'[,l-! Science is to test crazy ideas — Engineering is to put these ideas into Business @HCI-KDD L TU ML needs a concerted effort fostering integrated research @Hci-koD & TU, Keywords @HC-KDD -
. http://hci-kdd.org/finternational-expert-network Py
Andreas Holzinger Data = Decision
VO 709.049 Medical Informatics Interactive pmjping Knowledge Discovery o Plorition
16.11.2016 11:15-12:45 Loy o o g
.. g . a :
-~~~ Lecture 04 Decision, Cognition, Data learning Data  Prepro-  Data Intelligence
Visualization =~ Algorithms  Mapping  cessing Fusion i
i i isti * Expected Utility Theor
Uncertainty, Bayesian Statistics P Y Y
ilisti i * Probabilistic Inference
Probabilistic Modelling GOM @ Graph-based Data Mining
a.holzinger@tugraz.at _ . * Probabilistic Decision Theory
Tutor: markus.pl dent.tupraz.at TOM e Topological Data Mining
http://hci-kdd.org/biomedical-informatics-big-data = Signal Detection Theory
EDM e Entropy-based Data Mining
= ROC curve
Privacy, Data Protection, Safety and Security .
= Learning and Inference
© a haireges s acd g
Holzinger, A. 2014, Trends in Interactive Knowledge Discovery for Personalized Medicine: o H 1]
b : ! B, - SCOVRTy o TEIS ; = Naive Bayes Classifier
¥ Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14,
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TU, Advance Organizer (1/2) @ HCRKDD TU, Advance Organizer (2/2) @ HCRKDD TU, Glossary @ HCRKDD
= Argmax/argmin = set of points for which f{x] attains the function's largest/smallest value. =  External Validity = the extent to which the results of a study are generalizable or transferable; = (CES = Central Executive System
= Brute Force = systematically computing all pessible candidates for a solution and checking whether each =  Hypothetico-Deductive Model (HDM) = formulating a hypothesis in a form that could concelvably be : # 5 _
candidate satisfies the problem’s statement; falsified by a test on observable data, &g a test shows results contrary to the prediction of the = DDx = Differential Diagnosis
= Cognition = mental processes of gaining knowledge, comprehension, including thinking, attention, hypothesis is the falsification, a test that unllld but is not contrary to the hypothesis corroborates the x ‘e .
remembering. language understanding, decision making and problem-salving; - theory — then you need !g H’I“IPTH‘ the y value of competing hyp by testing how = DM = Decision Making
= Cognitive Science = interdisciplinary study of human information processing, including perception, strang they are supported by their predictions; : i . = DSS = Decision Support System
language, memaory, reasoning, and emation; * Internal Validity = the rigor with w_?\lch a study was conducted (e.g., the design, the care taken to Y T
. O ing Variable = an unforeseen, ted variable that jeopardizes reliability and validity of a conduct measurements, and decisions concerning what was and was not measured); = EBM = Ewdence_based med.cme
study cutcome, *  PDCA = Plan-Do-Check-Act, The so called PDCA-cycle or Deming-wheel can be used to coordinate a » fMRI = functional Magnetic Resonance Image
+  Correlation coeffcient = measures the relatonship between pars o Intervalvariables in a sample, from systemalic and continuous mprovement. Every improvement stats with  goal and with a plan on how L ViAeneLe ] g
£2 L0004 oo soreiption) to £ 2 2L00 *  Perception = feir.ml\.- m;p c\: of the world Uu:volv ng the r:.-<:|:n;t on of unwguul--mu-nfalﬂ\.n.u uli and * HDM = Hypothetico-Deductive Model
= Decision Making = a central cognitive process in every medical activity, resulting in the selection of a =2 “ i . e i 5 . o o : i
final choice of action out of alternatives; according to Shortliffe (2011) DM is still the key topic in medical actions in response to these stimuli; = |OM = Institute of Medicine
informatics: *  Qualitative Research = empirical research exploring refationships using textual, r.:lhcr lhan quart tative = LTS = Long Term Storage
*  Diagnosis = classification of a patient’s condition into separate and distinct categories that allow medical g:;:a: %[;::z?;‘gﬁ: obicnvation. ethoography; Riswis.are.nato F -
ceckions about lreatmen: anc progrostic Quantl‘tallue Research = empirical research exploring relationships using numeric data, e.g. surveys, * ME = Medical Error
. i is (DDx) = thod to identify th f tity where multipl = ; = i pion Honsnips usk BOiC CO1R, .8, JUVEYs,
alternatives are Possub1e. a:'d \‘I‘1|e process ur;ieumunna:?nln,ennr :r:‘te.':rg:.:\slz’:gfnrh:;:?gb;\‘l;um-:ﬁen;“u i :uasu-efpenmen(s. e:Terrume:t?. Results shouldl Df‘g.eﬂm':md' a:h I‘ih o m‘i leayls possiole. * PDCA = Plan-Do-Check-Act
conditions t negligible levels; *  Reasoning = cognitive {thaught) processes involved in making medical decisions (clinical reasoning, . M = Quality Management
= Evidence-based medicine (EBM) = aiming at the best available evidence gained from the scientific medical problem solving, diagnostic reasoning, behind every action; Q Q _‘r" B! ) -
method 1o clinical decision making. It seeks to assess the strength of evidence of the risks and benefits of *  Receiver-operating characteristic (ROC) = in signal detection theary this is a graphical plot of the = ROC = Receiver Operating Characteristic
wreatments (including lack of treatment) and diagnostic tests. Evidence quality can range from meta sensitivity, or true positive rate, vs. false positive rate 1 - specificity or 1 - true negative rate), for a
analyses and systematie reviews of double-bling, placebo-controlled clinical trials at the top end, down binary classifier system as its discrimination threshold is varied; = RST = Rough Set Theory
to conventional wisdom at the bottom; NOTE: Evidence (English) i NOT Evidenz (Deutsch)! = Symbolic reasoning = logical deduction » STS =Short T St
®  Expected Utility Theory (EUT) = states that the decision maker selects between risky or uncertain * Triage = process of judging the priority of patients’ treatments based on the severity of their condition; - ort 1erm storage
prospects by comparing their expected utility values = USTS = Ultra Short Term Storage (Sensory Register)
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TU, Learning Goals: At the end of this lecture you .. @ HCRKDD TU. Agenda for today @ HCRKDD TU, @HCIKDD

= .. are familiar with some principles and elements
of human information processing;

... can discriminate between perception,
cognition, thinking, reasoning & problem solving;

= .. have got insight into some basics of human
decision making processes;

= . got an overview of the Hypothetico-Deductive
Method HDM versus PCDA Deming approach;

... have acquired some basics on modeling
patient health and differential diagnosis

Holzingor Graum 7 709,049 04

00 Reflection - follow-up from last lecture

01 Medical Action = Decision Making

02 Cognition

03 Human vs. Computer

04 Human Information Processing

05 Probabilistic Decision Theory

06 Example: Naive Bayes Classifier

Holzingor Graum 8 709,049 04

00 Reflection-
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TU, Warm-up Quiz from topic 6 Data Mining and KDD @HCI-KDD 5

Gt 116Gy
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) SEMO0RALNGmal bood pressue (fnding) AND
TV Irerprets {attrtate) SOME
Weeld Health [
nization MO0 Moo pressar {otwarvable enstyl)
]
4 127000 Fircing of decreased biood prissurs (frdng|-+
- J2ETO002BN000 pressare fndng (frdng) AND

(BT 1400 istarprats (atvibue] BONE
TAMTO e crawsure (ctservatie anttyl] 5

TU, Why is this image important? SHCI-KDD &

Clinical
: Genetic

knowledge bases

Other
subdomains

Model
organisms

Genome
annotations

TU, Key Challenges @HCI-KDD

Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

Causality and Probabilistic Inference:

Uncertainties are present at all levels in health related systems

Data sets are noisy, mislabeled, atypical, dirty, wrong, etc. etc.

Even with data of high quality from different real-world sources
requires processing uncertain information to make viable decisions.

