.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics,
structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.

Holzinger Group 25 iML 01



TU  Humans learn from very few examples ... @ HCI-KDD s

Grazm

s
e

¢
e
Lo

Xu, F. & Tenenbaum, J. B. 2007. Word learning as Bayesian inference. Psychological review, 114, (2), 245-272,
doi:10.1037/0033-295X.114.2.245.

Holzinger Group 26 iML 01



TU  Humans learn from very few examples ... @ HCI-KDD s

Grazm

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.

Holzinger Group 27 iML 01



TU_ Important: Statistics meet Knowledge @ HCI-KDD o

= 1. How does abstract knowledge guide learning and
inference from sparse data?

= (Approximate) Bayesian inference in probabilistic models.

= 2. What are the forms and contents of that knowledge?

= Probabilities defined over a range of structured

representations: graphs, grammars, predicate logic, schemas...
programs.

= 3. How is that knowledge itself acquired?

= Hierarchical Bayesian models, with inference at multiple levels
of abstraction (“learning to learn”). Learning as (hierarchical
Bayesian) program induction.

= Central Question:
How does our mind get so much out of so little?

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.

Holzinger Group 28 iML 01



TU Example: Discovery of causal relationships from data ...

Grazm

@ HCI-KDD 4=

Hans Holbein d.J., 1533,
The Ambassadors,
London: National Gallery

Lopez-Paz, D., Muandet,
K., Scholkopf, B. &
Tolstikhin, I. 2015.
Towards a learning theory
of cause-effect inference.
Proceedings of the 32nd
International Conference
on Machine Learning,
JMLR, Lille, France.

Holzinger Group

https://www.youtube.com/watch?v=9KiVNIUMmCc
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TU |s probability an appropriate basis for model cognition? @Hci-kpp

" Previously this was denied, e.g.: Kahneman &
Tversky “Heuristics and biases” 2002 Nobel Prize in
Economics: “People are not Bayesian.”

= Slovic, Fischhoff & Lichtenstein (1976): “It appears
that people lack the correct programs for many
important judgmental tasks ... it may be argued that
we have not had the opportunity to evolve an

intellect capable of dealing conceptually with
uncertainty.”

= Stephen J.Gould (1992): “Our minds are not built
(for whatever reason) to work by the rules of
probability” ...

Holzinger Group 30 iML 01



TU Decision trees are coming from Clinical Practice

Grazm

@ HCI-KDD 4=

Death from cancer
o Probability 2%
W Decision node Utility 5%

@ Chance node

“q Qutcome Fertile survival
Probability 98%
No further Utility 100%
surgery

Surgical death
Probability 0-5%
Utility 0%

Microinvasive
cancer of the

cervix . .
Infertile survival

Probability 98%

Radical Utility 95%

hysterectomy

Infertile survival
Probability 5%
Utility 95%

Sunvives (p=99-5%)

Spread (p=2%)
Death from cancer
Probability 5%

Utility 5%

Physician treating a patient
approx. 480 B.C.

Beazley (1963), Attic Red-figured
Vase-Painters, 813, 96.
Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.

The Lancet, 358, (9281), 571-574.

Holzinger Group 31
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TU Expected Utility Theory E (U|d) @ HCI-KDD -

Grazm

For a single decision variable an agent can select = i
D = dforanyd € dom(D).
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax — al"g Imax E(U | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.

Holzinger Group 32 iML 01



TU Key Challenges @ HCI-KDD -

Grazm

= Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

= Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

= Causal and Probabilistic Inference:
= Uncertainties are present at all levels in health related systems
= Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.

= Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions.

=" |nthe increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

= Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X., Janzing, D. & Schoélkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov
Kernels. ISAIM, 2006.
[2] Dagum, P. & Luby, M. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard.
Artificial intelligence, 60, (1), 141-153.
[3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-
the-loop? Springer Brain Informatics (BRIN), 3, 1-13, doi:10.1007/s40708-016-0042-6.
Holzinger Group 33 iML 01
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TU How does our mind get so much out of it ... @ HCI-KDD £

Grazm

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical
nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.

Holzinger Group 35 iML 01



TU_ Learning words for objects — concepts from examples @ HCI-KDD -

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric
Bayesian model. Journal of Machine Learning Research, 27, 195-207.

Holzinger Group 36 iML 01



@ HCI-KDD 4=

TU How do we understand our world ...

M % Y A e Pd\mP()

113 s 8N ¢ @ PUHld) = 5 & e o, PP
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b ¢ ,‘ ﬁz % @ 5. g Abstract tree: O = —*{8
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Y

Animals
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=
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13
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind

Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285.
37 iML 01
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TU One of the unsolved problems in human concept learning @HcI-kpD -

Grazm

= which is highly relevant for ML research,
concerns the factors that determine the
subjective difficulty of concepts:

" Why are some concepts psychologically
extremely simple and easy to learn,

= while others seem to be extremely difficult,
complex, or even incoherent?

" These questions have been studied since the
1960s but are still unanswered ...

Feldman, J. 2000. Minimization of Boolean complexity in human concept learning. Nature, 407,
(6804), 630-633, doi:10.1038/35036586.

Holzinger Group 38 iML 01



TU A few certainties G HCI-KDD %=

©
Wo Wi é h,

" Cognition as probabilistic inference

= Visual perception, language acquisition, motor learning,
associative learning, memory, attention, categorization,
reasoning, causal inference, decision making,
theory of mind

= Learning concepts from examples

" Learning and applying intuitive theories
(balancing complexity vs. fit)

Holzinger Group 39 iML 01



TU  Modeling basic cognitive capacities as intuitive Bayes @ HCI-KDD o4

Grazm

= Similarity
= Representativeness and evidential support
= Causal judgement

= Coincidences and causal discovery

= Diagnostic inference

. . L
Predicting the future ¢ l oprncples | )
e
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. E Absiract domain principles
2006. '.I'heory-b-ased Baye5|an.models of | l PStructurs | Principles)
inductive learning and reasoning. Trends in
cognitive sciences, 10, (7), 309-318. Structured probabilistic model

l P(Data | Structure)

Observable data
Holzinger Group 40 iML 01



TU Drawn by Human or Machine Learning Algorithm? @ HCI-KDD s

Grazm

=

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. 2015. Human-level concept learning through
probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.

