'[,I‘-L Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD %
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TU, Advance Organizer (1/3) A-G SHCI-KDD &

TU ML needs a concerted effort fostering integrated research @HcI-+o0 &

TU, Keywords @HCI-KDD -

= Adjacency matrix = simplest form of computational graph representatian, in
which 0 or 1 denotes whether or not there is a directed edge from one node
to another (in graph theory adjacent nodes in a graph are linked by an edge);

= Artifacts = not only a noise disturbance, which is contaminating and
influencing the signal (surrogates) but also data which is wrong, however
interpreted as to be reliable, consequently may lead to a wrong decision;

= Computational graph rep tation = e.g. by adjacency matrices

= Data fusion = data integration techniques that analyze data from multiple
sources in order to develop insights in ways that are more efficient and
potentially more accurate than if they were developed by analyzing a single
source of data. Signal processing technigues can be used to implement some
types of data fusion (e.g. combined sensor data in Ambient Assisted Living);

= Global Distance Test (GDT) = a measure of similarity between two protein
structures with identical amino acid sequences but different tertiary
structures. It is most commonly used to compare the results of protein
structure prediction to the experimentally determined structure as measured
by X-ray crystallography or protein NMRM;

= Graph theory = study of mathematical structures to model relations between
objects from a certain collection;

* Graphs = a hypothetical structure consisting of a series of nodes connected by
weighted edges (graphs can be directed/undirected and stoichometric/non-
stoichometric regarding interaction classes);
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TU, Glossary @HCI-KDD

= ANSI= American National Standards Institute
*  CD = cardiac development

* CDA = Clinical Documnent Architecture
* CHD = congenital heart disease
* (MM = Correlated motif mining
= DPI = Dossier Patient Integre’ = integrated patient record
= E=Edge

* EPR = Electronic Patient Record
* G|V,E) = Graph

* Gl = gastrointestinal

= HER = Electronic Health Record
* HL7 = Health Level 7

* KEGG = Kyoto Encyclopedia of Genes and Genomes
* NP = nondeterministic polynomial time

*  OWL = Web Ontology Language

= PPl = Protein-Protein Interaction

= SGML= dard Generalized Markup L

= TF= Transcription factor

* TG =Target Gene

=V =Vertex

= XML = Extensible Markup Language
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http://hei-kdd.org/i ional-expert-network
. Data .
Interactive pmjping Knowledge Discovery

Data Data Prepro- Data
Visualization Mapping  cessing Fusion

2]

GOM @ Graph-based Data Mining
TOM . Topological Data Mining

EDM @ Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

€ 8 haiger e s g
Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14,
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TU, Advance Organizer (2/3) H-P SHCI-KDD &

= Reasoning

= Uncertainty

= Graphs

= Complexity

= Graph structures
= Network Medicine
= Knowledge Spaces
= Biomedical Networks
= Emergence

= Robustness

= Modularity

= Structure Learning
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TU. Advance Organizer (3/3) R-V SHCI-KDD &

* Homology = in mathematics (especially algebraic topology and abstract algebra), it is
{6poiog homos = "identical”) a certain general procedure to associate a sequence of
Abelian groups (i.e. does not depend on their order) or modules with a given
mathematical object such as a topological space or a group;

= H I deling = comparati deling of protein, refers to constructing an
atomic-resolution model of the "target" protein from its amino acid sequence and an
experimental three-dimensional structure of a related homologous protein (the
“template"); in Bioinformatics, homology madeling is a technique that can be used in
molecular medicine.