In the increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

= Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X, Janzing, . & Schélkopf, B, Causal Inference by Choosing Graphs with Most Plausible Markoy
Kernels. 1SAIM, 2006.
[2] Dagum, P. & Luby, M. 1993, Approximating probabidlistic inference in Bayesian belief networks is NP-hard,

i 3 ; Artificial intefligence, 60, (1), 141-153,
7 L B?demg!der, 0. {200&] The um_ﬁed _Medlcal Language System (UMLS): Integrating [3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-
e biomedical terminclogy. Nucleic Acids Research, 32, D267-D270. the-loop? Springer Brain Informatics {BRIN), 3, 1-13, doi:10,1007/540708-016-0042-6.
Patient > Data isition > g > Storage > E> ion > > sk
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TU, QHCI-KDD TU, Search in an arbitrarily high-dimensional space < 5 min.! QHCI-KDD TU, slide 7-2: Decision Making is central in Biomedical Informatics @HcI-K00

Deci
Search Task in-
: Time (t)
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TY, Slide 7-3: Reasoning Foundations of Medical Diagnosis  @Hci-koD & TU, Slide 7-4 Decision Making is central in Medicine! @ HCI-KDD A TU, Example for Decision Support @ HCI-KDD A

3 July 1859, Volume 130, Number 3366 SCI ENCE

apce are the ones who
consider the mene posdl -
Compters are fally sulted 1o
belp the physician collect and process
clisdcal information and remind kim of
disgeeoes which he may have overs
Bocked, In masy cascs computers may be
as simple as a st of hand-sorted cards,

Reasoning Foundations of

Medical Diagnosis prsrio preloenr ol
Endican Bere are cther ways in which

computers may serve the phy
some of these are suggestod
Foe examgle, eedical au
find the computer an important aid in
Bearning the methods of differential di-
agnosis. Bul to wie the computer thus
we st usderstand how the physician
makes & medical diagnosis. This, then,
Briogs us to the subjece of
The parpose of this article is to ana=  fitied inro a definite discase category, or  fion: the reasoning found

Symbawlic logic, probability, and value theory
aid our understanding of how physicians reason.

Robert 5. Ledley and Lee B, Lusted

Ivze the complicated reasoning processes
i 1 in medical disgoode The im-

e of this problem has received
recent emphiiis by the incresming lster
A i the wse of electronic compaters at
an awl to medical diagnostic procoser

thiat it mnay be e of several possibile dis
wases, ar ehe that its evact parre cannot
be determined ™ This, obviously, & 2
greatly simplified explanstion of the
peoces of diagnosie, for the physician
might also comment that after seeing a

kel diagnosis asd treatment.

Medical diagnosis Involves processes
that can be systematically analysed, as
well a1 thosn characterized as “iman
gible.” For instance, the rensoming foun-
dations of medscal dingnonsic procedire

BATIENT/

EVIDENCE

-Pationt data CLINICIAN
-Basic, chinical, PREFERENCES
and epidemiciogical -Cultural beliafs
resaarch -Personal values
-Randomized -Education
controlled trials -Experience

-Systematic

CLINICAL
DECISION

raviews

-Formal policies and laws
-Community standards
-Tima
Fimancial

Hersh, W. (2010) Information
Retrieval: A Health and Biomedical
Perspective. New York, Springer.

Holringer Groug w T09.049 04

Iserson, K, V. & Moskop, J. C. 2007, Triage in Medicine, Part I: Concept, History, and Types,
Annals of Emergency Medicine, 49, (3), 275-281.
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TU, Slide 7-17 Example: Triage Tags - International Triage Tags @HCIKDD A

LR NY SEsm
L

TU, Slide 7-18 Clinical DM: Hypothesis-Oriented Algorithm @ HCIKDD

TU, Slide 7-19 Hypothetico-Deductive vs PDCA Deming wheel @HC-KDD -

PLAN
Dafins
Revise

g S
2 LEE
8 sgac¢
S E3k
Schenkman, M., Deutsch, J. E. & Gill-Body, K. M. (2006) An Integrated Framework for Decision Holzinger, A. (2010) Process Guide for Students for Interdisciplinary Work in Computer
Source: http://store.gomed-tech.com Making in Neurologic Physical Therapist Practice. Physical Therapy, 86, 12, 1681-1702. Science/informatics. Second Edition. Norderstedt, BoD. http:/fwww.hci-kdd.org
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TU, 02 Cognition @ HCI-KDD L TU, Cognitive Science vs. Computer Science @ HCI-KDD L TU, What is this: Cognitive Science? @ HCI-KDD L
|
» Cognitive Science — human intelligence
= Study the principles of human learning to understand N

02 Cognition

Holzingar Groug ke T09.049 04

biological intelligence
* Human-Computer Interaction — the bridge
= |nteracting with algorithms that learn shall enhance
user friendliness and let concentrate on problem
solving - Opening the “black-box” to a “glass-box”
= Computer Science — computational intelligence

= Study the principles of machine learning to
understand artificial intelligence

Holzingar Group 3 T09.049 04

= “By 1960 it was clear that something
interdisciplinary was happening. At Harvard we
called it cognitive studies, at Carnegie-Mellon
they called it information-processing psychology,

and at La Jolla they called it cognitive science. “
George A. Miller (1920-2012), Harvard University,
well known for:

The magical number seven, plus or minus two: Some limits on our capacity for

processing information

GA Miller - Paychologe sl reveew, 1056 - pytnet apa.org

Abrstract 1, A vavicty of researches from ipoint of inf (]

5 shaw that the 5 severely of the amount of rfomation

he an receme, process, and rememmiber. However, f is shown that by the uss of vasious

Ibertvon F3650 Ahnbche Artiel  Alle 70 Versionen Wb of Science: TEST i Endhicte importiener
E
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TU, Why fitting Cognitive Science with Machine Learning? @HCIKDD A

= ML provides powerful sources of insight into
how machine intelligence is possible.

CS therefore raises challenges for, and draws
inspiration from ML;

ML could inspire new directions by novel
insights about the human mind

Holzingar Group k] T09.049 04

TU, Some definitions in Cognitive Science (very incomplete) @HCIKDD A

= |ntelligence
= Hundreds of controversial definitions — very hard to define;

= For us: ability to solve problems, make decisions and acquire and apply
knowledge and skills.

= Learning
= Different definitions — relatively hard to define
= basically acquisition of knowledge through previous experience
= Problem Solving
= Process of finding solutions to complex issues
= Reasoning
= ability of our mind to think and understand things
* Decision Making
= Process of “de-ciding” (“ent-scheiden”) between alternative options
= Sense Making
= Process of giving meaning to experience
= Causality
= Relationship between cause and effect

Holzinger Groug %

TU, Typical Questions of Cognitive Science Research @ HCIKDD

= How does our mind work?
= How do we process information?
= How do we learn and generalize?
= How do we solve problems?
= How do we reason and make decisions?
= How do we make predictions?
\ = How do we behave in new situations? }

|

Intelligence

Holringer Group T09.049 04




TU, Motto of Google Deepmind: “Solving Intelligence ..." @HCI-KDD

“Solve intelligence — then
solve everything else”

Demis Hassabis, 22 May 2015

The Royal Society,
Future Directions of Machine Learning Part 2

https://youtu.be/XAbLnE6IHCOPt=1h28m54s

Holringer Grou 3 709,049 04

TU, Do we understand how our brain works? @ HCI-KDD &

This book doubled
The Nobel Prize in in Volume every
Physiology or Medicine decade ...
2000

Number of Pages ->

Editions ->
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, 5. A. & Hudspeth, A. 2012. Principles
of neural science, 5th Edition (1760 pages), New York: McGraw-Hill.

= Facts # Knowledge, Descriptions # Insight

= Our goal should be the opposite:
To make this book shorter!

Holzinger Graun » 709,049 04

TU, €S vs ML did NOT harmonize in the past @ HCI-KDD L

atn

= Cognitive Science had its focus on specific
experimental paradigms because it was
embedded deeply in Psychology and Linguistics;
and aimed to be cognitively/neutrally plausible

= ML had its focus on standard learning problems
and tried to optimize in the range of 1 % because
it was embedded in Computer Engineering; and
aimed to have working systems whether
mimicking the human brain or not ...

