'!_:rg_ Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD +4-
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Andreas Holzinger \f j

VO 709.049 Medical Informatics A
19.10.2016 11:15-12:45 -

-« Lecture 02 Back to the Future — eﬂ\(_aw
Fundamentals of biomedical
Data, Information, and Knowledge

a.holzinger@tugraz.at
Tutor: markus.plass@student.tugraz.at
http://hci-kdd.org/biomedical-informatics-big-data
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TU Schedule G HCI-KDD &«

Grazm

. Back to the future: Fundamentals of Data, Information and Knowledge

. Structured Data: Coding, Classification (ICD, SNOMED, MeSH, UMLS)

. Biomedical Databases: Acquisition, Storage, Information Retrieval and Use

. Semi structured and weakly structured data (structural homologies)

. Multimedia Data Mining and Knowledge Discovery

. Knowledge and Decision: Cognitive Science & Human-Computer Interaction
. Biomedical Decision Making: Reasoning and Decision Support

]
O 00 N O U1 B W N

. Intelligent Information Visualization and Visual Analytics
= 10. Biomedical Information Systems and Medical Knowledge Management
= 11. Biomedical Data: Privacy, Safety and Security

= 12. Methodology for Information Systems: System Design, Usability and
Evaluation
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TYU ML needs a concerted effort fostering integrated research @HCI-KDD

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.ho]zinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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TU  Keywords @ HCI-KDD £

= Data

" |Information

= Knowledge

= Dimensionality of data

" Information complexity

" Information (Shannon) entropy
= Mutual Information/Cross Entropy
= Kullback-Leibler Divergence

Holzinger Group 4 709.049 02



TU  Learning Goals @ HCI-KDD £

" ... be aware of the types and categories of
different data sets in biomedical informatics;

= . know some differences between data,
information, and knowledge;

= . be aware of standardized/non-standardized
and well-structured/”un-structured”
information/data;

= ... have a basic overview on information theory
and the concept of information entropy;

= ... are aware of the importance of the Kullback-
Leibler divergence

Holzinger Group 5 709.049 02



TU

Grazm

Advance Organizer (1/2) @ HCI-KDD +£-

Abduction = cyclical process of generating possible explanations (i.e., identification of a
set of hypotheses that are able to account for the clinical case on the basis of the
available data) and testing those (i.e., evaluation of each generated hypothesis on the
basis of its expected consequences) for the abnormal state of the patient at hand;

Abstraction = data are filtered according to their relevance for the problem solution
and chunked in schemas representing an abstract description of the problem (e.g.,
abstracting that an adult male with haemoglobin concentration less than 14g/dL is an
anaemic patient);

Artefact/surrogate = error or anomaly in the perception or representation of
information trough the involved method, equipment or process;

Data = physical entities at the lowest abstraction level which are, e.g. generated by a
patient (patient data) or a (biological) process; data contain no meaning;

Data quality = Includes quality parameter such as : Accuracy, Completeness, Update
status, Relevance, Consistency, Reliability, Accessibility;

Data structure = way of storing and organizing data to use it efficiently;

Deduction = deriving a particular valid conclusion from a set of general premises;
DIK-Model = Data-Information-Knowledge three level model

Disparity = containing different types of information in different dimensions

Heart rate variability (HRV) = measured by the variation in the beat-to-beat interval;

HRV artifact = noise through errors in the location of the instantaneous heart beat,
resulting in errors in the calculation of the HRV, which is highly sensitive to artifact and
errors in as low as 2% of the data will result in unwanted biases in HRV calculations;
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TU

Grazm

Advance Organizer (2/2) @ HCI-KDD +£-

Induction = deriving a likely general conclusion from a set of particular statements;
Information = derived from the data by interpretation (with feedback to the clinician);

Information Entropy = a measure for uncertainty: highly structured data contain low
entropy, if everything is in order there is no uncertainty, no surprise, ideally H=0

Knowledge = obtained by inductive reasoning with previously interpreted data,
collected from many similar patients or processes, which is added to the “body of
knowledge” (explicit knowledge). This knowledge is used for the interpretation of other
data and to gain implicit knowledge which guides the clinician in taking further action;

Large Data = consist of at least hundreds of thousands of data points

Multi-Dimensionality = containing more than three dimensions and data are multi-
variate

Multi-Modality = a combination of data from different sources

Multivariate = encompassing the simultaneous observation and analysis of more than
one statistical variable;

Reasoning = process by which clinicians reach a conclusion after thinking on all facts;
Spatiality = contains at least one (non-scalar) spatial component and non-spatial data

Structural Complexity = ranging from low-structured (simple data structure, but many
instances, e.g., flow data, volume data) to high-structured data (complex data
structure, but only a few instances, e.g., business data)

Time-Dependency = data is given at several points in time (time series data)
Voxel = volumetric pixel = volumetric picture element
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TU  Glossary (incomplete) G HCI-KDD %=

ApEn = Approximate Entropy;

DIK = Data-Information-Knowledge-3-Level Model;
GraphEn = Graph Entropy;

H = Entropy (General);

HRV = Heart Rate Variability;

MaxEn = Maximum Entropy;

MinEn = Minimum Entropy;

NE = Normalized entropy (measures the relative
informational content of both the signal and noise);

PDB = Protein Data Base;
SampEn = Sample Entropy;
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TU Common Mathematical Notations @ HCI-KDD =%

Grazm

“In mathematics you don’t understand

Data
T o things. You just get used to them” —
n Number of samples
d Number of input variables John von Neumann
&R TR Fa) Matrix of input samples
¥ =Mians ¥n) Vector of output samples
Z =Xy Combined input—output training data or
L = [Zyyisis Z,) Representation of data points in a feature space
Distribution
i Probability
F(x) Cumulative probability distribution function (cdf)
p(x) Probability density function (pdf)
p(x.y) Joint probability density function
p(x:m) Probability density function, which is parameterized
plyv|x) Conditional density
t(x) Target function ity -

Mathematical Nolations for Course LY 185 A% Machine Learning for Health Informatics

et Wyitams and £ ompeter dedia ()

Documents
A PHOLTRNLE R M Drarming
Rt ibon
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TU Agenda for today @ HCI-KDD £

= 01 Reflection — follow-up from last lecture
" 02 What is data?

= 03 Excursus: Data Integration — Data Fusion
" 04 What is Information?

" 05 What is Knowledge?

= 06 A clinical view on data, information, and
knowledge

Holzinger Group 10 709.049 02



@ HCI-KDD -4~

Image source: http://www.hutui6.com/reflection-wallpapers.html
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TU  Warm-up Quiz @ HCI-KDD -

Grazm

(01D — 210 *p(0)

p(D)

m(xy) :

4 ‘," p(xy)=o(xy)

Clinical Pharmacol
& Therapeutics fcl?—y

Holzinger Group 12 Solutions in the Appendix 709.049 02



TU Question: Where is the Biologist in this image? @ HCI-KDD -

Grazm

Image source: http://www.efmc.info/medchemwatch-2014-1/lab.php

Domingos, P. 2015. The Master Algorithm: How the Quest for the Ultimate Learning
Machine Will Remake Our World, Penguin UK.
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TU Repetition of Bayes - on the work of Laplace @ HCI-KDD -

Grazm

What is the simplest mathematical operation for us?
p(z) = (p(z,y)) (1)
How do we call repeated adding?
p(z,y) = p(ylz) * p(y) (2)
Laplace (1773) showed that we can write:
p(z,y) * p(y) = p(y|z) * p(z) 3)
Now we introduce a third, more complicated operation:

plz,y) *ply)  plylz) * p(x)
ply)  py) @

We can reduce this fraction by p(y) and we receive what is called Bayes rule:

oy _ blylz) * p(zx) _ p(d|h)p(h)
PE) = T0w) Pl = =) &)
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TU  Problem: Diagnoses @ HCI-KDD £

= Your MD has bad news and good news for you.