* Insilico = via computer simulation, in contrast to in vivo (within the living) or in vitro
{within the glass);

= Multi-scale representation = in a graph, nodes do not have to represent biclogical

objects on the same scale, one node (e.g. a molecule) may have an edge connecting it

to a node representing a cell or tissue (the edge indicates that the molecule exerts an
effect on the cell/tissue);

Network = graphs containing cycles or alternative paths;

Network analysis = a set of techniques used to characterize relationships among

discrete nodes in a graph or a network;

* Network topology = the shape or structure of a network;

= Petri-Net = a special class of graph, consisting of two general classes or node: place
and transition nodes;

= Predictive modeling = a set of techniques in which a mathematical model is created or
chosen to best predict the probability of an outcome (e.g. regression);

= P-System = addresses the slowness of Petri-nets
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TY, Learning Goals ... at the end of this lecture you ... @ HCI-KDD L

* Radius of a graph = average minimum path length (biological networks are not
arranged in a regular or symmetrical pattern);

= Scale-free Topology = ensures that there are very short paths between any given pair
of nodes, allowing rapid communication between otherwise distant parts of the
network (e.g. the Web has such a topology);

=  Semi-structured data = does not conform with the formal structure of tables/data
models assoc. with relational databases, but at least contains tags/markers to separate
semantic elements and enforce hierarchies of records and fields within the data; aka
schemaless or self-describing structure; the entities belonging to the same class may
have different attributes even though they are grouped together;

= Spatial lysis = a set of tec applied from statistics, which analyze the

topological, geometric, or geographic properties encoded in a data set;

Structural homology = similar structure but different function;

Supervised learning = machine learning technigues that infer a function or relationship

from a set of training data (e.g. classification and support vector machines);

=  Time series analysis = set of techniques from both statistics and signal processing for
analyzing sequences of data points, representing values at successive times, to extract
meaningful characteristics from the data;

= Time series forecasting = use of a mode| to predict future values of a time series based
on known past values of the same or other series (e.g. structural modeling);
decomposition of a series into trend, seasonal, and residual components, which can be
useful for identifying cyclical patterns in the data;

=  Unstructured data = complete randomness, noise; (wrongly, text is called unstructured,
but there is some structure, too, so text data is a kind of weakly structured data);

* Vertex degree = within a topology, the numbers of edges connecting to a node;
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TU, Agenda for today @HCI-KDD

= .. have an idea of the complexity of data in
biomedical informatics

= . are aware of the enormous importance of
graphs (=network structures) and graph theory

= .. have seen some application examples of
network structures from both macro-cosmos
and micro-cosmos and are fascinated about it;

= .. have a rough overview about some basics of
how to get point clouds out of data sets

= ... have an understanding of some challenges of
network science

Holringer Group L] T09.049 05

= 00 Reflection — follow-up from last lecture
= 01 Reasoning under Uncertainty
02 Where do graphs come from?
= 03 Why are graphs so awesome?

= 04 Knowledge Representation in Networks
= 05 Graphs: Concepts, Metrics, Measures

= 06 Example: Graphs from Natural Images

= 07 Graphical Model Learning
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TU, Remember: Decision trees are coming from Clinical Practice

T09.049 05

@HCI-HDD o4

Death from cancer
Probability 2%
Utility 5%

Fertile survival

Probability 98%
Utility 100%

W Decision node
'® Chance node
4 Outcome

Surglcal death
Probability 0-5%
Utitity 0%

Microinvasive
cancer of the

cenvix
Infertile survival

Probability 8%
Utility 95%

Infertile survival
Survives (p=99-5%) Probability 5%
Utility 95%

Radical
hysterectonmy

Spread (p=2%)

Death from cancer
Probability 5%
Utility 5%

Phrysician treating a patient
approx. 480 B.C.

Beatley {1963}, Attic Red-figured
Wase-Painters, B13, 96.
Department of Greek, Etruscan
and Roman Antiguities, Sully, 1st
foor, Camgana Gallery, roam 43
Louyre, Paris

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.

The Lancet, 358, (9281}, 571-574.
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@HCI-HDD o4

01 Reasoning under
Uncertainty

Holzinger Groug 15
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TU, Reflection Quiz @ HCI-KDD &

likelyhood « prior

posterwr= evidence 8
7
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TU, Expected Utility Theory £ (U/|d) Neumann-Morgenstern @HCI-KDD -

For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = d is

E(U | d) = Z Pzt .05 zn | A)U (21, . . ., %, d)
T1 ey

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax = arg max F(U | d)
dedom( D)

Von Neurnann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.
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TU, Key Challenges @HCI-KDD -

Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

Causal and Probabilistic Inference:

Uncertainties are present at all levels in health related systems

Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.
Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions.