Holzinger Graun 0 709,049 04

TU, David Marr (1945 — 1980) Neuroscientist @ HCRKDD

Cerebellum: big memory to support motor
learning

TU, Marr: Three Levels of Information Processing Systems @HCIKDD A

= Computation
= “What is the goal of the computation, why

TU, Cognitive Science versus Machine Learning @HCIKDD A

= Human learning = Machine learning

= Neocortex: big memory flexibly learns is it appropriate, and what is the logic of ‘_'(‘1 = = Categorization = Density estimation
statistical structure from input patterns el : (2 [
i i - the strategy by which it can be carried - 5 i :
= Hippocampus: big memory encoding out?” gy by T Causal tgarmng * Graphical models
memory traces via Hebbian learning ' : . = * Function learning = Regression
= Example Vision: process of discovering 10" Neurons * Representation and algorithm e ; :
prolpertitleds iwhat, where) of things in the = “What is the representation for the input * Representations = Nonparametric Bayes
real-world from 3D-images (on2D) and output, and the algorithm for the — » Language = Probabilistic grammars
= Vision = information processing task + rich transformation?” EAR
internal representation VISION . S = Experiment design = |nference algorithms
= Understanding of vision requires multiple N o * Implementation ; * g -
levels of analysis: computational - N = “How can the representation and -
algorithmic and physical (hardware) i algorithm be realized physically?” sechie o gre Interected It muonne
4 learning should be cognitive scientists
Marr, D. 1982. Vision: A Computational Investigation inte the Human iy Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and vice versa” Joshua Tenenbaum, MIT
Representation and Processing of Visual Information, New York, Henry Holt. and Processing of Visual Information, New York, Henry Holt. http://web.mit.edu/cocoscifjosh.html
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TUY, Is the human brain a inference engine ? @HCI-KDD TYU, 03 Human versus Computer @HCI-KDD TU, People are awesome ... @HCI-KDD
= mm progie sre amrtame

= Learning concepts from examples (babies!)
= Causal inference and reasoning
= Predicting everyday events

= Even little children solve complex problems
unconsciously, effortlessly, and ... successfully!

= Compare your best Machine Learning algorithm
with a seven year old child!

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a
mind: Statistics, structure, and abstraction, Science, 331, (6022}, 1279-1285,
doi;10.1126/5cience. 1192788,

Griffiths, T. L. Connecting human and machine learning via probabilistic models of
cognition. Interspeech 2009, 2009 Brighton (UK). ISCA, 9-12. available online via:
https://cocosci.berkeley.edu/tom/papers/probmods.pdf

Holzingor Graum ) 709,049 04
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See Youtube: “people are awesome” ... hundreds of examples
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TU, Problem Solving: Humans vs. Computers @HCI-KDD

When is the human *) better?
*| human intelligence/natural
intelligence/human mind/human brain/ learning
= Matural Language Translation/Curation
Computers cannot understand the

context of sentences [3]

* Unstructured problem solving
Without a pre-set of rules, a machine
has trouble solving the problem,
because it lacks the creativity required
for it [1]

= NP-hard Problems
Processing times are often exponential
and makes it almost impossible to use
machines for it, but human make
heuristic decisions which are often not
perfect but sufficiently good [4]

When is the computer *¥*)
better?

**] Computational intelligence, Artificial
Intellige fsoft computing/ML

High-dimensional data processing
Humans are very good at dimensions
less or equal than 3, but computers can
process data in arbitrarily high
dimensions

Rule-Based environments
Difficulties for humans in rule-based
environments often come from not
recognizing the correct goal in order
to select the correct procedure or
set of rules [2]

Image optimization
Machine can lock at each pixel and
apply changes without human personal
biases, and with more speed [1]

[1] Kigm, M. 2006, Creativity Meets Automation: Combining Nonverbal Action Authoring with Rules and Machine Learming. in: LNCS 4133,

pp. 230-242, doi:10.1007/11821830_19,

[3 Pidle, Z., A, & Grahamn, 5, M, 1994, Problem Solving

[2] Cummings, M. 8. 2014, Man versus Machine or Man + Machine? IEEE Intelligent Systerms, 29, (5), 62-69, doi:10.1109/M15. 201487,

g3 and Computy

h, 2009, 15CA, 3-12.

TU, Human Cognitive capacities of Inference and Prediction @HCI-KDD
= Similarity [1] R

= Representativeness and evidential support

Causal judgment [2]
= Coincidences and causal discovery

Clinical diagnostic inference [3]

Predicting the future

[1] Kemg, C, Bernstein, A & Tenenbaum, J. B. A generative theory of similarity. Proceedings of the 27th Annual
Conference of the Cognitive Science Sochety, 2005. 1132-1137.

[2] Steyvers, M., Tenenbaum, J. B, Wagenmakers, E.-). & Blum, B. 2003, Inferring causal networks from
observations and interventions. Cognitive science, 27, (3), 453-489.

[3] Erynski, T. A, & Tenenbaum, J. 8. 2007, The role of causality in judgment under uncertainty. Journal of
Experimental Psychology: General, 136, (3), 430,

TU, Humans learn from very few examples ...

- o

! 3 i’@@éﬁu@

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science, 331, (6022, 1279-1285, doi:10.1126/science. 1192788,

il ‘
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TU, Important: Statistics meet Knowledge @HCI-KDD TU, Decision trees are coming from Clinical Practice TU, Expected Utility Theory E (U|d)

= 1. How does abstract knowledge guide learning and

inference from sparse data?

= (Approximate) Bayesian inference in probabilistic models.
= 2. What are the forms and contents of that knowledge?

® Probabilities defined over a range of structured
representations: graphs, grammars, predicate logic, schemas...

programs.

= 3. How is that knowledge itself acquired?

= Hierarchical Bayesian models, with inference at multiple levels
of abstraction (“learning to learn”). Learning as (hierarchical

Bayesian) program induction.

= Central Question:

How does our mind get so much out of so little?

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics, structure, and
abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science. 1192788,

Death from cancer

Probability 2%
W Cucliion node Utitity 5%
‘@ Chance node
“d Outcome Fertile survival
Probability 98%
No further Utility 100%
surgery
Surglcal death
Microinvasive Probability 0-5%
cancer of the Utility 0%
i Dies Infertile survival
Radical /4 Em:';"sz 98%
hysterectonny ¢
Infertile survival
Survives (p=99-5%) Probability 5% Plrydiciin tnsating & patient
Utility 95% approx. 480 B.C
Spread (p=2%) Beatley {1963), Attic Red-figured
Death from cancer - 13, 96,
Probability 5% ek, Elsy
Utility 5% quities, Sulky, 13t
pana Gallery, roam 43

, Paris

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281}, 571-574.

For a single decision variable an agent can select E 0
D = dforanyd € dom(D). 1
The expected utility of decision D = d is
hatpd fwarw echtinfo/page/Oskar+Morgenstern

E(U | d) Z P(x1,...08n | )2, - o T d)

£1y..1Tn
An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax = arg max F(U | d)

dedom( D)

Von Neumann, J. & Morgenstern, O. 1947, Theory of games and economic
behavior, Princeton university press.
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TU, 04 Human Information Processing @HCI-KDD TU, How does our mind get so much out of so little ... @HCI-KDD TY. Learning words for objects — concepts from examples @HCI-KDD

04 Human
Information
Processing

Holinger Groug 43 709,049 04

Salakhutdinov, R., Tenenbaum, ). & Torralba, A. 2012. One-shot learning with a hierarchical
nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.

Holinger Groug a8 709,049 04
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Salakhutdinow, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric
Bayesian model. Journal of Machine Learning Research, 27, 195-207.
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TU, How do we understand our world ... @HCI-KDD o
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Tenenbaum, ). B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011, How to grow a mind:
Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285.
Holinger Grous % 709,049 04

TU_ One of the unsolved problems in human concept learning QHCI-KDD

= which is highly relevant for ML research,
concerns the factors that determine the
subjective difficulty of concepts:

= Why are some concepts psychologically
extremely simple and easy to learn,

= while others seem to be extremely difficult,
complex, or even incoherent?