= Bad news first: You are tested positive for a serious
disease, and the test is 99% accurate (T)

= Good news: It is a rare disease, striking 1 in 10,000 (D)
= How worried would you now be?

likelyhood * prior p(x) p(h|d) = p(d|h)p(h)

posterior p(x)= donce p(d)

p(T =1|D =1) = p(d|lh) = 0,99 and
p(D =1) =p(h) =0,0001

(0,99)%(0,0001) ~
(1—0,99)%(1—0,0001)+0,99%0,0001

= 0,0098

Holzinger Group 15 709.049 02
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TU Key Problems @ HCI-KDD

Grazm

= Heterogeneous, distributed, inconsistent data
sources (need for data integration & fusion) [1]

= Complex data (high-dimensionality — challenge
of dimensionality reduction and visualization) [2]

= Noisy, uncertain, missing, dirty, and imprecise,
imbalanced data (challenge of pre-processing)

" The discrepancy between data-information-
knowledge (various definitions)

" Big data sets (manual handling of the data is
awkward, and often impossible) [3]

1.  Holzinger A, Dehmer M, & Jurisica | (2014) Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future
challenges and research directions. BMC Bioinformatics 15(S6):11.

2. Hund, M., Sturm, W.,, Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of Patient Groups and Immunization Results
Based on Subspace Clustering. In: LNAI 9250, 358-368.

3.  Holzinger, A, Stocker, C. & Dehmer, M. 2014. Big Complex Biomedical Data: Towards a Taxonomy of Data. in CCIS 455. Springer 3-18.
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TU Institute for Advanced Study, Princeton University @ HCI-KDD -

Grazm
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TU  Traditional Statistics versus Machine Learning @ HCI-KDD -

Grazm

= Data in traditional = Data in Machine
Statistics Learning
= High-dimensional

= | ow-dimensional
data ( < R199)

= Problem: Much
noise in the data

data ( >» R1°9)

= Problem: not noise,
but complexity

= Much structure, but

= Not much structure the structure but
in the data but it cah not be
can be represented represented by a
by a simple model simple model

Lecun, Y., Bengio, Y. & Hinton, G. 2015. Deep learning. Nature, 521, (7553), 436-444,
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TU Slide 2-1: Biomedical Data Sources

Grazm

@ HCI-KDD -

1012
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TU Data for clinical purposes — integration is unsolved! @ HCI-KDD -

Grazm

Exposome
Private Health vault data Environmental data Collective data
Electronic health record data  Air pollution 59C|a| data
Physiological data Exposure (toxicants) Fitness, Wellness data

Ambient Assisted Living data

Laboratory results
(Non-medical) personal data

Metabolomics
Chemical processes
Cellular reactions
Enzymatic reactions

Foodomics, Lipidomics
Nutrition data (Nutrigenomics)
Diet data (allergenics)

Metabolomics
Chemical processes
Cellular reactions

. _ Imaging data
Enzymatic reactions

X-Ray, ultrasound, MR, CT, PET,
cams, observation (e.g. sleep
laboratory), gait (child walking)

Proteomics
Protein-Protein Interactions

Epigenetics Transcriptomics

Epigenetic modifications Genomics RNA, mRNA, rRNA, tRNA
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TU  Slide 2-2: Taxonomy of data @ HCI-KDD 2

Physical level -> bit = binary digit = basic
indissoluble unit (= Shannon, Sh), # Bit (!)
in Quantum Systems -> qubit

Logical Level -> integers, booleans, characters,
floating-point numbers, alphanumeric strings, ...

Conceptual (Abstract) Level -> data-structures, e.g.
lists, arrays, trees, graphs, ...

Technical Level -> Application data, e.g. text,
graphics, images, audio, video, multimedia, ...

“Hospital Level” -> Narrative (textual) data, genetic
data, numerical measurements (physiological data,
lab results, vital signs, ...), recorded signals (ECG,
EEG, ...), Images (cams, x-ray, MR, CT, PET, ...)

Holzinger Group 21 709.049 02



TU Examples: Imaging Data @ HCI-KDD £

Grazm

Image Source: Laboratory of Neuro Imaging, USC
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Graz-

Slide 2-3: Example Data Structures (1/3): List

@ HCI-KDD 4=

TYFPE 1link = REF node ;

node = RECORD

key : ItemType;

next : link;
END;

class link {

ItemType key;

link next;

}

VAR p, q : link ;

=]

link p.q;

p := NEW(link);

=]

p=new link();

p~.key:=x;

o

p.-key=x;

q := NEW(link) ;

=]

] | LD | L] | L]

g=new link();

T head

:4 L

L5

A CAP-DNA Complex [

Helix:Twrn-Heliz

B CAP recognition

sile DNA Logo

ﬂrn—wm-u-mmr-mmnr

0 & TCACA I_
L VA AR}

Sidechsin-Base
| memmetions

s
Spgies
'IE'I-'I-'I-

4

23 |

o D
1
0 E!—
N e~

Helix Turn Helix

Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. (2004) WebLogo: A sequence logo

generator. Genome Research, 14, 6, 1188-1190.

Holzinger Group
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TU Slide 2-4: Example Data Structures (2/3): Graph @ HCI-KDD -

Grazm

Evolutionary dynamics act on populations.
Neither genes, nor cells, nor individuals evolve;
only populations evolve.

Initial population Select for reproduction
Select for death Replace
0 Wy Wy 0 0
0 0 Wog Wy, O
W= wz; 0 0 0 W3s
Lieberman, E., Hauert, C. & Nowak, M. A. 0 Wi, 0 0 0
(2005) Evolutionary dynamics on graphs. 0 0 0 wy O
Nature, 433, 7023, 312-316. — —
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TU Slide 2-5: Example Data Structures (3/3) Tree @ HCI-KDD =%

Grazm

TDD31903
TIL25

TILO8
- TIL12
TILOG
TIL15
TIL16

TILOS
TILO7

|" TILO9
TILO4

TIL10
TIL17
r TILO1
TIL11

Hufford et. al. L gl _‘—L‘-l_ s
2012. Comparative / Teosinte P39

pOPU|at|0I’l Z. mays ssp. parviglumis —~I7 M2

genomics of maize o ([ 7 Kraow
. . Domestication 1 j

domestication and

improvement.

Nature Genetics,

44, (7), 808-811.

B73
{ CAUaTE o
ey CAUS5003
CAUCHANGT2
M37W
MRO3
MR23
MR21
MR18
MROB
MO18W
CML103

Landraces

Improvement l

odieir.h inbred lines
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TU @ HCI-KDD -

GGGGG

Data Integration
and Data Fusion in
the Life Sciences

Holzinger Group



TU Slide 2-6: “Big Data” pools in the health domain @ HCI-KDD £

Grazm

Biomedical R&D data Clinical patient data
(e.g. clinical trial data) (e.g. EPR, images, lab etc.)