In the increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].
Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X, Janzing, D. & Schalkopf, B, Causal Inference by Choosing Graphs with Maost Plausible Markov
Eernels. 1SAIM, 2006.
[2] Dagum, P & Luby, M. 1853, Appraximating probabilistic inference in Bayesian belief networks is NP-hard,
Artificial imelligence, 60, (1), 141-153.
[3] Holzinger, A, 2016, Interactive Machine Learning for Health Informatics: When do we need the human-in-
the-loap? Springer Brain Informatics (BRIN), 3, 1-13, doi:10,1007/540708-016-0042-5,
Halringar Graug 17 709,040 05

TU, Preview-Quiz: Which concepts can you identify ... QHCI-KDD
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Graphical models are graphs where the nodes represent random
variables and the links represent statistical dependencies between
variables; This provides us with a tool for reasoning under uncertainty

Holringer Groug 12 T09.049 05

TU, What are Probabilistic Graphical Models? @HCIKDD A

= PGM can be seen as a combination between
= Graph Theory + Probability Theory +

Machine Learning
= One of the most exciting Al advances in the last.d

distributions
= Example Question:
“Is there a path connecting two proteins?” :
= Path (X,Y):= edge (X,Y)
* Path (X,Y):= edge (X,Y),path (Z,Y)
= This can NOT be expressed in first-order logic
= Need a Turing-complete fully-fledged language
Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.
Science, 303, (5659), 799-805.
Koller, D. & Friedman, N. 2009. Probabilistic graphical medels: principles and

technigues, MIT press.

Holzingar Groug s T09.049 05

TU, Taxonomy of Decision Support Models @HCIKDD A

See lecture 8 for details!

Decision Model
Quantitative (statistical) Qualitative (heuristic)
Decision Reasoning
d . Boolean Expert
L S Al Logic Non- systems

parametric

Neural Partitioning Critiquing
Logistic
network Systems

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Infe ics. Hei g, Springer.

Holzingar Group s T09.049 05



TU, Dealing with uncertainty in the real world @ HCI-KDD L

= The information available to humans is often
imperfect — imbalanced - imprecise - uncertain.

= This is especially in the medical domain the case.
= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Ais true THEN A is non-false and
IF B is false THEN B is non-true

= Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!

Holringer Groug 19 T09.049 05

TU, Reasoning under uncertainty @ HCI-KDD L

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned

= Prior = belief before making a particular observation

= Posteri elief after making the observation and is
ext observation — intrinsically

increlgental

p(y;lzi)p(e:)

TU, Original Example from MYCIN (See lecture 8 for details) @HCI-KDD 5
hy = The identity of ORGANISM-1 is streptococcus
h; = PATIENT-1 is febrile
h; = The name of PATIENT-1 is John Jones
CF(h,,E) = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is sireptococcus
CF[h,E] = —=.3 : There is weakly suggeslive evidence (.3) that

PATIENT-1 is not febrile

CF[h;,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of

the ford H t g ing Project. Addison-Wesley.
Holringer Group n T09.049 05
TU, Two types of decisions (Diagnosis vs. Therapy) @HCIKDD A

plaily)) = s~ —

T Y pli y)p(a)
Holringer Groug ks T09.049 05
TY, Leonhard Euler (1707-1783) in 1736 ... @HCI-KDD

MARITTMA LLIGAN TTH
TMA FRINCIFIS SIGS
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= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:
= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...}?
= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
* What is the best therapy for patients of age x and risks y, if an
obstruction of more than z % is seen in the left coronary artery?
= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, ), H. V. & Musen, M. A. 1997. Hondbook of Medical Inf ics, Heidelberg, Springer.
Holringer Group 3 T09.049 05
TU, 252 years later: Belief propagation algorithm SHCI-KDD &