= These questions have been studied since the
1960s but are still unanswered ...

1. 2000. Minimization of Boolean
(6804), 630-633, doi:10.1038/35036586.

ity in human concept learning, Nature, 407,

TU, A few certainties @HCI-KDD

®© Q _JO, \
“a \ 1\1 Iy 5 .

= Cognition as probabilistic inference

= Visual perception, language acquisition, motor learning,
associative learning, memory, attention, categorization,
reasoning, causal inference, decision making,
theory of mind

» Learning concepts from examples

» Learning and applying intuitive theories
(balancing complexity vs. fit)

Holringer Groug a7 T09.049 04 Holringer Group 4 T09.049 04
TY, Modeling basic cognitive capacities as intuitive Bayes @ HCI-KDD A TU, Drawn by Human or Machine Learning Algorithm? @ HCIKDD TU, Human-Level concept learning - probabilistic induction @ HCI-KDD L
] Simi|arity Science. A Bayesian program learning (BPL) framework, capable of learning a

= Representativeness and evidential support
= Causal judgement
= Coincidences and causal discovery

€ |€|€ || €

large class of visual concepts from just a single example and
generalizing in ways that are mostly indistinguishable from people
A
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Sample rumber o sub-parts

. = € | & i :
= Diagnostic inference : NE DN L LT 16 ot e
i ) parm 3 -‘u | D | s Sample retaion
. 4= 5 e s
= Predicting the future i P % ‘E né '€', °6 ‘:6 Mt v N N Can
i fid evplata reation "y ration: gy o) b
: el i) < ey (N
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. § RO . /1\. /\ peocedure G:»:-m Token ¥
2006. Theory-based Bayesian models of Cé q té- - gy P Add molor varance
inductive learning and reasoning. Trends in g ! 4 3u 51 3 ‘b b ye Y = L
cognitive sciences, 10, (7), 309-318. Structured probabilistic model W) raw data 5|1 Compase a parfs ¥ajeciory
]% é | :! : i F Sample aftre transtrm
J e, g + Sample mage
\ PData | Siructare) Lake, B. M., Salakhutdinov, R. & Ti J. B. 2015. Human-level learning through rorurn
prababilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050. Lake, B M., 18,2018,
Otwsrvacle duta d sue-me 150, mss| 13321338,
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TY, @HCI-KDD TYU. Human Information Processing Model (A&S) @HCIKDD - TU G | Model of H Information Processing @ HCI-KDD -
A J Physics Perception Cognition Motorics
IRt “Aftontional === === =====
=S BEEEEST
How d ' | R
OwW aoes our min | ‘ |
() [R] - (] | ' ;
SENSORY REGISTERS 3 ! ;‘ Momory i
i i B
i : N, [ Woring |
Selektipn ) 4 Mamaory
v & H |
m——————— - L B Cognitive L ¥
1 sTs | CONTROL PROCESSES | —H sensay A »| Processes |
! MEARSAL, [ Processing Parception > = > it >
So I ltt I e ? Atkinson, R. C. & Shiffrin, rewecmwme | coowe | RESPONSE —* sTss < Selection Ematision
. R. M. (1971) The control Jromine e !
processes af short-term 1 STRATEGIES |
memary (Technical Report e e f
173, April 19, 1971). . System
Stanford, Institute for TR,
Mathematical Studies in {Eanchet).
the Social Sciences, LTS
Stanford University. PERMANENT MEMORY STORE ‘Wickens, C., Lee, J,, Liu, Y. & Gordon-Becker, 5. (2004) cf to Human Factors Engineering: Second
Edition. Upper Saddle River (NJ), Prentice-Hall.
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TU,_ slide 7-7 Example: Visual Information Processing @ HCI-KDD &

SCIENTIFIC
AMERICAN

Source: Department of Neuroscience, The Mount Sinai School of Medicine {2004)

TU, slide 7-8 Schematic Information Processing Chain @HCI-KDD
Physical Sensory Working Long-Term
World Register Memory Memory
[ words | ([ Ears | | |[ Sounds | [ verbal |

Prior
Knowledge

[(Pictures | | | [ Eyes ] | |[ 1mages ] [ pictorial )

cf. with Paivio (1973}, Mayer & Moreno (1998), Holzinger (2000), Schnotz & Bannert (2002)

TU, slide 7-9 Information processing of images/pictures @HCI-KDD &

a) Processing of visual information (PICTURES)

Multimedia Sensory Working Long-Term
Presentation Register Memory Memory

LWordsj: [ Ears

i

( pictures [ Eyes images |-{ Pictorial ]

cf. with Paivio (1973}, Mayer & Moreno (1998), Holzinger (2000), Schnotz & Bannert (2002)
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TU, Sslide 7-10 Information processing of words/pictures @ HCI-KDD & TU, Sslide 7-11 Information processing of words/sounds @ HEI-KDD & TU, Slide 7-16 Human Decision Making @ HEI-KDD &
b) Processing of visual information (PRINTED WORDS) ¢) Processing of audio information (SPOKEN WORDS) UNCERTAINTY
Cues
Multimedia Sensory Working Long-Term Multimedia Sensory Working Long-Term e l
Presentation Register Memory Memory Presentation Register Memory Memory — 4 DIAGNOSIS CHOICE
> Working 4
“r((( | setective [Jeemepton} M Memory X' acton | f oomel
= Attention |, 1 e |
[ Words [ Ears [ Sounds H Verbal ] Words . T ------- > | a
Prior ’
ng Knowledge \\
[ pictures Eyes images | [ Pictorial | | Pictures | nfo; rom L, PR
Memory QX 4 i®Lielihood and
T‘ﬁg‘) ; ;ﬂm
H) Hypathesi e
W e

cf. with Paivio (1973}, Mayer & Moreno (1998), Holzinger (2000), Schnotz & Bannert (2002)
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cf. with Paivio (1973}, Mayer & Moreno (1998), Holzinger (2000), Schnotz & Bannert (2002)

Holzingor Graum 5 709,049 04

Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus [OH), Charles Merrill,

Holzingor Graum 5 709,049 04

TU, 06 How to make decisions in an domain of uncertainty @HCIKDD A

05 Probabilistic
Decision Theory

“It is remarkable that a science which began with the
consideration of games of chance should hove become
the most important object of human knowledge™
Pierre Simon de Laplace, 1812

Holzingor Graum 6l 709,049 04

TU, Signal Detection Theory (SDT) @ HCI-KDD &

o5 Museumn hitp:/ staffs.ac.ukfjdwlfsuc htm

Saywn ———le Sy

Decsion vanabie

Stanislaw, H. & Todorov, N. 1999, Calculation of signal detection theory measures. Behavior
research methods, instruments, & computers, 31, (1), 137-149.
Holringer Groug B2 09,049 04

TU, slide 7-22 Signal Detection Theory on the MDM process @ HCI-KDD &
[

.

Y

fufior

Two doctors, with equally good training, looking at the same CT scan, will have the
same information ... but they may have a different bias/criteria!

Holzingor Graum & 709,049 04




TU, Slide 7-25 Decision Making Process - Signal Detection @HCI-KDD -

Remember: Two doctors, with equally good training, looking at the same CT scan data, will
have the same information ... but they may gain different knowledge due to bias/criteria.

BIGNAL
I R crilerion response
prosent Ll
false F
Vdad IR alarm g P -
. cormect o
] m ¢
83 | rejection
intemal responsa
Distrbution of intemal
responses whon Distribation when
womorpronect, tumor is present Cofmact reject
E \ / g fnise alarm
[+
T 1 w W = = internal response
Inlemal response http://www-psych.stanford.edu/~lera/psych115s/notes/signal

TU, Slide 7-26 Receiver Operating Characteristics (ROC curve) @HCI-KDD -

WLoNwAAN

d =3 (not much overap)

d'=1 (lots of overlap)

Hits = 97.5%
False alarms = 84%

Hits = 84%
False alarms = 50%

Hits = 50%
False alarms = 16%

0.0 05 1.0

TU, slide 7-23 Information Acquisition and criteria - bias SHCI-KDD &

= Information acquisition: in the CT data, e.g. healthy lungs have a characteristic shape;
the presence of a tumor might distort that shape (= anomaly).