Weakly structured, highly fragmented, with low integration

Health business data Private patient data
(e.g. costs, utilization, etc.) (e.g. AAL, monitoring, etc.)

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next
frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.
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TU

Grazm

Slide 2-7a: Omics-data integration (1/2)

@ HCI-KDD «£-

Genomics

Transcriptomics

Proteomics

Metabolamics

Protein-DNA
interactions

Protein—protein
interactions

Fluxomics

Phenomics

Genamics
(sequence
annotation)

+ ORF validation

* SNP effect on

* Enzyme

* Binding-site

* Functional

* Functional

* Functional

= Requlatory protein activity annotation identification™ annotation™ annotation annatation’ 1%
element or abundance = Biomarkers'™
identification™

Transcriptomics * Protein; * Enzyme * Gene-regulatory | = Functional * Functional

(microarray, SAGE) | transcript annotation'™ networks™ annotation® annotation™

correlation™ * Protein complex
identification™
Proteomics = Enzyme = Regulatory = Differential = Enzyme capacity | = Functional
(abundance, post annotation™ complex complex annotation
translational identification formation

modification)

Metabolomics
{metabolite
abundance)

= Metabolic-
transcriptional
response

* Metabolic
pathway
hottlenecks

= Metabolic
flexibility

* Metabolic
engineering'™

Protein-DMNA = Signalling = Dynamic

interactions cascades® 1™ network

(ChlP—chip) responses™
Protein=protein * Pathway
interactions identification
fyeast 2H, activity™
coAP-M5)

Joyce, A. R. & Palsson, B. @. 2006. The model organism as a system:
integrating'omics' data sets. Nature Reviews Molecular Cell Biology, 7, 198-210.

Holzinger Group
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Fluxomics
lisotopic tracing)

* Metabolic
engineering

Phenomics
(phenotype arrays,
RMNAI screens,
synthetic lethals)
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TU Slide 2-9: Standardization vs. Structurization

Grazm

Holzinger, A. (2011) Weakly
Structured Data in Health-
Informatics: The Challenge for
Human-Computer Interaction. In:
Baghaei, N., Baxter, G., Dow, L. &
Kimani, S. (Eds.) Proceedings of
INTERACT 2011 Workshop:
Promoting and supporting healthy
living by design. Lisbon, IFIB, 5-7.

Omics Data Natural
Language
Text

Weakly-Structured

Databases
Libraries

Well-Structured

RDF, OWL
Standardized Non-Standardized
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TU Note: The curse of dimensionality @ HCI-KDD

Grazm

1 dimension;
10 positions

2 dimensions:
100 positions
L

Bengio, S. & Bengio, Y.
2000. Taking on the curse
of dimensionality in joint
distributions using neural
networks. IEEE Transactions
on Neural Networks, 11,
(3), 550-557.

» 3 dimensions:
1000 positions!

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html
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TU  Slide 2-10: Data Dimensionality examples @ HCI-KDD £

0-D data = a data point existing isolated from other
data, e.g. integers, letters, Booleans, etc.

1-D data = consist of a string of 0-D data, e.g.
Sequences representing nucleotide bases and amino
acids, SMILES etc.

2-D data = having spatial component, such as
images, NMR-spectra etc.

2.5-D data = can be stored as a 2-D matrix, but can
represent biological entities in three or more
dimensions, e.g. PDB records

3-D data = having 3-D spatial component, e.g. image
voxels, e-density maps, etc.

H-D Data = data having arbitrarily high dimensions
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TU Example: 1-D data (univariate sequential data objects) @ HCI-KDD -

SMILES (Simplified Molecular Input Line Entry Specification)

... IS @ compact machine and human-readable chemical
nomenclature:

e.g. Viagra:
CCclnn(C)c2c(=0)[nH]c(nc12)c3cc(ccc30CC)S(=0)(=0)N4CC
N(C)CC4

...is Canonicalizable
...Is Comprehensive
...is Well Documented

http://www.daylight.com/dayhtml_tutorials/languages/smiles/index.html

Holzinger Group 32 709.049 02



TU Example: 2-D data (bivariate data) @ HCI-KDD %

Grazm
il
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Healihy
Arthritic
Arthritic
Arthritic
Arthritic
Healthy
Arthrific
Aurthritic
Healthy
Healthy
Healthy
Arthritic
Avrthritic
Healthy
Arthritic
Arthritic

Kastrinaki et al. (2008) Functional, molecular & proteomic characterisation of bone marrow
mesenchymal stem cells in rheumatoid arthritis. Annals of Rheumatic Diseases, 67, 6, 741-749.

Iy Lt
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Gra

LExample: 2.5-D data (structural information and metadata)

@ HCI-KDD 4=

P
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Gra

TUxample: 3-D Voxel data (volumetric picture elements)

@ HCI-KDD 4=

Scheins, J. J., Herzog,
H. & Shah, N. J. (2011)
Fully-3D PET Image
Reconstruction Using
Scanner-Independent,
Adaptive Projection
Data and Highly
Rotation-Symmetric
Voxel Assemblies.
Medical Imaging, IEEE
Transactions on, 30, 3,
879-892.

Holzinger Group
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TU Slide 2-11 A space is a set of points @ HCI-KDD £

Grazm

Third eigen vecror

® Second
eigen vector

®
®  [First eigen vector
® 4

Hou, J., Sims, G. E., Zhang, C. & Kim, S.-H. 2003. A global representation of the protein fold
space. Proceedings of the National Academy of Sciences, 100, (5), 2386-2390.
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TU Slide 2-12 Point Cloud Data Sets G HCI-KDD £

Grazm

Let us collect n-dimensional i observations: x; = X1, ..., Xin|

® H H H H H H H H H H H ;
0 5 10 -
Point cloud in R?* topological space metric space

Zomorodian, A. J. 2005. Topology for computing, Cambridge (MA), Cambridge University Press.
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TU Slide 2-13: Example Metric Space @ HCI-KDD £

Grazm

A set S with a metric function d is a metric space

p
Z (X — xjk)z
k=1

Doob, J. L. 1994. Measure theory, Springer New York.
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TWlide 2-14 MappingData R"+t > R2+torR3 +t @ HCI-KDD £

Cognitive Space Computational space
Perception Visualization - - :

Human intelligence Machine intelligence

o

uman nteraction omputer

Holzinger, A. 2012. On Knowledge Discovery and interactive intelligent visualization of
biomedical data. In: DATA - International Conference on Data Technologies and Applications.
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TU Example: Data structures - Classification @ HCI-KDD =£-

Grazm

Data
structures

Separable

Aggregated

™\

Qualitative Quantitative

Mixed Pure

£~ O\ PN

Aggregated attribute = a homomorphic

Nominal Ordinal Interval

map H from a relational system <A; =>
into a relational system <B; =>;
where A and B are two distinct sets of

Dastani, M. (2002) The Role of Visual Perception
in Data Visualization. Journal of Visual Languages
and Computing, 13, 601-622.

Holzinger Group 40

data elements.