Holzinger Group 41 iML 01
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TU  Human-Level concept learning — probabilistic induction @Hci-kpD -

Grazm

A Bayesian program learning (BPL) framework, capable of learning a
large class of visual concepts from just a single example and
generalizing in ways that are mostly indistinguishable from people

A B
i) primitives D ’\[J J‘ T _ O ('?,
procedure GENERATETYPE
/k A /\ K — P(k) > Sample number of parts
,Q fori=1...xdo

i) sub-parts - - n; +— P(n;|k) > Sample number of sub-parts

) 4 D :') L i - Jv L forj=1..n; do
\ / J \ / l vL L sij + P(s;;]s;j—1)) > Sample sub-part sequence

: end for
iii) parts 3 ’b L Q Ri + P(R;|S:1,...,5i-1) > Sample relation
L end for
\ / & o +— {r. R. S}

return @GENERATE TOKEN(}) > Return program

iv) object ;
template relation: relation: @ relation:
attached along attached along attached at start

type level 3'-)\) — fb

token level
procedure GENERATE TOKEN(1))
fori=1..x do
—

8™ P8™)8)) > Add motor variance
v) exemplars 311 b * m { 1 e ek
) P 3)“‘ FJ :b ¥ Li:m] — P(LE H]|Ri-Tliru]”."iﬂ.[:ul}}
H b ¢ L] -
l ‘|’ > Sample part's start location
l l \'r J4 end for _

3-L Alm)  p(Alm)) > Sample affine transform
SL 3]' n_, 10m) ¢ p(rlm)|Ttm) A(m) > Sample image

return /'

Vi) Faw data T (L™, 8™y > Compose a part’s trajectory

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. 2015. Human-level concept
learning through probabilistic program induction. Science, 350, (6266), 1332-1338,
Holzinger Group doi:10.1126/science.aab3050. 42 iML 01



TU @ HCI-KDD -
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How does our mind
get so much out of
so little?
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TU Human Information Processing Model (A&S) @ HCI-KDD +£-

ENVIRONMENTAL INPUT

[visuac] ]Aﬁmmnv |--eeeeeee e HAPTIC]
SENSORY REGISTERS

=
| .CONTROL PROCESSES |
_ | STS i REHEARSAL, : | RESF';ONSE
Atkinson, R. C. & Shiffrin, _ TEMPORARY | CDD:EIG.N .' I ‘  OUTPUT
R. M. (1971) The control A | RETRIEVAL : - '
processes of short-term N STRATEGIES I
memory (Technical Report L -

173, April 19, 1971).
Stanford, Institute for
Mathematical Studies in
the Social Sciences,
Stanford University.

LTS
PERMANENT MEMORY STORE
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TU  General Model of Human Information Processing @ HCI-KDD %

Grazm

Physics Perception Cognition Motorics

l |
|
l : | I : :
I | | b |
l | | S— |
| | i Long-Term | : :
{ | , Memory | : :
! | I | |
| | ov e |
1 | « [ Working : |
Selettipn | 4 Memory : |
+1r | & : |
\ A 4 Cognitive A 4 \
'__)__;. Sensory —}—} LR Response Response
[ % Pr::xsc_?ggng | rerception » Selection |  ”| Execusion |  ”
— Ea—
System
Environment
(Feedback) <

Wickens, C., Lee, J., Liu, Y. & Gordon-Becker, S. (2004) Introduction to Human Factors Engineering: Second
Edition. Upper Saddle River (NJ), Prentice-Hall.
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TU Alternative Model: Baddeley - Central Executive

Grazm

@ HCI-KDD ==

» Switching
» Updating
» Inhibition
» Divided Attention

CENTRAL EXECUTIVE

)

Semantic @ @
Retrieval

Phonological Store Multimodal Store Visual Cache

Articulatory Rehearsal Rehearsal Inner Scribe

©

PHONOLOGICAL LOOP EPISODIC BUFFER VISUO-SPATIAL
SKETCHPAD
Semantic Verbal Episodic Memory Semantic Visual

Memory @

Memory

Quinette, P, Guillery, B., Desgranges, B., de la Sayette, V., Viader, F. & Eustache, F. (2003)
Working memory and executive functions in transient global amnesia. Brain, 126, 9, 1917-1934.
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TU Neural Basis for the “Central Executive System” @ HCI-KDD s

Grazm

D'Esposito, M., Detre, J.
A., Alsop, D. C,, Shin, R.
K., Atlas, S. & Grossman,
M. (1995) The neural
basis of the central
executive system of
working memory. Nature,
378, 6554, 279-281.
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TU Slide 7-14 Central Executive — Selected Attention G HCI-KDD

Grazm

CENTRAL EXECUTIVE
(directs attention and

controls voluntary processing)
ATTENTION CAN BE DIRECTED

QUTWARD, TO STIMULI, OR
INWARD, TO LONG-TERM

MEMORIES
CONTROLLED ACTIONS
*NG “FILTER" IS NEEDED: _/m M
PHYSICALLY UNCHANGED Do rocus
STIMULI DO NOT ELICIT \\\ b OF AUTOMATIC ACTIONS

ATTENTION (b,c), WITH THE
POSSIBLE EXCEPTION OF
SIGNIFICANT SIGNALS.
UNCHANGED STIMULI CAN
ENTER THE FOCUS OF
ATTENTION THROUGH

ATTENTION

LONG-TERM STORAGE OF SCME
CODED FEATURES QCCURS
AUTOMATICALLY (b, ). ATTENTIVE
PROCESSING (a, d) RESULTS IN MORE

ACTIVATED MEMORY
(SHORT-TERM STORE)

o
L
[
Z
w
b 5
VOLUNTARY MEANS (a). > w ELABORATE ENCODING (CRITICAL FOR
2 8 8 € LONG- VOLUNTARY RETRIEVAL, ERISODIC
& § 2 5 TERM STORE STORAGE).
Z| E| B| %
=| =8| & §
o «| <« £
> x| T B *
INITIAL PHASE OF SENSORY STORAGE LASTS ONLY SEVERAL
BRIEF HUNDRED MILLISECONDS (LEFT). SECOND PHASE IS ONE TYPE OF
UNCHANGED SENSORY ACTIVATED MEMORY (ABOVE). BOTH SENSORY AND SEMANTIC
STIMULI STORE ACTIVATION MAY LAST SOME SECONDS.
NOVEL @

STIMULUS >
POST-STIMULWS TIME

Cowan, N. (1988) Evolving conceptions of memory storage, selective attention, and their mutual
constraints within the human information-processing system. Psychological Bulletin, 104, 2, 163.
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TU Selective Attention Test @ HCI-KDD -

Grazm

‘fuum gorillas in our midst

Selective Attention Test

from Simons & Chabris (1999)

Selective Attention Test

from Simons &f Chabris (1999]

selective attention test

Daniel Simans
ﬁl St 14,459,912 view:

Y r "7

Note: The Test does NOT properly work if you know it
in advance or if you do not concentrate on counting

Simons, D. J. & Chabris, C. F. 1999. Gorillas in our midst: sustained inattentional blindness for
dynamic events. Perception, 28, (9), 1059-1074.
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TU. Human Attention is central for decision making @ HCI-KDD oA

Grazm

Perceptual Encoding Central Processing Responding
L Attention ------------
Resources [
y ~ : 4
— . : espons Response
— '( Perception <Select|on )'(Executlon =
-p | Register :
=—p | -Hearing
— | -Vision Thought
— | - Olfa(?tlon Decision Making
5 | -Haptic ;
Working
Memory

=

Long-Term Memory

Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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TU  Our definition of Knowledge — adaptive agent @ HCI-KDD -

-~ Mental

Mode Is

Knowledge := a set of expectations
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TU Decision Making is central in Health Informatics @ HCI-KDD %

Grazm

Source: Cisco (2008). f '

LISCO I
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TU_ Reasoning Foundations of Medical Diagnosis

3 July 1859, Volume 130, Number 3366

Reasoning Foundations of

Medical Diagnosis

Symbolic logic, probability, and value theory

aid our understanding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to ana-
Iyze the complicated reasoning processes
inherent in medical diagnosis. The im-
portance of this problem has received
recent emphasis by the increasing inter-
est in the use of electronic computers as
an aid to medical diagnostic processes

fitted into a definite disease category, or
that it may be one of several possible dis-
eases, or else that its exact nature cannot
be determined.” 'This, obviously, is a
greatly simplified explanation of the
process of diagnosis, for the physician
might also comment that after seeing a

SCIENCE

ance are the ones who do remember and
consider the most possibilities.”