Tumors have different image characteristics: brighter or darker, different texture, etc.
With proper training a doctor learns what kinds of things to look for, so with more
practice/training they will be able to acquire more (and more reliable) information.
Running another test (e.g., MRI) can be used to acquire more (relevant!) information,
The effect of information is to increase the likelihood of getting either a hit or a correct
rejection, while reducing the likelihood of an outcome in the two error boxes (slide 23),
Criterion: Additionally to relying on technology/testing, the medical profession allows
doctors to use their own judgment.

Different doctors may feel that the different types of errors are not equal.

For example, a doctor may feel that missing an opportunity for early diagnosis may
mean the difference between life and death.

A false alarm, on the other hand, may result only in a routine biopsy operation. They
may chose to err toward “yes” (tumor present) decisions,

Other doctors, however, may feel that unnecessary surgeries (even routine ones) are
very bad [expensive, stress, etc.).

They may chose to be more conservative and say “'no" (no turmor) more often. They
will miss more tumors, but they will be doing their part to reduce unnecessary
surgeries. And they may feel that a tumor, if there really is one, will be picked up at the
next check-up.

For an example see: Braga & Oliveira (2003) Diagnostic analysis based on ROC curves: theory False alarms Mohamed, A. et al, (2010) i rupture of a g | stromal tumour with intraperitoneal

and applications in medicine. Int. Journal of Heaith Care Quality Assurance, 16, 4, 191-198. http://gru.stanford.edu/doku.php/tutorials/sdt bleeding and haematoma formation, BMJ Case Reports, 2010,
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TU Slide 7-24: Decision Making Process vs. Data Mining process ~ @HCI-KDD & TU, Repetition Bayes Foundations @HCI-KDD - TU, Learning and Inference @HCI-KDD -

Decision-making process Data Mining process

What is the simplest mathematical operation for us?

d .. data ﬂ

H ..{HyHy . HY} Vhd ..

[ S for iwarmdicn i = pla) = Y (ple, ) h ... hypotheses
Diefine ohjectives it e} : F3 Likelihood ; Prior Probability
IDefine the problem 1o be sobved How do we call repeated adding? p(h)
Seanch for relevant mlumuu.::‘ plx.y) = plyle) » ply) p (h I d)=
s #— Lhenp@[R) p(h)
Deeign Laplace (1773) showed that we can write: / heH
= pla,y) » ply) = plyl=) « plx) Pamecior Probabifyy \ Evidence p(d) = marginal likelihood
s miing T Now we introduce a third, more complicated operation:
I . . . Knowledge evaluation pley) = ply) _ plule) ‘._ui:]
Search e ply) y)
+ "+ Knowledge integration
b We can reduce this fraction by p(y) and we receive whal is called Bayes rule:
Rocomimandation of the apropriste solbon i j'l{dl-‘l ]P{"'-]
Ayed, B. M., Ltifi, H., Kolski, C. & Alimi, A. (2010) A user-centered approach for the design & implementation pl,y) = P ‘lf )= p[d:, Feature mr.:m:wr 1]
of KDD-based DSS: A case study in the healthcare domain, Decision Support Systems, 50, 64-78,
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TU, slide 7-27b Bayes Law of Total Probability = data modelling ~ @Hci-kDD TU, Bayes Rule for Medical Diagnosis SHCI-KDD & TU, Bayesian Inference @ HCI-KDD L
d ... data; h ... hypothesis P(dlh)P(h’) = = ] Symptoms x F
P = Prior probability Key V.
P (d) pldisease) Chickenpox = 0% .
s 4 .
Pihy: prior belief (probability of hypothesis h before seeing any data) Symptoms® = e
Pid | h): likelinood (probability of the data if the hypothesis his rue) B 5
. . h ; . o Likelihood ayes plx ) =08 plddf) =09
Pld}y=_ P(d | Pk :data evidence (marginal probability of the data) % e "
4 Z | plsymptoms|disease) Rule Likelihood Likelihood
Pih|d): terior (probability of hypothesis h after having seen the data o)
. . K
* i i Tzl
posterior= likelyhood * prior T (B ) Dicase 6, Disease 0, § Frequency i
- f - \__\ 4 _ population
evidence Picassssinymmptons) pB)=0.1 < p(fl)=00011

= evidence = marginal likelihood = “normalization”

= Remember: The inverse probability allows to infer
unknowns, learn from data and make predictions ...
machine learning!

Holringer Group 0 T09.049 04

p(symptoms|disease)p(disease)

p(disease|symptoms) =

p(symptoms)

Stone, J. V. 2013, Bayes' rule: a tutorial introduction to Bayesian analysis. Sebtel Press,
Holzinger Group n 709,049 04

Prior probability of I Prior probability of ],

Py = p(AB)p 8 ) p(x) Pl = plxl@)p(6,)p(x)
=08 x0.1/0.081 =09 x0.001/0.081
=0.988 =0011

Posterior probability of ) Posterior probability of ,
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TU, Python Code Samples @HCI-KDD TU, @HCI-KDD TU, Slide 7-27c Representation of uncertainty @HCI-KDD
= Many aspects of intelligence and learning depend on

* Tibeiiven - pros ot syt girn smaiipen probabilistic representation of uncertainty:

sipstettastizes = 6.5

e = Forecasting

. m inal likelibhesd = preb of spots - Decision su ort

b 7er e NN SO — 6,,—*|Physics |— x,,,——*| Measure|— x i e )

pIsslipostipore = piputetizaliper + pleaiipex / ppots = |earning from noisy, missing, uncertain data ...

D i mepete) = Knowledge discovery

= Probabilistic programming (e.g. Stochastic Python, Julla)

® likelibkosd = )nb tl apets given chickeapos Bayes' Like"hOOd " UnW’erSaI Inference algonthms - S

it Oast Rue |* P(x16) < Model = Global optimization — g i

:c.::r III;IIlO.‘ = prab of spots

27T Tis0 etarior = pien af chickarpes given spots y i afh

T e e AT Toncaeepnttyei Prior p(6) i / _ B

1 fioN /
 Outpet:  Pestarior, pORickeapesiSpots = 0.988, 4 SN, A A
hitp://jim-stone.staff.shef.ac.uk/B yes2012/8 ythonCode.html i, Z. 2015. F i hine learning and artificial intelligence. Nature, 521, (7553), 452-459,
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TU. A practical example @HCI-KDD - TU, Slide 7-27d Bayes’ in clinical practice @HCI-KDD - TU, Slide 7-28: Example Clinical Case: Serotonin Syndrome @HC-KDD -

Learn the

Heart attack warnmg signs!

/Qdff a i

N

ausea, sweating,

= Clinical Example:

= D ... acute heart attack

= [J, ... instable chest pain

= p(D) .37 of 1000 = 0,037 (heart attack)

= p(D) ... 963 of 1000 = 0,963 (no heart attack)

= 40% of patients report on instable chest pain
p(U+|D)=0,4

Unfortunately this symptoms also occur in 5 % of the
healthy population

Pain in the =
jaw, neck, arms, = p(U,|D)=0,05
sHRodeorbeck = We find the probability for a heart attack during this
symptoms therefore by using Bayes’ Rule:
p(U41D)*p(D) LN r=—=all.
" p(D|U+)= BrenrBy 0,235 Boyer, E. W. & Shannon, M. (2005) The
Act Fa St! ca" 9'1 '1 P(U4[D)*p(D)+p(U+1D)*p(D) Serotonin Syndrome. New England Journal
of Medicine, 352, 11, 1112-1120.
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TWlide 7-29 Differential Diagnosis on Serotonin Syndrome 1/2 @HCI-KDD - TU, slide 7-30 Differential Diagnosis on Serotonin Syndrome 2/2  @HC-KoD A TU, 06 Naive Bayes @HC-KDD -

Hunter’s Decision Rules for Diagnosis
of Serotonin Toxicity
Spontaneaus conus —22—m. Serotonin tacty
Ho
Inducible clonus with —2 . Serosonin tacity
agitation or diaphoresis
ta

Ocutar chonus with Lﬂ- Serodonin toxicty
agitation or diaphoresis

No
Tremor and hypemefiexia -YL-O- Serotonin toeicity
Na

Hypertonia, temperature above 100.4*F D= Serotonin toaicity
{38°C), and ocular or inducible donus

lm

No seratonin foxicity

Signs & of
Agitation (revtievinesa)® Muilts-tegan faduret
Diaplweeses® Myocians®
Diaerhea® Ccutar cloniss
coaguiation! Shivesing*
Fever above 100.4°F (MC)  Toni-chonic selzurest
Hyperrellexia® Tremaor*

Incoordnation (ataxis)*

Mental statiss changes
Confusion®
Hypomania®

*Sterntuch's agraitic enites requne Uves of 10 s aed
symptem.
T Fatrttedy v caen

Ables, A. Z. & Nagubilli, R. (2010} Prevention, recognition, and af

American family physician, 81, 9, 1139.