This is in contrast with other attributes
since the set B is the set of data
elements instead of atomic values.
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TU Slide 2-15: Categorization of Data (Classic “scales”) @ HCI-KDD -

Grazm

Scale Empirical Mathem. | Transf. Basic Mathematical
Operation Group inR Statistics Operations
Structure
Determination | Permutation | x ~f(x) | Mode, _—
NOMINAL of equality x’ = f(x) contingency ’
X...1-to-1 correlation
Determination| Isotonic x ~f(x) | Median, =, #,>, <
ORDINAL of more/less | x’ = f(x) Percentiles
X ... mono-
tonic incr.
Determination| General X ~rx+s | Mean, Std.Dev.| = #,>,%,-,+
INTERVAL of equality of | linear Rank-Order
intervals or xX'=ax+b Corr., Prod.-
differences Moment Corr.
RATIO Determination | Similarity X Prx Coefficientof |=, %, >,<, - +, *, +
of equalityor | x’ =ax variation
ratios

Stevens, S. S. (1946) On the theory of scales of measurement. Science, 103, 677-680.
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TU Slide 2-18: Life is complex information @ HCI-KDD -

Grazm

Lane, N. & Martin, W. (2010) The energetics of genome complexity.
Nature, 467, 7318, 929-934.
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TU  Probability > Information > Entropy (Quick Preview) @ HCI-KDD £

® Information is the reduction of
uncertainty

" |f something is 100 % certain its
uncertainty =0

" Uncertainty is a max. if all choices are
equally probable

" Uncertainty (as information) sums up
for independent sources
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TU (Physical) Entropy as measure for disorder @ HCI-KDD

Grazm

oW entropy medium entropy
low complexity high_co_lmpl.e}(i_ty_

high entropy
low complexity -

http://www.scottaaronson.com
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TU @ HCI-KDD -
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Physical Entropy
-+
Information Entropy
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TU  evrpoma @ HCI-KDD -

Grazm

My greatest concern was what to call it. I thought of calling it “information”,
but the word was overly used, so I decided to call it “uncertainty”. When I dis-
cussed it with John von Neumann. he had a better idea. Von Neumann told me,
“You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, nobody knows what entropy
really is. so in a debate you will always have the advantage.”

Tribus, M. & Mclrvine, E. C. (1971) Energy and Information. Scientific American, 225, 3, 179-184.
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TU  How to measure Information? @ HCI-KDD s

" How informative is an observation of a particular value
x for a random variable X with the probability P(X) ?

= |If P(X = x) is high — not surprising (not informative)

= If P(X = x) = 0 — surprising (novel — previously
unknown — informative)

* Shannon [1] showed that the best way to quantify the

concept of information of an event X = x is to take the
inverse of the probability:

log = —log P(X = x)

P(X = x)

[1] Shannon, C. E. & Weaver, W. 1949. The Mathematical Theory of Communication, Urbana, Univ. of lllinois Press.
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TU  Information (Shannon!) Entropy @ HCI-KDD +£-

Shannon called H(X) the entropy of X and used it as a

measure of the randomness (= uncertainty) of the
distribution P(X):

H(X) = —ZP(%)IOgb P(x;)

i=1
for b = 10 we call the unit “Hartley” (decimal digit)
for b = 2 we call the unit “bit” (binary digit)

for b = e we call the unit “nat” (natural digit)
If we have instead of a discrete source a continuous

signal, the sum can be replaced by the integral:

H(X) = —/P(:c) log, P(x)dx
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TU  Original Work: Q ... discrete data source! @ HCI-KDD %

Q ..P =1{py,....0n} H(Q) = —Z(pi * log p;)
=1

Qb — {al, az} with P = {p, 1 — p}

1 1
H(Qb)=P*1OgE+P*1Ong *

08

o
~

Shannon, C. E. (1948) A Mathematical
Theory of Communication. Bell System
Technical Journal, 27, 379-423.

Entropy (bits)
(=] a (=]
£ 8 &

a
(2]

Shannon, C. E. & Weaver, W. (1949) The
Mathematical Theory of Communication. o
Urbana (IL), University of lllinois Press. 0

=1
ba

o 02 04 06 08 1
Probability
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TU Entropic methods — why and what for? @ HCI-KDD -

Grazm

= 1) Set of noisy, complex, time series data
= ?2) Extract information out of the data

= 3) to support a previous set hypothesis

" Information + Statistics + Inference

= = powerful methods for many sciences

= Application e.g. in biomedical informatics for
analysis of ECG, MRI, CT, PET, sequences and
proteins, DNA, topography, for modeling etc. etc.

Mayer, C., Bachler, M., Hortenhuber, M., Stocker, C., Holzinger, A. & Wassertheurer, S. 2014.
Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.
BMC Bioinformatics, 15, (Suppl 6), S2.
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TU An overview on the History of Entropy @ HCI-KDD -

Grazm

Bernoulli (1713) Maxwell (1859), Boltzmann (1871),
Principle of Insufficient Gibbs (1902) Statistical Modeling
Reason of problems in physics Pearson (1900)
P Goodness of Fit
™\ measure

Bayes (1763), Laplace (1770)
How to calculate the state of
a system with a limited

knumber of expectation valuesJ Fisher (1922)
. Maximum Likelihood
Jeffreys, Cox (1939-1948) Shannon (1948)
Statistical Inference Information Theory

2

Bayesian Statistics Entropy Methods Generalized Entropy

v

See next slide

confer also with: Golan, A. (2008) Information and Entropy Econometric: A Review and
Synthesis. Foundations and Trends in Econometrics, 2, 1-2, 1-145.
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TU  Towards a Taxonomy of Entropic Methods @ HCI-KDD £

Grazm

Entropic Methods Generalized
Entropy
Jaynes (1957) -
Maximum Entropy (MaxEn) Renyi (1961)
Renyi-Entropy

[ Adler et al. (1965) } - ~

Topology Entropy (TopEn) Mowshowitz (1968)
Graph Entropy (MinEn)

) Tsallis (1980
Rasisg ) [ TsZ?Ii::E(ntro) }
Minimum Entropy (MinEn) . Py

A

Rubinstein (1997) }

Pincus (1991) h
Approximate Entropy (ApEn)
[ Cross Entropy (CE)

Richman (2000)
Sample Entropy (SampEn)

Holzinger, A., Hortenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D. 2014. On
Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, |. (eds.) Lecture Notes in Computer Science, LNCS

8401. Berlin Heidelberg: Springer, pp. 209-226.

Holzinger Group 52 709.049 02



TU Example of the usefulness of ApEn (1/3) @ HCI-KDD +£-

Grazm

wr

Iy

i

(11

"

‘.r".-frf/A

] ] ] ] ]
716 PM 9:40 PM 12:04 AM 2:28 AM 4:52 AM 7:16 AM

Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H. & Fred, A. 2012. On
Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of
Big Sensor Data. In: Huang, R., Ghorbani, A., Pasi, G., Yamaguchi, T., Yen, N. & Jin, B. (eds.)
Active Media Technology, Lecture Notes in Computer Science, LNCS 7669. Berlin Heidelberg:
Springer, pp. 646-657. EU Project EMERGE (2007-2010)
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TU Example of the usefulness of ApEn (2/3) @ HCI-KDD -

Grazm

Let: {(x,,) = {x1,%5,...,%Xn}

Xi = (X5, X(i41)r - X(i+m—=1))

|%: Xl = _max (|xgk-1) = Xg+e-n))