Computers are especially suited to
help the physician collect and process
clinical information and remind him of
diagnoses which he may have over-
looked. In many cases computers may be
as simple as a set of hand-sorted cards,
whereas in other cases the use of a large-
scale digital electronic computer may be
indicated. There are other ways in which
computers may serve the physician, and
some of these are suggested in this paper.
For example, mecdical students might
find the computer an important aid in
learning the methods of differential di-
agnosis. But to use the computer thus
we must understand how the physician
makes a medical diagnosis. This, then,
brings us to the subject of our investiga-
tion: the reasoning foundations of med-
ical diagnosis and treatment.

Medical diagnosis involves processes
that can be systematically analyzed, as
well as those characterized as “‘intan-
gible.” For instance, the reasoning foun-
dations of medical diagnostic procedures

@ HCI-KDD £+



TU  Clinical Medicine is Decision Making! @ HCI-KDD s

Grazm

EVIDENCE gtmfch:xq
-Patient data CLINICIAN
-Basic, clinical, PREFERENCES
and epidemiological -Cultural beliefs
research -F’erson_al values
-Randomized -Educqtlon
controlled trials -Experience
-Systematic

CLINICAL
DECISION

reviews

CONSTRAINTS
-Formal policies and laws
-Community standards
-Time
-Financial
Hersh, W. (2010) Information
Retrieval: A Health and Biomedical

Perspective. New York, Springer.
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TU  Human Decision Making @ HCI-KDD -2-

UNCERTAINTY
Cues
—
» DIAGNOSIS CHOICE
Working A
—_—’ . “"_’ . H1 1 »
Selectolve >Percept|on >+ H, Memory 4 Action » Outcome >
= Attention > A e » A,
_______
— y =
\
Cz-; A i®Possible |
H Long-Term | outcomes !
> H Memory \AJA '?4 | ® Likelihood and:
H A ! consequences
Hy"™ (H) Hypothesis /Q_Dq  ofoutcomes ,
(A) Action
Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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TU  What are Probabilistic Graphical Models? @ HCI-KDD -

= PGM can be seen as a combination between

" Graph Theory + Probability Theory +

Machine Learning

= One of the most exciting advancements in Al in the last
decades

= Compact representation for exponentially-large
probability distributions

= Example Question:
“Is there a path connecting two proteins?”

* Path (X,Y) := edge (X,Y)

» Path (X,Y):= edge (X,Y),path(Z,Y)

= This can NOT be expressed in first-order logic

= Need a Turing-complete fully-fledged language
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TU Decision Making: Learn good policy for selecting actions @HcI-kpp

Goal: Learn an optimal policy for selecting best actions
within a given context

Fort=1,...,T

1) The world produces a
“context” x; € X

2) The learner selects an action
a, €{1,..., K}

]

3) The world reacts with

areward r;(a;) € 1[0,1]
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TU  GM are amongst the most important ML developments @HcI-kpD

= Key ldea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

(Vi,J, k) P(X = z;|Y = y;,Z = 2) = P(X = x;|Z = z)
can be abbr. with P(X|Y,Z) = P(X|Z)

" Graphical models express sets of conditional
independence assumptions via graph structure

" The graph structure plus associated parameters define
joint probability distribution over the set of variables
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TU Where do the data come from? G HCI-KDD %=

Grazm

DIRECT SUBMISSIONS o B

(o

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http://www.ebi.ac.uk/intact/
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TU Key Challenges @ HCI-KDD £

" Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks

with probabilistic graphical models

" |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop
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TU Basics and Background reading

Grazm

@ HCI-KDD 4=

ﬂ F‘“TT_.- N PECD&;MJP:M E,j
L }‘ ”"“," LE,"E -.,EI '-,'!(; _

Bishop, C. M. 2007. Pattern
Recognition and Machine
Learning, Heidelberg, Springer.
Chapter 8 on graphical models
openly available:
http://research.microsoft.com/en-
us/um/people/cmbishop/prml/

Holzinger Group

Yy

Maphlne Leafnlng

stic Pe

Kavin P Murphy

Murphy, K. P. 2012.
Machine learning: a
probabilistic
perspective, MIT

press. Chapter 26 (pp.

907) — Graphical
model structure
learning

64

Koller, D. & Friedman,
N. 2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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Three types of Probabilistic Graphical Models @ HCI-KDD -

Grazl

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

1 O
P(X)=Eexp(z  XiX; +be) @ '@
j '

Directed: Bayes Nets, useful for designing
models (Details: Murphy 10)

"
x) = | | p(xx|pay)
k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

WA | Ia €I

.!rrl Jr-!a Jr. Jrrj
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TU  Factor Graphs — learning at scale @ HCI-KDD -

Grazm

" What is the advantage of factor graphs?

Dependency | Efficient Usage
Inference

Bayesian Networks Yes Somewhat Ancestral
Generative
Process

Markov Networks Yes No Local Couplings
and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon
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TU  From structure to function prediction @ HCI-KDD -

Grazm

Topology

Y- ondary Structure Q7
“Prediction YR 7N s

: _1:.__:?*-':".':'.' '"“"" _I--“._" ' 3D Structure

Primary sequence J =~ ——————-—=

AQSVRTGIBQ IKAFALNSOGY TGS VEVAY - " ) - » ] ~

INECIOSENPOLNVASSA VR EETHIYOO = - ettt e :

GESHGTHYAGT IAALMNET GVLGVEPFASL = - - - e

TAVEVLDSTGIGOTEWT INGI EWAT S . . . A - -
\ == Contacts and

VIMMELCGFTCESTALETVWOKAVESCIVVA
Solvent Accessibility

I' II Prediction

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.
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TU Protein Network Inference G HCI-KDD %=

Grazm

" Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

" |n this context, the problem of inferring a global
protein network for a given organism,

= - using all (genomic) data of the organism,

" is one of the main challenges in computational
biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.
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TU  Problem: Is Graph Isomorphism NP-complete ? @ HCI-KDD o4

Grazm

Borgwardt, K. M., Ong, C. S., Schénauer, S., T e s
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. ¢ a' o 6T 2
2005. Protein function prediction via graph (L& LA
kernels. Bioinformatics, 21, (suppl 1), i47-i56.

protein secondary sequence structure
structure

" Important for health informatics: Discovering
relationships between biological components

= Unsolved problem in computer science:

= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |tis also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete
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TU Example: Protein Network Inference @ HCI-KDD s