Holzingar Group kLl
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Chinical condition  History. Vital signs Chnicad fealures
Anticholinergic Use of tricychic iy Dry mouth, blemed vision, mydriasss,

syndrome or ather anticholinergic deugs hyperthermia (usually flushed skin, agitation/delirium, decreased
102.2°F [39°C] or bolow) Inw!lsounds
Malignant inistration of Jon, s , mattled skin, agitation,
hy hal hetics or H hyperthermia decreased bowsl ‘sounds, muscular
depolarizing muscle relaxants {up to 114.8%F [46°C[) rigidity, hyporeflexia

Neuroleptic Ingestion of antipsychote: Siakrhea, palior, stupor,
malignant medications. tachypnea, hyperthermia mutism, coma, normal or decreased bowel
syndrome: {above 105.8°F [#1°C]) sounds, lead-pipe rigidity, bradyreflexia

Ables, A. Z. & Nagubilli, R. (2010) Prevention, recognition, and management of serotonin
syndrome, American family physician, 81, 9, 1139,

Holringer Group L T09.049 04

06 Practical Example:
Naive Bayes Classifier
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TU, @HCI-KDD oL

= What can we do if the data sets d have different
attributes?

= Naive (simple - independent) Bayes assumption:
= Attributes that describe data instances are

conditionally independent given the classification
hypothesis

P(d| ) = P(a,,...,a, | k) =] | P(a, | h)

Holringer Groug L] T09.049 04

TUY, What is classification? @HCI-KDD

= Predict labels y (classes C) for inputs x
= Spamfilter (input: document, classes: spam / ham)

= OCR (input: images, classes: characters)
= Fraud detect (in: account activity, cl: fraud / no fraud)

= Medical diagnosis (input: symptoms, classes: cancer /
no cancer)

= BRT

=

et fanana.
Holringer Groug 83 T09.049 04

TU, map @ HC-KDD 4

= We can compute the Maximum A Posterior (MAP)
hypothesis h,, ,, for the data D

= We are interested in the best hypothesis for some
hypothesis space H given observed training data D

h,,» =argmax P(h|D)

heH
P(D|h)P(h)
Sargnay ————————=
heH P(D)

=argmax P(D | h)P(h)

heH

Holringer Groug - T09.049 04

TU, Maximum Likelihood @HCI-KDD

= Now assume that all hypotheses are
equally probable a priori, i.e., P(hi) =
P(h;) for all h;, h; belong to H.

= This is called assuming a uniform prior.
= |t simplifies computing the posterior:

h,, =argmax P(D | h)

TU, Why is this so interesting @HCI-KDD

= |ncrementality: with each training example,
the prior and the likelihood can be updated
dynamically: flexible and robust to errors!

= Combination of prior knowledge and
observed data: prior probability of a
hypothesis multiplied with probability of
the hypothesis given the training data

= Probabilistic hypothesis: outputs are not

TU, Example 1/4: carcinoid heart disease (chd) @ HCIKDD

Hepatic venous congestion and carcinoid heart disease secondary to an ovarian carcinoid tumor
in a 56-year-old woman with elevated liver enzyme levels and right upper quadrant pain.

i only a classification, but a probabilit
= This hypothesis is called the maximum o B ! P Y
i - distribution over all classes!
likelihood hypothesis.
t AL K. P, Shanbt D. K. P, Prasad, 5. R., Surabhi, V. R., Fasih, N. & Menias, C. O. (2010)
Clinical Syndromes Associated with Ovarian A Review. i ics, 30, 4, 903-9189.
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TU, Example 2/4: bone-marrow depression (bmd) @HCI-KDD 5 TU, Example 3/4: partial liver resection (plr) @HCI-KDD 5 TU, Example 4/4: radiofrequency ablation (rfa) SHCI-KDD &

Prasad, M., Maitra, A., Sethiya, N., Bharadwaj, V. K., Chowdhury, V., Valecha, J. & Biswas, R.
(2003) Acute renal failure followed by low back ache. BMJ Case Reports, 2003,

Holringer Group L] T09.049 04

Lesion

Partial Left Loteral Segmentectomy

Zollinger, R. M. & Ellison, C. (2010} Zolinger's Atlas of Surgical Operations {9th Edition).
New York, McGraw Hill.

Holringer Group L] T09.049 04

anlstcn Valley _biec!lcgl Center

van Vilsteren, F. G. |. et al. {2011) Stepwise radical end { ion versus radiofreq y ablation for
Barrett's oesophagus with high-grade dysplasia or early cancer: a multicentre randomised trial. GUT.

Holringer Group L T09.049 04




TU, Slide 7-20 Modeling Patient health (1/2) @HCI-KDD o

chd = carcinoid heart disease; bmd = bone-marrow depression; plr = partial liver resection;
rfa = radiofrequency ablation; dashed ... past states; square objects ... treatments

van Gerven, M. A, )., Taal, B. G, & Lucas, P. ). F. (2008) Dynamic Bayesian networks as prognostic

TU, slide 7-21 Modeling Patient Health (2/2) @ HCI-KDD &

Let U < X denote this risk factors and
Let V = X\ U denote the complement.

The risk of immediate death p(health(t) = death|X) can be expressed by
calculation of the following product:

[Trw

veu

Further, we obtain

plhealth(t) = h|X) = p(h|V) Hp(hea!:h(r) # death|U, health(t — 1))

vel

for h # death

TU, @HCI-KDD oL

What can we do if we
have not only
probabilistic, but also
lcpl edt ..

models for clinical patient B Journal of Biomedical Informatics, 41, 4, 515-529. van Gerven, M. A. 1., Taal, B. G. & Lucas, P. J. F. {2008) Dynamic Bayesian networks as prognostic

maodels for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.
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TU, @HCI-KDD 5 TU, Slide 7-31 Rough Set Theory for dealing with incomplete data @Hci-o0 4 TU_ Sslide 7-32 Diagnostic Procedure (Differential Diagnostic) @HCI-KDD 5

Rough Set Theory

= . is an extension of the Classical Set Theory, for use when
representing incomplete knowledge.