TY, Gamuts: Triangulation to find diagnoses @HCI-KDD
Gamut F-137
PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. latrogenic (eg, surgical injury; chest tube; therapen-
tie avulsion of injection; subclavian vein puncture)
2 Infection (eg. tuberculosis; fungus discase; shscess)
3. Neoplastic invasi pression (esp. carc
of lung)

UNCOMMON
1. Aneurysm,, soctic o ather
2. Birth trauma (Erb's palsy)

Correlation of radographic findings
and Gamut with patients’ clinical 3. Herpes soster

and lab findings to arrive al the 4. Neuritis, peripheral {eg. diabetic neuropathy )
HoaL ki danons 5. Nourologic disease, (eg. homiphegi aliti

polio; Guillain-Barré §.)

Reeder, M. M. & Felson, B. 2003. & Pravmaonki
Reeder and Felson's gamuts in 7. Traama
radiology: r:‘arnpre.faeniave rastf of Belaronce
differential diag New 1. Prasadd 5. Athreya BH: Tramsient paralysis of the phrenic

phe
nerve associatod with bead injury. JAMA 1976:236:2532-

York, Springer Verlag.
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TU, @HCI-KDD oL

Pearl, J. 1988, Embracing causality in default ing. Artificial | e, 35, (2), 259-271.
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2) Where do Graphs
come from?

Holringer Group kel T09.049 05

TU, 275 years later ... the “Nobel-prize in Computer Science” QHCI-KDD

JUDEA PEARL

Uétor Staies - 3611

. ' essghy
development of 3 cabculus for probabilistic and cawsal ressoning.

http://amturing.acm.org/vp/pearl_2 58896.cfm
7
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TU, Nobel Prize in Chemistry 2013 GHCI-KDD

DEVELOPMENT WLTISCALE MODELS FOR
APLEX CHEMICAL SYSTEMS

Martin Karphas Wichael Lavitt Arigh Warshel
Prize ghace: 171 Prize shaw: 111 Prize thare: |

http:/fwww.nobelprize.org/nobel_prizes/chemistry/laureates/2013

http:/fnews.harvard.edu/gazette/story/2013/10/nobel_prize_awarded_2013/
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TU, Two thematic mainstreams in dealing with data ...

@HCI-KDD &

‘Space

e.g. Topology

Bagula & Bourke (2012) Klein-Bottle

Holinger Groug E1) 709,049 05

Dali, 5. (1931) The persistence of memory

@HCI-KDD &

TU, Getting Insight: Knowledge Discovery from Data

jii

' - r

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromalecular
Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4793). Berlin, Heldelberg, New
York, Springer, 199-212,
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TU, But our question was: Where do graphs come from? @HCIKDD A

= Parametric models =

= given as direct input -
(point cloud data sets)

= Given as properties of a L
structure, e.g. biological
networks .

= Givenasa
representation of -
information (e.g.
Facebook data, viral
marketing, etc., ...)

Nonparametric models

We extract the graph
from other data [1]

we learn the structure
from samples and infer
flat vector data, e.g.
similarity graphs
encoding structural
properties (e.g.
smoothness,
independence, ...)

[1] Holzinger, A., Malle, B, & Giuliani, N, 2014, On Graph Extraction from Image Data. In: Slezak, D, Peters, | F,
Tan, A-H. & Schwabe, L (eds.) Brain Informatics and Health, BIH 2014, Lecture Notes in Artificial Intelligence,

LMAI 8609. Heidelber

B Berlin: Springer, pp. 552-563, d?-q::ID.IDO?ﬁ?&-B-B 19-05891-3_50.
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TU. Complexity Problem: Time versus Space @HCI-KDD
exponential cubic quadratic
ond) linear
£
ol
(log n) logarithmic
! constant
Data Input {Space)
P versus NP and the Computational Complexity Zoo, please have a look at
https:/fwww.youtube.com/watch?v=YX40hbAHx3s
Holzinger Graup 1 709,049 05
TU_ First yeast protein-protein interaction network @HCI-KDD -