Grazm

viol. 20 Suppi. 1 2004, pages 363370
DOl 10,7093 hiinformaticsbiha 10

3 Protein network inference from multiple
ot genomic data: a supervised approach
1 Y. Yamanishi’-*, J.-P. Veert? and M. Kanehisa’
‘ T Bininformatics Center, Instifute for Chemical Research, Kyoto University, Gokasho,

Ui, Kyoto 611-0011, Japan and “Computational Biology group, Ecole des Mines de
RFanis, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

(=]
—

il
i

Expression

True positive
: h
N

= Protain inderaction

0.4
i
HE-'"

Kexp (Expression) £ 7 Localizaion

Kppi (Protein interaction) 2 7 f/ !f} 4 e Pylogenetc proe

Kjoc (Localization) 7 —

K phy (Phylogenetic profile) s w

Kexp + Kppi + Kioc + Kphy cll | (e 0k I ] ] N
(Integration) False positive
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TU Example: Data fusion and Protein Annotation @ HCI-KDD o4

Grazm

Vol 20na. 16 2004, peges HM6-2635
ool 10 1083 binimfarmatica/hih2 04

Y A statistical framework for genomic data fusion

ot Gert R. G. Lanckriet?, Tijl De Bie®, Neflo Cristianini®,
1 Michael I. Jordan® and William Stafford Noble”*
Y

' Department of Blectrical Engineening and Computer Science, <Division of Computer
Scisnce, Department of Statistics, University of Calformia, Berkeley 94720, USA,
3Department of Blectrical Enginesring, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, * Department of Statistics, University of California, Davis 95618, USA and
IDepartment of Genome Sciences, University of Washington, Seattle 98195, LISA

1.0 F—
BD.E :
Toal
0.7 | | l
B SW Piam FFT Ll D E all
o440t o
| NI ED I g = ES
Kemel Data Similarity measure o = =
= 2{! 1 ’—X—‘
10 H [_"_l
Kaw profein sequences Smith-Waterman a
Kpfam profein sequences Pfam HMM
Kppr hvdropathy profile FFT
Ky profein interactions linear kernel
Ko profein interactions diffusion kernel
Kg DEne cXpression radial basis kemel
Kgnn random numbers linear kernel

(B} Membrane proteins

Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. |. & Noble, W. S. 2004. A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635.
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TU Bayesian Network (BN) - Definition @ HCI-KDD o4

Grazm

" is a probabilistic model, consisting of two parts:
" 1) a dependency structure and
= 2) local probability models.

pCes, ) = | | p0xi | Pa(x)
=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.
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TU Example: Directed Bayesian Network with 7 nodes @ HCI-KDD -

Grazm

p(X1)p(X2)p(X3)p(Xa| X1, X2, X3)-
p(X5| X1, X3)p(Xe|X4)p(X7| X4, X5)
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TU  Clinical Case Example

Grazm

@ HCI-KDD 4=

Holzinger Group

74

Overmoyer, B. A,,
Lee, J. M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.
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TU Important in Clinical practice -> prognosis ! @ HCI-KDD %

= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information ! |

= Therefore valid prognostic
models can be of great benefit |
for clinical decision making and
of great value to the patient,
e.g., for notification and quallty
of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.
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TU  Predicting the future on past data and present status @ HCI-KDD -

Grazm

current patient state next patient state
é Risk factors E & Risk factors A
Pathogenesis Pathogenesis
Disorders pmj"]' Disorders
Pathophysiology Pathophysiology
S Findings Y S Findings )

physician Tests
model Treatments
physician

—_—

past future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.
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TU Example: Breast cancer - Probability Table

Grazm

@ HCI-KDD 4=

Category

Node description

State description

Diagnosis

Clinical his-
tory

Physical find-
ings

Mammo-
graphic
findings

Breast cancer

Habit of drinking alcoholic beverages and

smoking

Taking female hormones

Have gone through menopause
Have ever been pregnant

Family member has breast cancer

Nipple discharge
Skin thickening

Breast pain
Have a lump(s)

Architectural distortion

Mass
Microcalcification cluster

Asymmetry

Present. absent.

Yes. no.

Yes. no.
Yes. no.
Yes. no.
Yes. no.

Yes., no.

Yes. no.
Yes. no.
Yes. no.

Present. absent.

Score from one to three. score from four to five,

absent

Score from one to three. score from four to five,

absent
Present. absent.

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Holzinger Group
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TU  Breast cancer - big picture — state of 1999 @ HCI-KDD £

Grazm

Alcoholic & Skin Nipple Breast
Smoking Thickening Discharge Pain
A
Hormones Have a

/ Lump

Menopause Breast Cancer
Pregnant Mass
A 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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TU 10 years later: Integration of microarray data @ HCI-KDD %

Grazm

" |ntegrating microarray data from multiple studies to increase
sample size;

= =approach to the development of more robust prognostic tests

'I}i.E.iEl_l_-liiﬁ_I.lli_ii i

EAEEAALER SahkaL G Rk
PR RR RS A bR R iR R Eb b 3 PERRERRRREERRERE BRIV AR E I%l}ﬁﬂ}{:.hi

R s b \ ; il e HEE T TR LR ERTALALS
§ 3 i W N o . x | O ! 3

- S
8 ol

] =

i 2 | ] L]

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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TU Example: BN with four binary variables @ HCI-KDD -

Grazm

Gene 1
P(on) 0.8
P (off) 0.2

Gene 2 Gene 1 Gene 1 Gene 1 Gene 1

on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4

Prognosis Gene2on Gene2on Gene2o0ff Gene 2 off
Gene3on Gene3o0off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5

P(poor) 0.4 0.9 0.1 0.5
Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the

prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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TU  Concept Markov-Blanket @ HCI-KDD £

Grazm

Gevaert, O., Smet, F. D,,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian
networks.
Bioinformatics, 22, 14,
184-190.
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TU Dependency Structure -> first step (1/2) @ HCI-KDD o4

Grazm

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

l

1

[

p(SID) « p(S) ]1[ f

/ Ty /
F(N'i) 1_[ [(N'ijk + Nijx)
[(N';j + Nyj) 1 1 I'(N'iji)

Nijk ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.

Holzinger Group 82 iML 01



TU Dependency Structure — first step (2/2) @ HCI-KDD s

Grazm

" Next, N;; is calculated by summing over all states of a variable:

= N = XL, Niji - N'ijx and N’';; have similar meanings but refer to prior
knowledge for the parameters.

= When no knowledge is available they are estimated using N;j, = N/(7iq;)

=  with N the equivalent sample size,

= 7; the number of states of variable i and

" g; the number of instantiations of the parents of variable i.

= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(S) is calculated by:

= p(S) =T IS p(i — x) [y =g (M)

= with p; the number of parents of variable x; and o; all the variables that are
not a parent of x;.

= Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge froma to b
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TU  Parameter learning -> second step @ HCI-KDD s

Grazm

* Estimating the parameters of the local probability models corresponding
with the dependency structure.

e CPTs are used to model these local probability models.