H(m,r) = lim [¢™(r) = ¢™ ()]

N—oo
Nm(i) 1 N-m+1
Ciﬁ(i):N—m+1 ¢m(r):N—m+1 Z In 6 (0)
t=1

Pincus, S. M. (1991) Approximate Entropy as a measure of system complexity. Proceedings
of the National Academy of Sciences of the United States of America, 88, 6, 2297-2301.
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TU Algorithm — Pseudo Code — Python Example @ HCI-KDD -

Graz

= 1: Sample N raw data from a time series
= 2: Set m (integer), r (real)
= 3: Build vectors in R™

= 4: Measure the distance between every component, i1.e.
the max. difference between the scalar components

= 5: Define the start parameters (constants)
= 6: Calculate the ApEn (H)

Import numpy as np
def ApEn(U, m, r):
def maxdist(x_i1, X _J):
return max([abs(ua - va) for ua, va In zip(x_1, X PDD
def phi(m):
[[U[J] for jJ in range(i, 1 + m - 1 + 1)] for i1 in range(N - m + 1)]
[len([1 for x jJ In X If maxdist(xX_ 1, x J) <=r]D /7 (N-m+ 1.0) for x 1 in x]
retcurn (N - m + 1.0)**(-1) * sum(np-log(C))
N = len(U)
return abs(_ phi(m + 1) - phi(mn))
print ApEn(U, 2, 3)
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TU,  Example: ApEn (2) @ HCI-KDD £+

r, ‘"V!‘

w 'I’Jnt ”‘ | In\\hm.? "'ﬂ ” huly !’I&W A\
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\h7 }vl
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time t

Holzinger Group 56 709.049 02



TU ApEn @ HCI-KDD -

Grazm

?D T T T T T D?

sl 06+

[
[}
T

i)

ApEn

HR {1/min)
=
=

(X}
[}
T

20+

1D | | 1 1 | 1 1 1 | |
0 200 400 600 800 1000 1200 a 200 400 600 800 1000 1200

Time (s) Time (s)

Holzinger, A., Hortenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D.
2014. On Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, |. (eds.) Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics, Lecture Notes in Computer Science, LNCS

8401. Berlin Heidelberg: Springer, pp. 209-226.
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TU  Summary: Example Heart Rate Variability @ HCI-KDD £

M}Hﬁ%@ f%ﬁw\»ﬁw\}w g wwbwm%

s B B
ﬂﬂ'ﬂ?'ﬂﬂ CH.'.I-C!E.GD DCI.J.D-'DB

RR Intewai (s)

00 01 o0 00 "DZ 00 DCI-UB-CIE! o B G-ﬂ--ﬂlﬂ [a 1o H 05 o0 00 EIE (nla)
Tirme (s}

* Heart Rate Variability (HRV) can be used as a marker of
cardiovascular health status.

" Entropy measures represent a family of new methods to
qguantify the variability of the heart rate.

" Promising approach, due to ability to discover certain
patterns and shifts in the "apparent ensemble amount
of randomness" of stochastic processes,

" measure randomness and predictability of processes.

Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and
Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in
the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.
58

GDCI'CICIG
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TU Baseline: A,B,C — After treatment: D,E,F (N=1200) @ HCI-KDD £

Grazm
A i B T C T e
1 1 1

2 b.g e 2 el b2
b.e b.e b8

2.00 2.00 2.00
0.7 0.7 0.7
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125 0.5 o 125 5 o 125 0.5
- b4 e 0.4 " b.4
b3 b.2 b3

0.50 0.50 0.50
0.2 b2 0.2
0.25 - b.25 . 0.25 e
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Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and
Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in
the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.
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TU @ HCI-KDD -

GGGGG

Mutual Information
Cross-Entropy

Kullback-Leibler
Divergence

Holzinger Group



TU  Entropy — KL-Div. — Mutual Information @ HCI-KDD =

= Entropy:

" Measure for the uncertainty of random
variables

= Mutual Information/:

" measuring the correlation of two
random variables

= Kullback-Leibler divergence:
= comparing two distributions
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TU

Grazm

Solomon Kullback & Richard Leibler (1951)

@ HCI-KDD 4=

ON INFORMATION AND SUFFICIENCY
By 8. KviLeack anxp R. A. LeisLER
The George Washington University and Washington, D. C,

1. Introduction. This note generalizes to the abstract case Shannon’s definition
of information [15], [16]. Wiener's information (p. 75 of [18]) is essentially the
same as Shannon’s although their motivation was different (cf. footnote 1, p. 95
of [16]) and Shannon apparently has investigated the concept more completely.
R. A. Fisher's definition of information (intrinsic accuracy) is well known (p. 709
of [6]). However, his concept is quite different from that of Shannon and Wiener,
and hence ours, although the two are not unrelated as is shown in paragraph 2.

R. A. Fisher, in his original introduction of the eriterion of sufficiency, re-
quired “that the statistic chosen should summarize the whole of the relevant
information supplied by the sample,” (p. 316 of [5]). Halmos and Savage in a
recent paper, one of the main results of which is a generalization of the well
known Fisher-Neyman theorem on sufficient statistics to the abstract case,
conclude, “We think that confusion has from time to time been thrown on the
subject by ..., and (c) the assumption that a sufficient statistic contains all
the information in only the technical sense of ‘information’ as measured by
variance,” (p. 241 of [8]). It is shown in this note that the information in a
sample as defined herein, that is, in the Shannon-Wiener sense cannot be in-
creased: by any statistical operations and is invariant (not decreased) if and
only if sufficient statistics are employed. For a similar property of Fisher's
information see p. 717 of [6], Doob [19].

We are also concerned with the statistical problem of discrimination ([3], [17]),
by considering a measure of the “distance” or “divergence’” between statistical
populations ([1], [2], [13]) in terms of our measure of information. For the sta-
tistician two populations differ more or less according as to how difficult it is to
diseriminate between them with the best test [14]. The particular measure of
divergence we use has been considered by Jeffreys ([10], [11]) in another connec-
tion. He is primarily concerned with its use in providing an invariant density
of a priori probability. A special case of this divergence is Mahalanobis’ gen-
eralized distance [13].

Holzinger Group 62

Solomon Kullback Richard Leibler

1907-1994 1914-2003
Image Source: Image Source:
Wikipedia http://www.dat

avortex.com/m
athematical_he
roes/

Kullback, S. & Leibler, R. A.
1951. On information and
sufficiency. The annals of
mathematical statistics, 22, (1),
79-86,
www.jstor.org/stable/2236703
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TU Example: Looking for repetitions (= low entropy) @ HCI-KDD £+

Grazm

s IENETI ) (i |
ALY DU | VIR I
: Wik Il
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500 1000 1500 2000 2500

Genes
Ghahramani, Z. & Seidenfeld, T. (2002) Statistical Approaches to Learning and Discovery,
CALD Carnegie Mellon University, Lecture 1: Information Theory

Tissues / Drug Treatment
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TU  Conclusion 1) Information Entropy @ HCI-KDD

Grazm

H(X) = — ZP(%‘)lOgb P(x;)

= Measuring of uncertainty, complexity, randomness,
surprise, ..., information

= coding theory

= statistical physics

= handwriting recognition
" machine learning

= etc. etc.
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TU  Mutual Information - Conditional Entropy @ HCI-KDD %=