Holinger Groug

Nodes = proteins

Links = physical interactions
{bindings)

Red Nodes = lethal

Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, 5.
P, Barabasi, A. L. &
Oltvai, Z. N. (2001)
Lethality and
centrality in protein
networks. Nature,
411, 6833, 41-42,

T09.049 05

@HCI-KDD &

TU, Our World in Data (1/2) — Macroscopic Structures

03 Why are

ESO, Atacama, Chile

Holringer Grou Eh] 709,049 05

TU, Our World in Data — Microscopic Structures @HCIKDD A

Wiltgen, M. & Holzinger, A. {2005) Visualization in Bicinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Progue, Czech
Technical University (CTU), 69-74
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TU, First human protein-protein interaction network @HCIKDD A

Light blue = known proteins
Orange = disease proteins
Yellow ones = not known yet »°

Stelzl, U. et al.
{2005) A Human
Protein-Protein
Interaction
Metwork: A
Resource for
Annotating the
Proteome. Cefl,
122, 6, 957-968.
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TU, Non-Natural Network Example: Blogosphere SHCI-KDD &

Hurst, M. (2007), Data
Mining: Text Mining,
Visualization and Social
Media. Online available:
http://datamining.typep
ad.com/data_mining/20
07/01/the_blogosphere.
html, last access: 2011- |

09-24
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TU, The Genetic Landscape of a cell @HCI-KDD &

TU, Social Behavior Contagion Network

@HCIKDD A

Costanzo, M., Baryshnikova, A., Bellay, 1., Kim, ¥, Spear, E. D,, Sevier, C. 5., Ding, H., Koh, 1. L.,
Toufighi, K. & Mostafavi, 5. 2010. The genetic landscape of a cell. science, 327, (5964), 425-431.
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TU, Network Science — Graph Theory @HCI-KDD L

Information object k'

Holringer Grou Et)

Aral, 5. {2011)

“ Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.
Marketing Science, 30,
2, 217-223.

T09.049 05

@HCIKDD A

Networks = Graphs

Science

" STATISTICAL AND
MACHINE LEARNING
APPROACHES FOR
NETWORK ANALYSIS

AT B

http://www.wired.com/tag/network-science/

http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200907-24_Science-
Decade/200907-24_Science-Coverlmage.gif
Holzinger Graup a 709,049 05

TU, Example for a weakly structured data set - PPI

os—a ® Kim, P. M., Korbel, J. 0.

& Gerstein, M. B. 2007.
Positive selection at the
protein network
periphery: Evaluation in
terms of structural
constraints and cellular
context. Proceedings of
the National Academy of
Sciences, 104, (51),
20274-20279.

TU, Human Disease Network -> Network Medicine @HCI-KDD L

Barabdsi, A. L.,
Gulbahce, N. &
Loscalzo, 1. 2011.
Network medicine: a
network-based
approach to human
disease. Nature Reviews
Genetics, 12, 56-68.

Holringer Grou EL] 709,049 05

Ty, @HCIKDD A

- o
§ o/ % \
. ’
o
o
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TU, Network of Networks in Biology @HCI-KDD L
| Activate TFs
Form TF
complexes
Transcribe
/ Nranscribe
enzymes 2
roteins
Image credit to Anna Goldenberg, Machine Learning Group, Toronto
Holringer Graug a“ 709,049 05

04 Knowledge
Representation in
Network Medicine

Holinger Groug a2 709,049 05

TU, From data sets to networks SHCI-KDD L

Emergent proportos and now hypothasos

mlm |

| | Expansion ot |
| » Btruchmid anatysia E
| # Dynanmc wiysis Diologol knoaiedga |
-m natwork reconstruction |
e infuerc of COMponants on
mebwork behaviour
Gene- slates
S
e
Dty that describe the natwork