* For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

* Each set of parameters was given a uniform Dirichlet prior:

p(911|5) = Dir(@ij|N'ij1, "'!N’ijk' ---»N,ijrl-)

Note: With 6;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 6;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N'ij1, ..., N';jr,) as parameters of this Dirichlet distribution. Parameter learning then consists of

updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(0U|D,S) = Dir(gile’ijl + Nijli "'JN,ijk + Nijki "'JN’ijTi + Nij?‘i)
with N;j, defined as before.
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TU_ Predicting the prognosis of breast cancer (integrated a.) @Hci-kpp
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b ®

Gevaert, O., Smet, F. D,,
Timmerman, D., Moreau, Y. &
Moor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks. Bioinformatics, 22,

14, 184-190.
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TU  Inference in Bayes Nets is intractable (NP-complete!) @ HCI-KDD o4

= For certain cases it is tractable if:
" Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

" Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem
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TU Example: Lymphoma is the most common blood cancer @HcI-kpD -

Grazm

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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TU ML tasks on graphs - @ HCI-KDD -
W

= Discover unexplored
Interactions in PPI-
networks and gene
regulatory networks

= | earn the structure

= Reconstruct the
structure

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, _
T. & Miiller, T. 2008. Identifying functional modules in e )—=O | A =@
protein—protein interaction networks: an integrated —® o\

exact approach. Bioinformatics, 24, (13), i223-i231.
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Grazm

From structure to function

@ HCI-KDD 4=

v =g

© A Protocol for Computer-Based Protein Structure and Function Prediction

Ambwish Hoyl2, Dong X, Jonathan Poissont, Yang fhang™

LCemter for Computational Madicine and Bicinlormatics. University of Michigan. “Center b Bioinfoematics and Departmeant of Molecular Bioscience, Unhversity of Kansas

005 Toke

221 Rumning e - TASSER
Saiver

37 Swuciune Anaksis

558 LOMETS Tangot Template
Alignmnt

7:30 Spuciural Analogs in PDB
and Ereyme Commission
Mumbser Frediciion

B30 Gene Omiology (G0) Term

Predhictions

1205 Represemiative - TASSER
Resuly

1543 Conclusson

Cluster Centroid

Gusdatines for computer based struchural and funcBonnl chnracterizalkon ol Prodesn using the -TASSER

pipeling s describad. Starting from query protain sequence, 30 models are genedaiad wsing multiple

throadinn allnoemantc and foratka otretniral sccambhs olmolatbnne Cimetbnnal Inforancroc ora thoroafor deman

ancf Prodesn-bgand Band sitg

|G| £ |w]+ B

ten Wncin o Dpom Accom

Recommend JoVE
L to Your Librarian

Related Videos

- e
=] Anadyring sl Building
Fiuel Acid
Structures
EiiRad AT

Prooiwan WSO A
Woakbenth loe i
Dphrsirsioe ol
Synthatic Pienin

Trarsiaie tod o

Choose Languesge

http://www.jove.com/video/3259/a-protocol-for-computer-based-protein-structure-function
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TU Interesting: Hubs tend to link to small degree nodes @ HCI-KDD -

Grazm

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability
that a node with degree k links to a

node with degree K’ is;
kk'

0 — —
P 57

k=50, k'=13, N=1,458, L=1746

Psoss =0.15  p,, =0.0004

Jeong, H., Mason, S. P,, Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in

protein networks. Nature, 411, (6833), 41-42.
90
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TU Example: Subgraph Discovery @ HCI-KDD -

de Sitter \facm m S!ring Theu:r':wr

HIGH ENERGY PHYSICS: (| /A0 N
THEORY S\l :

Quasinormal Modes of N *“ Microwave Anisot
Black Holes and Black Branes &A% it WA

\ R DR AnAItarnatwa To Cnmpactmmun ko
5 . CO _-_; yri___{etlmated bridgeness = 1276)

GENERAL RELATIVITY * 1+ s
AND QUANTUM COSMOLOGY - "+ 7 %

- | h .
-l m’ ,.-‘ \ :
ke .‘__-,.- '. 19K _.
i TRt
e g f b ..1‘__ iy
et AT N
=) B ol "l |
Q

Gopalan, P. K. & Blei, D. M. 2013. . e RS e
Efficient discovery of overlapping b = g% et el ;
communities in massive Al.argu Mml-lmmmhy o s S )

networks. Proceedings of the from aSn'lﬂH Dlmanalun s HIGH ENERGY PHYSICS:
National Academy of Sciences, A3 . . ' 'PHENOMENOLOGY

110, (36), 14534-14539. T -~—~==~=- S
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Grazm

Why do we want to apply ML to graphs

@ HCI-KDD -

A)
B)
C)

Discovery of unexplored interactions
_earning and Predicting the structure

Reconstructing the structure

Which joint probability distributions does a
graphical model represent?

How can we learn the parameters and structure
of a graphical model?

52 months

The chemical space

1. Find a
target

3.Hit-to-lead:
»| characterize
hits

® 10 possible small or-
ganic molecules

.| 2. Identify
L hits

Holzinger Group

® 10?2 stars in the observ-
able universe

$500,000,000
to
$2,000,000,000
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TU Example Question: Predicting Function from Structure = @HcI-kDD -

Grazm

a) R
B.cereus 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGRKNYEA
B.anthracis 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGREKNYEA
E.coli 1 ---MISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTLNKP------- VIMGRHTWES
H.sapiens 1 MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFS
5 . % k. gkk R skER e
A
B.cereus 51 I---GRPLPGRRNIIVIRNEGYHVEGCEVV-HSVEEVFEL------ CKNEEEIFIFGGAQ
B.anthracis 51 I---GRPLPGRRNIIVITRNEGYHVEGCEVA-HSVEEVFEL------ CKNEEEIFIFGGAQ
E.coli 50 I---GRPLPGRKNIILSSQPGTD-DRVTWV-KSVDEAIAA------ CGDVPEIMVIGGGR
H. aapiens 61 IPEKNR.PLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPE LANKVDMVWIVGGSS
* JHkk Rk Fsi:: 2 s®r3s.2 S T L WE,
B.cereus 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEIDMTNWKEIFVEKG- - -LTDEKNPYTYYY
B.anthracis 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG- - -LTDEKNPYTYYY
E.coli 99 VYEQFL--PKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFH- - -DADAQNSHSYCF

H.sapiens 121 VYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKF

* k. LR _kk k.

~

i | / N/ ,,‘®
= P

HNT N \ e

19 21 ‘ | @’
(CH,)4COOH \

NH OMe
N= =
)ﬁ/\@ QA@ ;ﬁ?
HsN N
2 HQN N HEN \N
22

O(CH,)4,COO0H (CH,)sCOOH
23 24

How similar are two graphs? How similar is their
structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.
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TU  Learning Graphical Models from data @ HCI-KDD -

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges
in the biomedical domain:

Uncertainty and complexity

" The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. |. 1998. Learning in graphical models, Springer
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TU Learning the Structure of GM from data @ HCI-KDD £

1) Test if a distribution is decomposable with regard to a given graph.

= This is the most direct approach. It is not bound to a graphical
representation,

= |t can be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.

2) Find a suitable graph by measuring the strength of dependences.

= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.

3) Find an independence map by conditional independence tests.

= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.

= |t has the advantage that a single conditional independence test, if it fails,

can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.