H(X)

1057 = 325 oletoe (130

yeY zeX

= |n ML we need often to measure the difference
between two probability distributions
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TU Kullback-Leibler Divergence - discriminative information @ HCI-KDD £

Grazm

P(i)
For discrete distributions DKL P| P 'E) log
Z Q(7)
. = p(z)
For continuous distributions DKL (P”Q) — p(g‘,) log -(— dz
—00 q\x

L(pllq) = 0 KL(p|lq) # KL(q||p)

KL-divergence can also be used to measure the
distance between two distributions

Kullback, S. & Leibler, R. A. 1951. On information and sufficiency. The annals of
mathematical statistics, 22, (1), 79-86, doi:http://www.jstor.org/stable/2236703
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TU Entropy measures generally ... @ HCI-KDD £

Grazm

= ... are robust against noise;

= ...can be applied to complex time series with
good replication;

= .. is finite for stochastic, noisy, composite
processes — good for automated classification

= ..the values correspond directly to
irregularities — good for detecting anomalies
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TU Knowledge @ HCI-KDD -

Grazm
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TU Adaptive Agent in a physical world @ HCI-KDD £

-~ Mental

Mode Is

Knowledge := a set of expectations
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TU Slide 2-19: Human Information Processing Model @ HCI-KDD

Grazm

UNCERTAINTY
Cues
— >
—> C-P DIAGNOSIS CHOICE
—> " Working 4,
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—o( [ | setectve | Jrerestony 51, Memory 4 Action | ! utcome [
’ —> A Az
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% @ Memory <As "l | ® Likelihood and
H i l CONSEQUANCES
Hut' (H) Hypothesis Wi oianioadl
(A) Action
Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus: Merrill.
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TU Sslide 2-16: Clinical View of Data, Information, Knowledge @ HCI-KDD =%

Grazm

Implicit

Knowledge Explicit Knowledge

Information

Inter-

pretation Interpreted Data

Inter- JEA Body of
pretation Knowledge

Data Inter-
pretation

Bemmel, J. H. v. & Musen,

M. A. (1997) Handbook of

Medical Informatics. . .
Heidelberg, Springer.
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Slide 2-17: From Patient Data to Medical Knowledge @ HCI-KDD £

Graz-

Induction
many general
patients knowledge
Visualizations ,
Biosignals
Deduction
single general
patient knowledge

Holzinger (2007)
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@ HCI-KDD 4=

k you!
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Iy @ HCI-KDD 4=
@
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TU Sample Exam Questions — Yes/No Answers @ HCI-KDD +£-

Grazm
=
01 | Anarrayis a composite data type on physical level. O Yes | 2 total
[ No

02 | In a Von-Neumann machine “List” is a widely used data structure [ Yes | 2 total
for applications which do not need random access. O No

03 | The edges in a graph can be multidimensional objects, e.g.vectors | O Yes | 2 total
containing the results of multiple Gen-expression measures. [ No

04 | Eachitem of data is composed of variables, and if such adataitem | O Yes | 2 total
is defined by more than one variable it is called a multivariable O No
data item

05 | A dendrogram is a tree diagram frequently used to illustrate the [ Yes | 2 total
arrangement of the clusters produced by hierarchical clustering. [ No

06 | Nominal and ordinal data are parametric, and do assume a O Yes | 2 total
particular distribution. O No

07 | Abstraction is characterized by a cyclical process of generating OYes | 2total
possible explanations and testing those explanations. O No

08 | A metric space has an associated metric, which enables us to [ Yes | 2 total
measure distances between points in that space and, in turn, O No
implicitly define their neighborhoods.

09 | Induction consists of deriving a likely general conclusion from aset | O Yes | 2 total
of particular statements. O No

10 | In the model of Boisot & Canals (2004), the perceptual filter [ Yes | 2 total
orientates the senses (e.g. visual sense) to certain types of O No
stimuli within a certain physical range.

Sum of Question Block A (max. 20 points) | |
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TU Sample Questions (1) @ HCI-KDD

Grazm

= Why is modeling of artifacts a huge problem?

= What do we need to transfer information into Knowledge?
= What type of data does the PDB basically store?

= What is the “curse of dimensionality”?

= What type of separable data is blood sedimentation rate?

" |sthe mathematical operation “multiplication” allowed with ordinal
data?

= What characterizes standardized data?
=  Why are structural homologies interesting?

= How did Bemmel & van Musen describe the clinical view on data,
information and knowledge?

= Where are the differences between patient data and medical
knowledge from a clinical viewpoint?

= Which weaknesses of the DIKW Model do you recognize?
= How do we get theories?

= What is the main limitation of transferring data from the computational
space into the perceptual space from the viewpoint of the human
information processing model?
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TU

Grazm

Sample Questions (2) @ HCI-KDD -

Why is the knowledge about human information processing necessary
for medical informatics?

What advantages does the Kullback-Leibler divergence offer — what is
the drawback?

What does information interaction mean?

How does knowledge-assisted visualization work in principle?
Why is non-structured data an rather incorrect term?

Give an example of the data structure tree in biomedical informatics!
Why is data quality important? What are the related issues?
How do you ensure data accessibility?

What is the main idea of Shannon’s Entropy?

Why is Entropy interesting for medical informatics?

What are typical entropic methods?

What is the main purpose of Approximate Entropy?

What is the big advantage of entropic methods?

What are the differences of ApEn and SampEn?

Which possibilities do you have with Graph Entropy Measures?
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Iy @ HCI-KDD 4=
@
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TU Recommended Books @ HCI-KDD =£-

Grazm

T T BN - E SR
Mathematical e ey
Notation K :
i}ﬂntﬁma"r;n': - I_’a‘itLL' m
2 Classification
! Mathematical
Tools for Data ;
Mining )
il -:I YN
[ L]
ol Lt
st ! -I
Scheinerman, E. Simovici, D. A. & Rosen, K. H. & Duda, R. O.,
R. 2011. Djeraba, C. Krithivasan, K. Hart, P. E. &
Mathematical 2014. 2012. Discrete Stork, D. G.
Notation: A Mathematical mathematics 2000. Pattern
Guide for tools for data and its Classification.
Engineers and mining. Second applications. Second Edition,
Scientists, Edition, Seventh Edition, New York et al.,
Baltimore (MD), d0i:10.1007/978 New York, Wiley.

Scheinerman. -1-4471-6407-4. McGraw-Hill.
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TU Slide 2-7b: -Omics-data integration (2/2) @ HCI-KDD £

Grazm

= Genomics (sequence annotation)
=" Transcriptomics (microarray)

= Proteomics (Proteome Databases)

= Metabolomics (enzyme annotation)
= Fluxomics (isotopic tracing, metabolic pathways)
= Phenomics (biomarkers)

= Epigenomics (epigenetic modlflcatlons) |

= Microbiomics (microorganisms)

= Lipidomics (pathways of cellular lipidsh:
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TU Slide 2-20: Knowledge as a set of expectations @ HCI-KDD -

Grazm
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Boisot, M. & Canals, A. 2004. Data, information and knowledge: have we got it right?
Journal of Evolutionary Economics, 14, (1), 43-67.
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TU Additional Reading @ HCI-KDD -

Grazm

= History of Probability Theory

=  Franklin, J. The Science of Conjecture: Evidence and Probability Before Pascal. John Hopkins University
Press, 2001.