= RS are sets with fuzzy boundaries - sets that cannot be
precisely characterized using the available set of attributes,
exactly like it is in medical decision making; based on 2 ideas:

= 1) agiven concept can be approximated by partition-based

Focusing Mechanism

A ; Selection of Candid: Charac g
knowledge as upper and lower approximation — which ¢ T g (Negative Rules)
corresponds to the focusing mechanism of differential medical
W i [ | T 1Y s 1, cetete st diagnosis: upper approximation as selection of candidates and Discrimination
s | T e [ SEE Foran s lower approximation as concluding a final diagnosis. (Bosilive Rules)
et ] v rantanig 5 haL et iy . e 2
o - o o (e m'030) = 2) a concept or observation can be represented as partitions in I Detection of Compl I Comp
T e R a given data set, where rough sets provides a rule induction
’ % ﬁ method from given data. Thus, this model can be used to
’ extract rule-based knowledge from medical databases.
Tsumato, 5. (2006) Pawlak Rough Set Model, Medical Reasoning and Rule Mining. In: Greco, 5., Hata, Y.,
https://www.calvin.edu/~pribeiro/othrinks/Fuzzy/fuzzyeng.htm Hirang, 5., Inuiguchi, M., Miyamoto, 5., Nguyen, H. & Slowinski, R. (Eds.) Rough Sets and Current Trends in
Computing. Berlin, Heidelberg, Springer, 53-70.
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TU, conclusion @ HC-KDD 4 @ HC-KDD 4 TU, @ HC-KDD A

= Medical action is continuing decision making
= Decision making is central in health informatics!
= Decision is inherently connected with cognition

= Studying algorithms that can learn from data
needs understanding the human learning

= Bayes, Laplace, GauB, ... provided powerful tools
for medical reasoning and decision support

= Evidence based medicine is following these

approaches
= |Implementation Examples in the following
lectures

Thank you!
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Questions
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TU, Quiz(1/2) @ HC-KDD 4 TU, Quiz(2/2) @ HC-KDD 4 TU, @ HC-KDD A

= Explain the Hypothetico-Deductive Method! = Give three examples of where iML is beneficial in health
= What is the PDCA Deming wheel? informatics?
= Why is understanding intelligence a grand goal? = What is the difference between

Medical/Biomedical/Health Informatics?
= What are the key problems in health informatics?
= Why is both time and structure so important?
= What is life (in the sense of Erwin Schrodinger)? =
= \What are the building blocks of life? Ap pe n d IX
= Please define BMI according to the AMIA!
= What are open problems in health informatics?
= What is personalized medicine?
= What is a biomarker? Why are biomarkers important?
= What is the famous time limit to reach a medical

= Give an example for causality!

= When is the human better than a computer?

= When is the computer better than a human?

= Explain how humans learn from very few examples!
= What describes the Expected Utility Theory (EUT)?
= How do humans make a decision?

= What can we learn from Signal Detection Theory?

= How can an algorithm learn from data?

= Where is Bayes used in clinical practice?

= What is the problem with incomplete data?

decision?
Holringar Groug 00 T00.049 04 Holringar Groug o1 T00.049 04 Holzingar Groug o 09,049 04
TU, Additional Reading @ HCI-KDD L TY, RLis multi-disciplinary and a bridge within ML @ HCI-KDD L TU, Slide 7-1 Key Challenges @ HCI-KDD &
= History of Probability Theory . . . wld i >
*  Franklin, ). The Science of Conjecture: Evidence and Probobility Before Pascal, John Hopkins University = Time to ma ke a d ecision = l‘.‘5 Min Utes” [1] " [2]

Press, 2001

e T I I Economics = Limited perceptual, attentive and cognitive

Gigerenzer, G., and D. I. Murray. Cognition as Intuitive Statistics. Hillsdale, NJ: Erlbaum, 1987. h uman resources [3] - a nd H uman error

Gilovich, T., . Griffin, and D. Kahneman, eds. Heuristics and Biases: The Psychology of Intuitive
Judgment. Cambridge University Press, 2002,

= Kahneman, D., P. Slavic, and A, Tversky, eds. Judgment under Uy tainty: Hi tics and Bioses. = = - % = =
Cambridge Unlversity Fress, 1982, L e UAGErIOME: FEUrSIC nd Bose R ] g = Noisy, missing, probabilistic, uncertain data
= Bayesian Net\m:llks '; ‘". E E
= Pearl,) i telligent 5 : s of Plausible Infl Lt Kaufman, (-8 o x
S5 Miaves, CA 1988, el il Bl il pibatiod L » 9 |§ Reinforcement S
®  Breese, ). 5. "Construction of Belief and Decision " C i i 8, 4(1992): Sl => : 2N,
524-647. . | = Learning w
= F Eacl:hus Al Grove, I Y. Halpern, and D. Koller. "Statistical Foundations for Default Reasoning.” | — En o
of the 13th i Joint Conference on Artificial Intelligence (UCAI), Chambery, France, L i’ 8 g
August 1993, pp. 563-569. m
*  Multiple-Instance Bayesian Networks
=  Pasula, H., and 5. Russell, "Approximate Inference for First-order Probabilistic Languages." UICAI-01
Seattle, WA, 2001, pp. 741-748.
= Halpern, . Y. "An Analysis of First-order Logics of Probability." Artificial Inteflig 46, 3 {1990}; 311- i [llﬁugeren»er.ﬁ 2008. Gut Feelings: Short Cuts to Better Decision Making London, Penguin,
;sg.ou S e . WS A Mathematics [2] Gigerenzer, G. & Gaissmaier, W. 2011. Heuristic Decision Making. In: Fiske, 5. T,, Schacter, D.
. . Koller, and A. Pfeffer. "Object-Orient ayesian Networks." Proceedings of the 13th Annual o
Conference on Uncertainty in Al (UAI). Providence, Rhode Island, 1997, pp. 302-313. L& :ra'flcr- S.E. (eds.) A‘?"ual.ne_‘”gw of Ps‘!'t_holcg'fx Vol 62. Pp. 451-482, _ ) )
[3] Bialek, W. 1987, Physical Limits to Sensation and Perception. Annual Review of Biophysics
and Biophysical Chemistry, 16, 455-478.
Holringer Group 103 T09.049 04 Holringer Group 4 T09.049 04 Holringer Group 105 T09.049 04
TU, Recommended Books @ HC-KDD 4 TUGP = distribution, observations occur in a cont. domain, e.g. t or space @HCI-KDD TU, Slide 7-47 Future Outlook @ HC-KDD 4
Bayes' Rule GP posterior Likelihood  GP prior
With Python r—— r— e, e, Plix.) 1000
AT BAYESIAN T
p(f(x)[D) x p(DIf (x)) p(f (x)) § P——
REASONING sy} +a(xg) other
and nlxy E effector molecules
MACHINE o) y -
Machine Learning ® Gene expression
d Barbar s w profiles
10
Structural Genotics.
Stone, J. V. 2013, Bayes'
ru!e a tumrlal Barbe.r, D. 3012-_ Murphy, K. P. 2012. Homan c""‘m‘ 5 24 S Saptypes
tion to Bayesi Bay | » and Machine learning: a pix, )-aix,) -
analysis. Sebtel Press. macmr_ng learning, . probabilistic * ! Phenctype
http:/fjim- Cal:nhrlt.ige, Cambridge perspective, Cambridge
stone staff.shef.ac.uk University Press. (MA), MIT press. ; 140 2000 010 20
X X3 x+ 1 William Stead, 10M Mecting, 8 October 2007. Growth in facts affecting provider decisions versus human cognitive
capacity.

Brochu, E,, Cora, V. M, & De Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arkiv:1012.2599.
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TU, More Questions (1) @HCI-KDD

= What is still considered the main and central topic in

medical informatics?

Please explain the information flow within the

memory system according to Atkinson & Shiffrin!

= Explain the general model of human information
processing following the model of Wickens!

= Explain the processing of visual (image, pictorial)
information!

= Why is Attention of importance for medical
informatics?

Please explain the process of human decision
making according to the model of Wickens (1984)!

TU, Sample Questions (2) @HCI-KDD 5

= What is the big difference between the
Hypothetico-Deductive Method and the Plan-Do-
Check-Act Deming Model?

= How can we model patient health — please provide
an example!

= Please contrast the decision making process with
the data mining process!

= Why is Signal Detection Theory important for us?

= Please provide an Example for the application of
Bayes’ Theorem!

= How does Differential Diagnosis work?
= How can we apply Rough Set Theory for differential

TU, Some Useful Links @HCI-KDD

http://www.anaesthetist.com/mnm/stats/roc
= http://sbml.or
http://www.lcb.uu.se/tools/rosetta

http://wise.cgu.edu/sdtmod/overview.asp
(excellent Tutorial on SDT)

http://www.iom.edu (Institute of Medicine)
http://www.ahrg.gov/qual/patientsafetyix.htm
(Agency for Health Care Research and Quality)
http://www.fda.gov/drugs/drugsafety/medicatio
nerrors/default.htm (Food and Drug

= What is Triage? diagnostics? Administration, FDA, medication errors)
= Please explain the hypothesis-oriented algorithm for
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TU, Appendix: NEJM Interactive Multimedia Cases @HCI-KDD A THide 7-34 Rough Set Theory Example Symptom: Headache 2 QHCI-KDD TU, Sslide 7-35 Classification Accuracy and Coverage QHCI-KDD
S o= ) R Definition 1. Let B and D denote o formula in F{B V) and a set of olgects
™ NEW ENGLAND = The atomic formula over which belong to a decision d. Classification acewracy and coverage(true positive
@ JOURNAL of MEDICINE = = BS AU {d}and V are expressions of the form [a = v] rate) for R — d i defined as:

e | samnne | wenne | s s v - | i | o

= called descriptors over B, where a € Band v € Va.