Borgelt, C., Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for
learning, reasoning and data mining, John Wiley & Sons.
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TU  Who of you smokes?

Grazm

@ HCI-KDD 4=

Relaxed
smooth
muscles

Normal airway

9

Asthmatic airway

Air trappet
———inalveoli

J—
| Tightened
— \ smooth

muscles

Wall inflamed
and thickened

Asthmatic airway
during attack

Beasley, R. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351, (9111), 1225-1232,

doi:http://dx.doi.org/10.1016/S0140-6736(97)07302-9.

Holzinger Group
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TU Example for Graphical Model Learning @ HCI-KDD s

Grazm

S ————  BaY€sian Network
I £ K

Florian Asthma Smokes
Tamas
Matthias
Benjamin
Dimitrios
Rows are independent
during learning and
Florian

inference!

Florian 0 0.3 0.2
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TU Relational Representation Learning and Prediction @ HCI-KDD

= Asthma can be hereditary
" Friends may have similar smoking habits

" Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

Smokes 2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)

Holzinger Group 98 iML 01



TU Knowledge Representation > Reasoning > Learning

@ HCI-KDD 4=

Grazm
= 4 Probabilistic £ & Program
- — 1,1 JRietamad .
© Programming = Induction
i o E O -
g a 5 2 £
[ Statistical - Statistical :
O Relational Models s = Relational @
T © : 5
Probabilistic ® o & iR E
Databases = g = =
™ U
o :
Graphical — “E GEPE":IEI
Models Bayesian E Leacr}n;
Networks &
Knowledge Reasoning Machine
i I
Representation Learnin

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+

Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called

ProbLog, see: De Raedt, L., Dries, A., Thon, |., Van Den Broeck, G. & Verbeke, M. 2015. Inducing probabilistic relational rules
from probabilistic examples. International Joint Conference on Artificial Intelligence (1JCAI).

Holzinger Group
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TU  Future Outlook G HCI-KDD %=

Grazm

The future is in integrative ML, i.e. combining relational databases,
ontologies and logic with probabilistic reasoning models and
statistical learning — and algorithms that have good scalability

w Smokes(x) A Friends(x,y) = Smokes(y) '

14
= 12
= 10
= 8
i G
& 4
5 1 1 1 1 1
0 5000 10000 15000 20000  25000f 30000
Domain Size (Number of People)
m Learns a model over
900,030,000 random variables

Blg mOd EIS Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J. & De Raedt, L.

Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2011. AAAI Press, 2178-
2185.

Holzinger Group 100 iML 01



TU  xxx
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06 Probabilistic
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TU  Probabilistic Programs @ HCI-KDD %

Grazm

= Representatives for causal processes that are
generative, relational, recursive, composable,
and computationally universal

physics

World state (t) ——> World state (t+1) ... Pr(AlB,D) j:»/”
graphics : A // i

m P

L~

Image (t) Image (t+1) 0 ~ 1~ //

o 111
8 /’/%\P“ :

Beliefs (B) Desires (D) )

Desires (D) ... ™

N/

Actions (A)
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TU Intuition @ HCI-KDD £

Grazm

Inference

Parameters Parameters P(X\Y )

Program Program p(y|x)p(x)

Output Observations y

CS Probabilistic Programming  Statistics

Wood, F., Van De Meent, J.-W. & Mansinghka, V. A New Approach to Probabilistic
Programming Inference. AISTATS, 2014. 1024-1032.
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TU Defintions G HCI-KDD %=

Grazm

" Probabilistic programs are usual functional or imperative
programs with two added constructs:

= (1) the ability to draw values at random from distributions, and

= (2) the ability to condition values of variables in a program via
observations.

= Models from diverse application areas such as computer vision,
coding theory, cryptographic protocols, biology and reliability
analysis can be written as probabilistic programs. Probabilistic
inference is the problem of computing an explicit representation of
the probability distribution implicitly specified by a probabilistic
program. Depending on the application, the desired output from
inference may vary—we may want to estimate the expected value
of some function f with respect to the distribution, or the mode of
the distribution, or simply a set of samples drawn from the
distribution.

Gordon, A. D., Henzinger, T. A., Nori, A. V. & Rajamani, S. K. Probabilistic programming.
Proceedings of the on Future of Software Engineering, 2014. ACM, 167-181.
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TU  Probabilistic Programming Models

Grazm

@ HCI-KDD -

p(y|x)p(x)
ply)

p(xly) =

program source code
scene description
policy and world
cognitive process

simulation

—

program output
image
rewards
behavior

constraint

Tolpin, D., Van De Meent, J.-W. & Wood, F. Probabilistic programming in Anglican. Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2015. Springer International Publishing, 308-311.

http://probcomp.csail.mit.edu/readings/
Holzinger Group 105

https://peerj.com/articles/cs-55/#p-5
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Grazm

Human collective Intelligence as distributed Bayesian I.

@ HCI-KDD 4=

Individual-Level “Social Sampling” Mechanism

Group-Level Collective Rationality

Holzinger Group
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TU Historical Roots: Prolog @ HCI-KDD -

Grazm

PL Al ML STATS

obahi 5&%& |
IE |I|stlc G

Venture :can

3 Yy
program source code program output
scene description image
policy and world rewards
cognitive process behavior
simulation constraint
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Graz-

Applications: Perception and Inverse Graphics @ HCI-KDD -

Captcha Solving

scene description

Scene Description

Inferred Inferred model Inferred model
(reconstruction)| = Tendered with re-rendered with
novel poses novel lighting

¢oe
0Y Q!
V2 9t
€O ¢

—
i”

QAEECE
L

Mansinghka,, Kulkarni, Perov, and Tenenbaum.
"Approximate Bayesian image interpretation using
enerative probabilistic graphics programs.” NIPS (2013).

Holzinger Group 108

Kulkarni, Kohli, Tenenbaum, Mansinghka

"Picture: a probabilistic programming language for

scene perception." CVPR (2015). 21
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TU Application: Reinforcement Learning @ HCI-KDD s

Grazm

)

0%

4

%
(&

X 4
policy and world reward
Wingate, Goodman, Roy, Kaelbling, and Tenenbaum. van de Meent, Tolpin, Paige, and Wood.
"Bayesian policy search with policy priors." "Black-Box Policy Search with Probabilistic Programs.”
(IJCAL), 2011. arXiv:1507.04635 (2015). e
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Grazm

@ HCI-KDD -

Holzinger Group

Reasoning about reasoning

Want to meet up but phones are dead...