= Jaynes, E. T. Probability Theory: The Logic of Science. Cambridge University Press, 2003.
=  Probabilistic Reasoning
=  Gigerenzer, G., and D. J. Murray. Cognition as Intuitive Statistics. Hillsdale, NJ: Erlbaum, 1987.

=  Gilovich, T., D. Griffin, and D. Kahneman, eds. Heuristics and Biases: The Psychology of Intuitive
Judgment. Cambridge University Press, 2002.

= Kahneman, D., P. Slovic, and A. Tversky, eds. Judgment under Uncertainty: Heuristics and Biases.
Cambridge University Press, 1982.

=  Bayesian Networks

= Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman,
San Mateo, CA, 1988.

= Breese, J. S. "Construction of Belief and Decision Networks." Computational Intelligence 8, 4 (1992):
624-647.

= F Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. "Statistical Foundations for Default Reasoning."
Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAl). Chambery, France,
August 1993, pp. 563-569.

=  Multiple-Instance Bayesian Networks

=  Pasula, H., and S. Russell. "Approximate Inference for First-order Probabilistic Languages." IJCAI-01.
Seattle, WA, 2001, pp. 741-748.

= Halpern, J. Y. "An Analysis of First-order Logics of Probability." Artificial Intelligence 46, 3 (1990): 311
350.

= D.Koller, and A. Pfeffer. "Object-Oriented Bayesian Networks." Proceedings of the 13th Annual
Conference on Uncertainty in Al (UAI). Providence, Rhode Island, 1997, pp. 302-313.
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TU Solutions to the warm-up quiz @ HCI-KDD -

Grazm

"= There a gap (ocean) between these two worlds due to the inherent complexity
of the fields with different goals and tasks.

= Uncertainty is one of the four main problems, among heterogeneity,
dimensionality and complexity — and this inherently to our real-world: we are
surrounded by vague, imprecise, uncertain information

= The posterior can be calculated as the likelihood times the prior through the
evidence —this so cool because the inverse probability allows us to learn from
data and to make predictions
D=set of data, theta

= Where is the highest certainty in this image — how is now the degree of
uncertainty described?

= A best practice example for fully automated ML — autonomous driving

=  Medical Decision Making is a search task in arbitrarily high dimensions —
problem is limited time

= iML-sometimes we need a human in the loop — e.g. in helping to solve NP-
hard problems

= A big challenge is to map the results down into R2 - visualization
= A future trend is in personalized medicine — a step before is stratified medicine

Holzinger Group 84 709.049 02



TU Back-up Slide: Poincare Plot for gait analysis @ HCI-KDD £

Grazm
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Khandoker, A., Palaniswami, M. & Begg, R. (2008) A comparative study on approximate entropy

measure and poincare plot indexes of minimum foot clearance variability in the elderly during
walking. Journal of NeuroEngineering and Rehabilitation, 5, 1, 4.

o
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TU Back-up Slide: SampEn (1/2) @ HCI-KDD +£-

Grazm

Lake, D. E., Richman, J. S., Griffin, M.
P. & Moorman, J. R. (2002) Sample
entropy analysis of neonatal heart
rate variability. American Journal of
Physiology-Regulatory Integrative
and Comparative Physiology, 283, 3,
R789-R797.
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TU Backup: SampEn (2/2) Surrogate data heart rate variability @ HCI-KDD £

Grazm
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TU

Backup Slide: Comparison ApEn - SampEn

@ HCI-KDD 4=

Grazm
ApEn SampEn
Given a signal x(n)=x(1), x(2)...., X(N). where N 1s the total Given a signal x(n)=x(1). x(2)...., X(N), where N 1s the total

number of data points. ApEn algorithm can be summarized as
follows [1]:
1) Form m-vectors. X{1) to XY{N-m+1) defined by:
X)) =[x(@).x(G+D....X(i+m=1)] i=LN-m+1 (1)
2) Define the distance dfX7i),X(j)] between vectors X(i)
and X7j) as the maximum absolute difference between
their respective scalar components:
d[X(),X(j)]= max [|_';(.=' +k)—x(j+ k}|] 2)
k=0.m-1
3) Define for each 1. for i=1, N-m+1. let
{-.:IH “} =3 idu “] I:"t' —m+ ”
(3)
where I'W{.-”} =no.of d[X(D).X()]<r

4) Take the natural logarithm of each C," (7). and average
it over 7 as defined in step 3):
| N=m+]
gﬂ_m{.,_}:r— Z ]I‘l{f':.nlf'ﬂ (4)
o i=I
5) Increase the dimension to m+1 and repeat steps 1) to 4).
6) Calculate ApEn value for a finite data length of V:
ApEn(m,r,N) = " (r)— gf;”Hl{r} (3)
Xinnian, C. et al. (2005). Comparison of the Use of
Approximate Entropy and Sample Entropy: Applications to
Neural Respiratory Signal. Engineering in Medicine and
Biology IEEE-EMBS 2005, 4212-4215.

Holzinger Group

number of data pomts. SampEn algorithm can be summarized
as follows [5]:

1) Form m-vectors. X71) to XYN-m+1) defined by:
X)) =[x(D.x(i+1)....X(if+m=1)] i=l,L,N-m+1 (6)
2) Define the distance d,,[ X (7),X(/)] between vectors
Xri) and X(j) as the maximum absolute difference
between their respective scalar components:
dp [X (). X(J)]= max [|.'rt.r' +k)—x(j+ A"}II (7)
k=0.m-1
3) Detfine for each 1, for i=1, N-m, let
I
B,-"”(;-] = —_
N-m-1
4) Similarly, define for each i. for i=1, N-m. let

xno.of d, [ XA, X(N]<r,i=j (8)

A;’”(f') - ~— xno.of dpy [X(D.X(D]<ri#]j(9)
] &S . _
5) Define B (r) = : ZB; () (10)
N —m

A" (r) = D 4" (11)

N—-—m
6) SampEn value for a finite data length of N can be
estimated:

SampEn(m,r,N)= - 111[.-lm{r]/ﬁ"”(r]] (12)
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TU Backup Slide: Graph Entropy Measures @ HCI-KDD £

Grazm

* The most important question: Which kind of structural
information does the entropy measure detect?

" the topological complexity of a molecular graph is
characterized by its number of vertices and edges, branching,
cyclicity etc.