= The set F(B, V) of formulas over B is the least set containing all
atomic formulas over B and closed with respect to disjunction,
conjunction and negation. For example, [location = occular] is

|Ran D

|fta N D
D|

ag(D) = (= P(D|R)), and

k(D) = (= P(RID)),

Hunt, 5., a descr]ptor of B. where [S], ag(D), &p(D) and P{S) denote the cardinality of a set S, a classifi-

Miller, A, L., 3 . : cation accumey of R us to clussification of D and eoverage (e true positive rate

S5 « Foreach f € F(B, ), A denote the meaning of fin A i, the et S soreog (e s

Ross, J. 1. set of all objects in U with property f, defined inductively as

(2010} A follows.

Crazy Cause z N

of Dyspnea. = 1.1 fis of the form [a = v] then, fA = {s € U|a(s) = v} Relation i

Ieracihe. = 2 (faglA=fAneghA; (fveglA=fAvVgA; (-flA=U-fa

Case New = For example, f = [location = whole] and fA = {2, 4, 5, 6}. As an 5

England example of a conjunctive formula, g = [location = whole] A

:‘:“e;",.““;:f [nausea = no] is a descriptor of U and fA is equal to glocation,

363, 25, 038, nausea = {2, 5}. Accuracy: Coverage:
o | Overlap/ R, Overlap Overlap/ D

hitp://www.nejm.org/doi/full/10.1056/NEJMimc 1008281 Tsumoto (2006)
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TU, slide 7-36 Probabilistic Rules — modus ponens @HCI-KDD TU, sSlide 7-37 Positive Rules @HCI-KDD TU, slide 7-38 Exclusive Rules @HCI-KDD
By the use of acenracy and coverage, i probabilistic rule is defined as: A positive rule is delined as a rule supported by only positive examples, the clas- gy Fal, . et ko e s oo, Tl L

R d st R=pjle; = wi)og(D) = 8.
ad k(D) = 8.

Ra

R—=D st. O(D)>6,, Ky(D)>5,

Tsumoto (2006)

Holzingar Grougp us T09.049 04

sification aceuraey of which is equal to 1O, It i= notable that the set supporting
this rule corresponeds to o subset of the lower approximation of a target concept,
which is introduced in rongh sets [1]. Thus, o positive rule is represented as:

R—d st R=npjlaj=u], op(D)=10

Figure d shows the Venn dingram of a positive rule. As shown in this figure,

the of It is a subset of that of £, This diagram is exactly cquivalent
tor the classic proposition 8 — o, In the alove example, one positive rule of
e (msele contraction headache) s

[nansea = ol — moed. o= 3/3 = 10,

D

Tsumoto (2006)
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ive rule is defined as a e supported
of which Is oqual to 1.0, That &, an
dve rule pepeesents the nevesity conlitkin of bt 1t ks mostable thiat
rting s - proncds to Ly pproximation o
. which Is introduend in rough sets [I]. Thas, an exclesive rule

R—d st R=vy=nl s =10

Fignre [ shows the Venn dingram of s sxclusive robe. As shown in this figure,
the e of R bs s superset of that of D, This diagrun b expuivalent
sropesition of — . In the above exampde, ty sive ride of

A1 = gea] v [ = o] — meh

Froem the viewpolat of propesitional boghe, an exchust

onelithon of an ¢
d. Thus, it b cany
contrapesttive of an exchisive rbe:

Tsumoto (2006)
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TU, Slide 7-39 Negative Rule GHCI-KDD

TU, Slide 7-40 Example: Algorithms for Rule Induction @HCIKDD A

wegative rule s deflned as the

Tsumoto (2006)

procodure Exclusive and Negative Rules;
var
L : List;
* A list of chementary attribate-value pairs *
hoegin
L

st of elemontary attribute-value palrs given in a databse *

vy| from L
&) then do /* D: positive examples of a target class d */

* Candidates for Positive Rules *

1] into the formuls of Exclushe Rule *

ve Rules:
mitrapositive
end |Exclusive and Negative

TU, Alternative Model: Baddeley - Central Executive @HCIKDD A

Switching
> Updaceg

# Inhibition \
¥ Divided Attention |

\ CENTRAL EX)

E 1 Saare [ Muhimodal Store [ \"mul Cache

( Ty “‘\ 1
R D >
V] Aty Febsesi Rehearsal Imm Scribe \

\

Semantic
Rezrieval
FHONOLOGICAL LOOP EFISODIC BUFFER vmum\mu

T SKETCHPAD

y
RO : oy Semmic Vil 7] 5
Semastic Verbal Episodic Memory Semmantic Visus] -

Memary Memory 'r'

Quinette, P, Guillery, B., Desgranges, B., de la Sayette, V., Viader, F. & Eustache, F. (2003}
Working memory and executive functions in transient global amnesia. Brain, 126, 9, 1917-1934.
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TU, Neural Basis for the “Central Executive System” @ HCI-KDD L TU, Slide 7-14 Central Executive - Selected Attention @ HCI-KDD L TU, Selective Attention Test @ HCI-KDD L
- CENTRAL EXECUTIVE
(dracts atterdon and

D'Esposito, M., Detre, J.
A., Alsop, D. C., Shin, R.
K., Atlas, 5. & Grossman,
M. (1995) The neural
basis of the central
executive system of
working memory. Noture,
378, 6554, 279-281.

‘conirois voluntary processing)

m IRECTE
BAARD, TO LOWG-TEFRM L—/—W\ T
NEMOAIES, T

CONTROLLED ACTIONS

FILTER" &5 NEEDED:
PHYSICALLY UNCHANGED
STILILI DO NOT ELICIT TOMATIC ACT)
3 e AUTOMATIC ACTIONS
E
SIINFICANT SIGNALS. S2H0-THRLI BTOAAE P 300
UNCHAHOED STIMLLI CAN E CODED FEATONES CCCONS
ENTEA THE FUCLS OF ALTOMATICALLY #, ¢) ATTENTIVE
ATTENTION THROUGH E PROCESSING (s, d) FIESULTS IN WORE
VELUNTASY MEANS (4}, - ELABORATE ENCOCING (C
F] VOLUNTARY RETREVAL, EFSOUIC
& BTORAGE)
]
T ITIAL PHASE OF SENSORT STORAGE LASTS OWLY SEVERAL
® BRIEF HUMORED MILLIEDCOADS (LEFT). SECOND PHASE 15 ONE TYPE OF
¥ & SUNSOAY | AGTIVATED VEMORY (ABOVE) BOTH SENSORY AND SEMANTIC
STMAL g sTone ACTIVATION WAY LAST SOME SECOMDS
NOVEL T
STRILLS [ |

s I

Cowan, N. (1988) Evolving conceptions of memory storage, selective attention, and their mutual
canstraints within the human information-processing system. Psychological Bulletin, 104, 2, 163.

Selective Attention Test
from Simans & Chabris (1999)

Note: The Test does NOT properly work if you know it
in advance or if you do not concentrate on counting

Simons, D, J. & Chabris, C. F. 1999, Gorillas in our midst: sustained inattentional blindness for
dynamic events. Perception, 28, (9], 1059-1074.

Holringer Groug 1 T09.049 04 Holringer Groug 122 T09.049 04 Holringer Groug 123 T09.049 04
TU, Human Attention is central for decision making @HCIKDD A
| Perceptual Encoding | | Central P ing| | Responding

3 Attention 4
s Resources |-

v
Sensory Response Response
Register Perception Selection Execution /T
e [
= Vision ught
- Olfaction| Decision Making
-Haptic

Long-Term Memory

—

Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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