\ | prefer the pub.
Where will Noah go?
Simulate Noah:
Noah prefers pub
but will go wherever Andreas is
Simulate Noah simulating Andreas:

-> both go to pub

cognitive process pehavior

Stuhlmdller, and Goodman.
"Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs.”
Cognitive Systems Research 28 (2014): 80-99. 23
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TU Application: Program Induction @ HCI-KDD £

Holzinger Group

Program Induction

¥ ~ p(-x) ¥~ p(]x)

y -
=i
_I
[
- -
- 1 Y
]
02 . &y
r (]
[ -
i1 — 1
! e
" . --'-u i .I.l e
-10 -5 0 5 10 0.0%- o — = = i

[\ambda [stack-id) {safe-uc (* (1f (< 8,8 (* {* {* -1.B (begin (define _

6 1347 {safe-uc 1.8 1.8)] 8.8} [ 8.8 (+ 8.8 {safe-uc [* [* {dec -2 X p(le)
(8] (38fe-3qrt (begin {define € 1148 3,14159) [safe-log -1.8)}1) 2.8

8.81)1) 1.8} [+ [safe-div (begin {define G_ 1149 (* (+ 314158 -1.8]

1.8)) 1.0} 0.8) (safe-log 1.8)} (sate-log -1.@)) (begin [defime G_ 11

X ~ p(x)

program source code program output

Perov and Wood.
"Learning Probabilistic Programs.”
arXiv:1407.2646 (2014). 24
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TU Application: Constrained Stochastic Simulation @ HCI-KDD s

Grazm

Stable Static Structures

aF

f

Procedural Graphics

simulation

constraint

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints
with Gradient-based Probabilistic Programming.

In Computer Graphics Forum, (2015)

Holzinger Group 112

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with

Stochastically-Ordered Sequential Monte Carlo."2s
SIGGRAPH (2015)
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TU @ HCI-KDD +£-

Grazm

Interpreted

A Language Family Tree

Church

WebChum \

Interpreted Anglican<— VentureScript

i

Probabilistic-C
WebPPL <> Anglican :

v v A H

lisp javascript clojure ¢
Inspiration —
Modeling language —»
Compiled ”e
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TU Conclusion G HCI-KDD -4

Grazm

Central question according to Josh Tenenbaum: How does the
mind get so much from so little, in learning and reasoning
about objects, categories, causes, scenes, events?

Bayesian inference in probabilistic generative models.

Probabilistic models defined over a range of structured
representations: graphs, grammars, schemas, predicate logic...

Hierarchical models, with inference at multiple levels of
abstraction.

Probabilistic programs: computationally universal
representations for causal processes that are relational,
recursive, composable.

Towards a computational theory of human common sense.

How can these theories be used to perceive, reason, predict,
plan, learn and communicate ...

A lot to do at the intersection of cognitive science and
machine learning ...
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TU  Conclusion @ HCI-KDD £

" Probabilistic programming is enabling to do
things that would otherwise be impossible.

" Inference > Probabilistic Programming > New
Models > move forward ML > understand
intelligence!

= (what did Demis Hassabis from Google Deep
Mind say as their grand goal? ;-)
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This is only possible in a ... @ HCI-KDD

Grazl

withdut bolundaries....
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TU  ML-Algorithms are key but needs also concerted effort  @HCI-KDD

Grazm

Data
Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

© a.holzinger@hci-kdd.org 0

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:

Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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@ HCI-KDD 4=
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Iy @ HCI-KDD 4=
@
08 Questions
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TU  Sample Questions @ HCI-KDD -4

= Why is Cognitive Science important for Machine Learning?
= What is the mission statement of Google Deepmind?

= Describe the human information processing model of
Atkinson & Shiffrin (1971)?

= Why is attention so central in cognition?

= How did we define knowledge?

hy is decision making relevant for health informatics?
nat is probabilistic programming?

hat is reasoning?

nat can we do with probabilistic graphical models?
hat is the advantage of factor graphs?

=Sz ==
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Iy @ HCI-KDD 4=
@
09 Appendix
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TU Recommended Books 1 (General Introductions)

Grazm

@ HCI-KDD 4=

INTERMATIOMAL ‘ﬂ i

EDITION 'i :

Engineering Psychology
and Human Performance

FOURTH EDITION

Christepher D Wickens + Justin G, Hallands
Siman Banbury = Rags Parswrsman

Wickens, C. D., Hollands, J.

G., Banbury, S. &
Parasuraman, R. 2012.
Engineering Psychology &
Human Performance, 4th
Edition, Boston et al.,
Pearson.

Holzinger Group

Holyoak, K. J. &
Morrison, R. G. 2005.
The Cambridge
handbook of thinking
and reasoning,
Cambridge University
Press.

122

Haugeland, J. 1997.
Mind design II:
philosophy,
psychology, artificial
intelligence, MIT
press.
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TU Related Conferences G HCI-KDD 4

Grazm

Year (2015) ~

Help ~

NIPS 2015

Monday December 07 -- Saturday December 12, 2015

My Registrations

Profile ~
Dates Calls~ Program Schedule~ NIPS Awards
Sponsorship Books~ Foundation~
Exhibitor info .
View NIPS 2016 » | View Earlier Meetings » L NSV f | #nips2015
Publications
Futire Meeiings Online Videos Tutorials Invited Speakers
Women in Machine Learning Videos are available for Tutorials, Invited s [ntroduction to Reinforcement ¢ Zoubin Ghahramani, U. of
Speakers, Workshops and Learning with Function Cambridge
Spotlights. Thanks to Microsoft for Approximation * Mitsuo Kawato, ATR
shooting, editing and hosting the videos. e High-Performance Hardware for e Asu Ozdaglar, MIT
Check here for updates. Machine Learning ¢ Haim Sompolinsky, Hebrew U.
e [ arge-Scale Distributed Systems » Robert Tibshirani, Stanford
for Training Neural Networks » Vladimir Vapnik, Facebook Al
e Monte Carlo Inference Methods Research, New York

* NIPS Deep Learning
* Probabilistic Programming
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TU Related Journals, example (1) @ HCI-KDD s

Grazm

Holzinger Group

Cognition

International Journal of Cognitive Science

Editor-in-Chief: Steven Sloman
View Editorial Board COGHNITION

Supports Open Access

I55M: o010-0277

f v 3aNMm=

L Cognition is an international journal that publishes theoretical and
R experimental papers on the study of the mind. It covers a wide variety of
subjects concerning all the different aspects of cognition, ranging from
Submit Your Paper v biclogical and experimental studies to formal analysis. Contributions
from the fields of psychology, neuroscience, linguistics, computer
science, mathematics, ethology and philosophy are welcome in this
journal provided that they have some bearing on the functioning of the
mind. In addition, the journal serves as a forum for discussion of social
S Order Journal and political aspects of cognitive science.

Papers will be selected on the basis of their scientific quality and degree
ofinnovation. A paper's theoretical relevance to cognition, overall

Track Your Paper

<2 View Articles
-

soundness of the argument and degree of empirical motivation,
especially from converging sources, are more important than adherence

Journal Metrics to specific methodological principles. Because Cognition enjoys a wide
readership from many disciplines, authors should...