35 ‘ . ‘ . : ; ; . 7.0
0} Wi ow . ] 6.5F . o8 e l. |
2 '_ :. ) H .‘!".?:l‘l . ':’:l: .
5 L] [} 4 |
. L & & * 6.0 B . TR . - r
25} . i g TREW | y 4] ,‘_g_,_:‘ 4
. ) .-p o # o Y ' . . |': \:- !04. I. ; " .
o .':.I' I"l;;"tpi f'. 5.5F b - . ; .':. :.. ..!! L . g
| i P PRI SR TR 1 Yl e S;:-
" . & . "an . . "2 8 B P . ' *
v5. 3 ,'h—:i 4315 b o 5.0} R S ER A L |
.il_: 15 . ':::"‘L'#.' . ;-. i "‘I ] ‘I‘“ : ... o g 'I.:. . ‘g' .
' -, :l . | i ' 45F . Do l.?g! i .
o 3 | s ¢ ™
| o It v !
- !-l:..'-E:: ‘11:. 4-0_ it
5l g
S 3.5}
°r 30t
e 05 10 15 20 25 30 35 40 45 20 05 10 15 20 25 30 35 40 45
I ‘,u'
I n

Dehmer, M. & Mowshowitz, A. (2011) A history of graph entropy measures. Information
Sciences, 181, 1, 57-78.
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Grazm

Backup: English/German Subject Codes OEFOS 2012

@ HCI-KDD 4=

IS0 ETE Bioinformatics

0[S0 i A8 Biostatistics

e[ 213 Medical Biotechnology
sl B Computer-aided diagnosis
and therapy

clILOIERY Genetic engineering, -

technology
3906
(old) sciences

(11158 Medical cybernetics
<111 8 Medical documentation
Medical informatics

cliieilA Medical statistics
http://www.statistik.at

Medical computer

Holzinger Group

20

Bioinformatik

Biostatistik

Medizinische Biotechnologie
Computerunterstutzte Diagnose
und Therapie

Gentechnik, -technologie

Medizinische
Computerwissenschaften
Medizinische Kybernetik
Medizinische Dokumentation
Medizinische Informatik
Medizinische Statistik
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TU Backup: English/German Subject Codes OEFOS 2012

Grazm

@ HCI-KDD 4=

ip L0k Artificial Intelligence
ipliey 2 Computational Intelligence
1P EER Data Mining

Pl Human-Computer Interaction

iyl k8 Information design
Lipik 8 Information systems
iiplop2:8 Knowledge engineering
iplopie B Machine Learning
lipLop 0B Medical Informatics
(1Pl P5 Pervasive Computing
iliplip» B Software development
ipliy 2 \Web engineering

http://www.statistik.at

Holzinger Group 91

Kinstliche Intelligenz
Computational Intelligence
Data Mining
Human-Computer Interaction
Informationsdesign
Informationssysteme
Knowledge Engineering
Maschinelles Lernen
Medizinische Informatik
Pervasive Computing
Softwarenetwicklung

Web Engineering
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TU  Backup Slide: Statistical Analysis Software (SAS) @ HCI-KDD -

Gsas

supporisas.com m Support Training & Bookstomne Community

Product Documentalion > SAS § 2 Documentation

SASIETS(R) 9.2 User's Guide

POF

| Puschaze

Contents | Atout

Bl Credils and Acknowledgments

I General Information

B Procedure Reference

The ARINA Procedure
The AUTDRES Proceduns

The COMPUTAB Procedire

The COUNTREG Procedurs
The DATASOURCE Procedure
Ihe ENTROPY Procedure
Overview: ENTROPY
Procedure
Getting Started: ENTROPY
Procedure
Syntax: ENTROPY Procedure
Details: ENTROPY Procedure
B| Examples: ENTROPY
Procedure
Nonnormal Error
Estimation
Unreplicated Factorial
Experiments
Censored Data Models in
PROC ENTROPY
Use of the PDATA= Option
llustration of ODS
Graphics
References

The ESM Procedure
The EXPAND Procedure
The FORECAST Procedure

Holzinger Group

Previous Page | Nexl Page

Overview: ENTROPY Procedure

The ENTROPY procedure implements a parametric method of linear estimation based on generalized maximum entropy.
in the data and robustness is required, when the model is ill-posed or under-determined for the observed data, or for regre

The main features of the ENTROPY procedure are as follows:
» estimation of simultaneous systems of linear regression models
¢ estimation of Markov models
« estimation of seemingly unrelated regression (SUR) models
e estimation of unordered multinomial discrete Choice models
* solution of pure inverse problems
* allowance of bounds and restrictions on parameters
¢ performance of tests on parameters

http://www.sas.com

« allowance of data and moment constrained generalized cross entropy
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TU Backup Slide: Example Tool for large data sets - Hadoop

@ HCI-KDD -4~

M

Top Common HDFS MapReduce

* About

iy Welcome to Apache™ Hadoop ™!

Who We Are?

who Uses Hadoop?

" N -
Buy Stuff What Is Apache Hadoop?

Who Uses Hadoop?
News

Sponsor Apache

Sponsors of Apache . . . .
Fensars ol anst March 2011 - Apache Hadoop takes top prize at Media Guardian Innovation Awards

January 2011 - FooKeeper Graduates
September 2010 - Hive and Pig Graduate

Privacy Policy
Bylaws

» Sub-Projects May 2010 - Avro and HBase Graduate
» Related Projects July 2009 - New Hadoop Subprojects

March 2009 - ApacheCon EU
built with [ MNovember 2008 - ApacheCon US
Mpache Fi July 2008 - Hadoop Wins Terabyte Sort Benchmark

What Is Apache Hadoop?

The Apache™ Hadoop™ project develops open-source software for reliable, scalable, distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of compr
machines, each offering local computation and storage. Rather than rely on hardware to deliver high-avaiability, the library itself is desig

a cluster of computers, each of which may be prone to failures.
The project includes these subprojects:

* Hadoop Common: The common utilities that support the other Hadoop subprojects.

* Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
* Hadoop MapReduce: A software framework for distributed processing of large data sets on compute clusters.

Other Hadoop-related projects at Apache include:

* Avro™: A data serialization system.

* Cassandra™: A scalable multi-master database with no single points of failure.

* Chukwa™: A data collection system for managing large distributed systems.

* HBase™: A scalable, distributed database that supports structured data storage for large tables.
* Hive™: A data warehouse infrastructure that provides data summarization and ad hoc guerying.
* Mahout™: A Scalable machine learning and data mining library.

* Pig™: A high-level data-flow language and execution framework for parallel computation.

* ZooKeeper™: A high-performance coordination service for distributed applications.

Taylor, R. C. (2010) An overview of the Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics. BMC Bioinformatics, 11, 1-6.
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TU Backup Slide: Methods for Mining ..

Grazm

Weakly-Structured

Holzinger, A. 2014. On Topological Data Mining. In:
Holzinger, A. & Jurisica, I. (eds.) Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Notes in

_ Computer Science LNCS 8401. Heidelberg, Berlin:
Text Mlnmg Springer, pp. 331-356.
Data Mining
Holzinger, A. (2011)

Standardized Non-Standardized

Well-Structured
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TWlide 2-8: Example of typical clinical data sets @ HCI-KDD -

= 50+ Patients per day ~ 5000
data points per day ...

= Aggregated with specific
scores (Disease Activity
Score, DAS)

= Current patient status is
related to previous data

= = convolution over time
= = time-series data

Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, J. (2011). Optimizing Long-Term Treatment
of Rheumatoid Arthritis with Systematic Documentation. Pervasive Health - 5th International
Conference on Pervasive Computing Technologies for Healthcare, Dublin, IEEE, 550-554.
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TU Backup Slide: Excursion: How to get theories? @ HCI-KDD =£-

Grazm

theories and models

abstracting concretisation
reality (t,) » | reality (t,)
positivism : constructionism :
{theory, model} ¢ reality {theory, model} e reality
reality (t;) = reality (t,) reality (t,) = reality (t,)

Rauterberg, M. (2006) HCI as an engineering discipline: to be or not to be.
African Journal of Information and Communication Technology, 2, 4, 163-184.
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