Source Mormalized Impact per Paper Read more

(SNIP): L676 @

SClmago Journal Rank (5)R): z.y70

o) This journal supports the following content innovations

Impact Factor: 3.4u @ » AudioSlides

5-Year Impact Factor: 4.308 @ » Interactive Plot Viewer

http://www.journals.elsevier.com/cognition
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TU Related Journals, example (2) @ HCI-KDD -

Grazm

Holzinger Group

ﬂ’ AMERICAN PSYCHOLOGICAL ASSOCIATION

About APA | Topics Publications & Databases Psychology Help Center News & Evenis

Home [/ Publications & Databases // APA and Affiliated Journals // Psychological Review

FPublications: Books Children's Books Databases Journals Magazines & Mewsletiers

Psychological Review®

Editor: Keith J. Holyoak, PhD

ISSN: 0033-295X

elSSN: 1939-1471

Published: six times, beginning in January

Impact Factor: 7 581

Psychology - Multidisciplinary: 5 of 129

:El View Table of Contents and Online First Publication
] Read Sample Articles

#* Journal Snapshot

Psychological
Review

--:] Advertising Information

5-Year Impact Factor: 10.872
CABS 2015 Academic Journal Guide: Grade 4 (top-ranked)

= Editorial by Keith J. Holyoak, 2016 (PDF. 13KB)

= Read "Believing Superstitions That You Know Aren't True” from APA Journals Article Spotlight

http://www.apa.org/pubs/journals/rev/
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TU Related Journals, example (3) (access from TUG, KFU) @ HCI-KDD o4

Grazm

Editor
Rebecca Schwarzlose

Senior Managing Trends Editor
Suzanne Brink

Trends Publisher Trends in Cognitive Sciences All Content

Paige Shaklee

VCPEMOES [~ Al Joimials

Journal Manager
Rolf van der Sanden

Journal Administrator
Ria Otten
Patrick Scheffmann

SN Sateliite Cell Symposium; Big Current lssue

Cluestions in Neurcscience| Mov : bt ragnl Vol 20 1ss. 9, Seplember 2016

Advisory Editorial Board 10—11, 2016 |San Diego, CA, USA Tabika of Conents
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TU Solutions to the Quiz Questions @ HCI-KDD -

1. People are awesome — this cannot be done by any machine learning
device — no robot to date can do that complex behaviour

2. No, on Mars computers are better to date

3. No, driverless cars can drive when humans are not able to drive

4. No, chess computers are playing better, but sometimes you can win
through illogical behaviour (Spock)

5. Partly, vacuum cleaning is not a sophisticated task

6. NLP partly, primitive tasks can be done by computers

7. Humanoid robotics — also far from the reality, as for example in Ex
Machina — e.g in Fukusima

8. Image understanding is hard for a machine if there are not thousands
of samples before — humans can get out so much from so little

9. InRn no human has a chance

10. Mathematics partly — creativity is better in humans

11. Pattern recognition — partly humans are good but in big data
machines are much better

12. In NP-hard problems humans have a chance via heuristics — humans

have creativity! See foldit
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TU Additional Reading @ HCI-KDD s

Grazm

= History of Probability Theory

=  Franklin, J. The Science of Conjecture: Evidence and Probability Before Pascal. John Hopkins University
Press, 2001.

= Jaynes, E. T. Probability Theory: The Logic of Science. Cambridge University Press, 2003.
=  Probabilistic Reasoning
=  Gigerenzer, G., and D. J. Murray. Cognition as Intuitive Statistics. Hillsdale, NJ: Erlbaum, 1987.

=  Gilovich, T., D. Griffin, and D. Kahneman, eds. Heuristics and Biases: The Psychology of Intuitive
Judgment. Cambridge University Press, 2002.

= Kahneman, D., P. Slovic, and A. Tversky, eds. Judgment under Uncertainty: Heuristics and Biases.
Cambridge University Press, 1982.

=  Bayesian Networks

= Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman,
San Mateo, CA, 1988.

= Breese, J. S. "Construction of Belief and Decision Networks." Computational Intelligence 8, 4 (1992):
624-647.

= F Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. "Statistical Foundations for Default Reasoning."
Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAl). Chambery, France,
August 1993, pp. 563-569.

=  Multiple-Instance Bayesian Networks

=  Pasula, H., and S. Russell. "Approximate Inference for First-order Probabilistic Languages." IJCAI-01.
Seattle, WA, 2001, pp. 741-748.

= Halpern, J. Y. "An Analysis of First-order Logics of Probability." Artificial Intelligence 46, 3 (1990): 311
350.

= D.Koller, and A. Pfeffer. "Object-Oriented Bayesian Networks." Proceedings of the 13th Annual
Conference on Uncertainty in Al (UAI). Providence, Rhode Island, 1997, pp. 302-313.
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TU

Grazm

@ HCI-KDD -4~

Causal Reasoning

Waldmann, M. R. "Competition among Causes but not Effects in Predictive and
Diagnostic Learning." Journal of Experimental Psychology: Learning, Memory, and
Cognition 26 (2000): 53-76.

Ahn, W., and M. Dennis. "Induction of Causal Chain." Proceedings of the Twenty-second

Annual Conference of the Cognitive Science Society. Lawrence Erlbaum Associates, NJ:
Mahwah, 2000.

Dennis, M. J., and W. Ahn. "Primacy in Causal Strength Judgments." Memory &
Cognition 29 (2001): 152-164

Cheng, P. W. "From Covariation to Causation: A Causal Power Theory." Psychological
Review 104 (1997): 367-405.

Novick, L. R., and P. W. Cheng. "Assessing Interactive Causal Influence." Psychological
Review. (in press)

Causal Models

Pearl, J. Causality: Models, Reasoning, and Inference. New York: Cambridge University
Press, 2000.

Glymour, C. "Learning, Prediction and Causal Bayes Nets." Trends in Cognitive Science 7
(2003): 43-48.

Zhang, N., and D. Poole. "Exploiting Causal Independence in Bayesian Network
Inference." Journal of Artificial Intelligence Research 5 (1996): 301-328.
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TU Additional Reading (2) @ HCI-KDD o4

Grazm

= Causal Theories and Mechanisms

=  Waldmann, M. R. "Knowledge-based Causal Induction." The Psychology of Learning
and Motivation, Vol. 34: Causal Learning. Edited by D. R. Shanks, K. J. Holyoak, and D. L.
Medin. San Diego: Academic Press, 1996, pp. 47-88.

=  Ahn, W,, C. W. Kalish, D. L. Medin, and S. A. Gelman. "The Role of Covariation vs.
Mechanism Information in Causal Attribution." Cognition 54 (1995): 299-352.

=  Ahn, W.,, L. Novick, and N. S. Kim. "Understanding it Makes it More Normal: Causal
Explanations Influence Person Perception." Psychonomic Bulletin and Review. (in press)

= Rational Analysis

= Anderson, J. R. The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1990.

=  Ahn, W,, and L. M. Graham. "The Impact of Necessity and Sufficiency on Information
Choices in the Wason Four-card Selection Task." Psychological Science 10 (1999): 237-
242.

= Qaksford, M., and N. Chater. "A Rational Analysis of the Selection Task as Optimal Data
Selection." Psychological Review 101 (1994): 608-631.

= Qaksford M., and N. Chater, eds. Rational Models of Cognition. Oxford University Press,
1998.

=  Sperber, D., F. Cara, and V. Girotto. "Relevance Theory Explains the Selection Task".
Cognition 57 (1995): 31-95.
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TU  Spare Time Reading @ HCI-KDD %

Grazm
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http://content.time.com/time/magazine/article/0,9171,1580382,00.ht
ml

http://content.time.com/time/magazine/article/0,9171,30198,00.html
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