Nature Roviews | Malocular Cell Biology

Image description find here:

http://www.nature.com/nrm/journal/v6/n2/fig_tab/nrm1570_F1.htmi
Holzingor Graug s 709,049 05



TU, Regulatory>Metabolic>Signaling>Protein>Co-expressi @HCI-KDD - TU, Example for a Medical Knowledge Space @HC-KDD -

. & # Nodes: 641

T s 0. S # Edges: 1250
2o 2=% '
23 o

S
BDIRORORO. o
° o Condition i 3 .
i i Pharmacological Group b Average Degree: 3.888
Directed, Signed, Undirected, \
weightsd weighted Other Documents - Average Path Length: 4.683

| Network Diameter: 9

Holzinger, A., Ofner, B., Dehmar, M.: Multi h Graph-Based

- i Discovery on Mobile Devices:
Image credit to Anna Goldenberg, Toronto State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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TU, Example for the shortest path @HCI-KDD L TU, Example for finding related structures @HCI-KDD L
o0

Relationship between
Adrenaline [center black node) and
Dobutamine {top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light]:

1. Application [one ore more indications +
corresponding dosages)

2. Single indication with additional details
{e. g "VF after 3 Shock”]

3. Condition (e.g. W, Ventricular o
Fibrillation) 00

Holringer Group L] T09.049 05 Holringer Group 50 T09.049 05

TU, Example: Graph Entropy Measures @ HCI-KDD -

M Engineering .

B Computer Science ‘3

#® Physics

B Humanities
unkown

Holzinger et al.
2013, On Graph
Entropy Measures
for Knowledge
Discovery from
Publication Network
Data. In: LNCS 8127,
354-362.

Holzingar Group 53 T09.049 05

TU, Medical Details of the Graph @ HCI-KDD 4

c.' ‘.
= Nodes
.4 .
= drugs i v *.e ..
= dlinical guideli .
= patient conditions (indication, contliundlca
= pharmacological gr
. -
= tables and calculations o? ical sgp " .:
= algorithms and other med‘ﬁ?dom
= Edges: 3 crucial types of relatlonslnﬁlm medicals
relevance between two active substances

v

L -
= pharmacological groups . .. !d.
= indications ""
= contra-indications e ‘...o
Tar
Holringer Group 4 T09.049 05
TU, Interactive Visual Data Mining @HCKDD A

http://ophid.utoronto.ca/navigator i
.

@ HCI-KDD =

8. Visual Data mmg Enfecme E:mloratlun of the Biological
Universe. In: Holzinger, A. & Jurisica, L (eds.) Interaggive Frowledge Discavery gnd'Data Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture N?hes n Computer Sglence LNCS 8401, Hesdelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2, L]

Wolzinger Groug 8 709,048 05

Otasek, 0., Pastrello, C., Holzinger, A, & Jurisica, | 203

TU, Some selected open problems @ HCI-KDD -

= Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known,

= Problem: What is the structural interpretation of graph measures ? They are

mappings which maps graphs to the reals, Thus, they can be understood as

graph complexity measures and investigating their structural interpretation

relates to understand what kind of structural complexity they detect.

Problem: It is important to visualize large networks meaningfully. So far, there

has been a lack of interest to develop efficient software beyond the available

commercial software.

Problem: Are multi-touch interaction graphs structurally similar to other

graphs (from known graph classes)? This calls for a comparison of graph

classes and their structural characteristics.

Problem: Which graph measures are suitable to determine the complexity of

multi-touch interaction graphs? Does this lead to any meaningful classification

based on their topology?

Problem: What is interesting? Where to start the interaction?

Hofzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 [pp. 241-254). Berlin, Heidelberg: Springer,
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TU, Example: The brain is a complex network @HCIKDD A

o i
},._.,..M

9
3l

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010}
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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TU, identifying Networks in Disease Research @ HCI-KDD &

transcriptional network
ENVI IMENT

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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TU, Network Representations of Protein Complexes @HCI-KDD -
A B AT A
(. E ) A
. 4 g
A\ s,
agm E
f ¥ e
CErach
L

B
_C_;Ae PPI topology

J

Matrix-Mod ;\ \ PN Spoke-Model
atrix-Mode! \ :
& )

Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks, PLoS Computational Biology, 3, 6, 1011-1021,
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TU. Representative Examples of di compl SHCI-KDD &

Examples of

4 functional
networks
driving the
development of
different
anatomical
structures in
the human
heart of a
37-dayold ©
human embryo

Lage, K. et. al {2010) Dissecting spatio protein

driving human heart deueloﬁem and
related disorders. Molecular systems biology, 6, 1, 1-9.
Holzinger Group 56 709,049 05
TU, Three main types of biomedical networks @ HCI-KDD &

Protein A Proein | H

Protein BY, | Protein 11

Protein D / Protein G

Proein C Protein E H
Protein F .
Transcriptional regulatory Protein-Protein Metabolic network
network with two interaction network |constructed considering the
components: reactants, chemical reactions

TF = transcription factor and enzymes)

TG = target genes

(TF regulates the Costa, L. ., Rodrigues, . A. & Cristino, A. 5. (2008)

transcription of TG) Complex networks: the key to systems biology.
Genetics and Molecular Blology, 31, 3, 591-601.
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TU, Correlated Motif Mining (CMM) @ HCI-KDD &

Boyen, P., Van Dyck, D., Neven, F,, van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks,
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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TU, Example: Cell-based therapy @HCIKDD A

A Early phenolypés
£1. Abnormal heart 2 Abnormal looping EX Atnormal
Ao & .

IntaTradiote phanctypes

Lato phenctypes

[ L4
Lage et. al (2010)
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TU, Example Transcriptional Regulatory Network @HC-KDD

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, 5., Peralta-Gil,
M., Pefialoza-Spinola,
M. 1., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7,{1), 5.
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TU, Steepest Ascent Algorithm applied to CMM @ HCI-KDD A

Input: PPl-network G = (V,E,A), L, deN,d< (
Output: {X*.Y "} best correlated motif pair found in &
1: {X*,Y*} — randomMotifPair()
2. maxsup — f({X*,Y*},G)
3: sup «— —oo
4: while maxsup > sup do
5: {X, Y}~ {X*.Y"}

6 SUp «— marsup

7. forall {X'.Y'} e N{X.Y}) do

8: if f({X".Y'},G) > maxsup then
9; {X*,Y*} — {X",Y'}

10: mazsup — f({X",Y'},G)

Boyen et al. (2011)
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TU, Metabolic Network @HCI-KDD

M1 M4

E1
M547> M1 1\52
M1 M2
M4 M2

M1 M5
M2 M1
M2 M3
M2 M4
Ma M1
M5 M1

M4
M5

o o g o

Hodgman, C. T, French, A, &

Matrix contains many sparse elements - In Westhead, D. R. (2010)

this case it is computationally more efficient Biginformatics. Second
to represent the graph as an adjacency list Edition. New York, Taylor &
Francis.
Holringer Groug =] 709,049 05
TU, Heatmap of disease-disease correlations (ICD) @HCI-KDD 5

TU, Metabolic networks are usually big @HCI-KDD

° Roque, F.’S. et al (2011) Using
' Electronic.Patient Records to
Dlsc,ov:er Disease Correlations and
Stratify Patient Cohorts. PLoS
~ Comput Biol, 7, 8, e1002141,

Holinger Groug

TY, Future Outlook @HCI-KDD

Schmid, A. K.,
Reiss, D. J.,
Pan, M., Koide,
T. & Baliga, N.
5. (2009) A
single
transcription
factor
regulates
evalutionarily
diverse but
functionally
linked
metabolic
pathways in
response o
nutrient
availability.
Moalecular
Systems
Biology, 5, 1-9.
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http:/ fwww.nature. com.fmsb!]ournal!vs.-’n 1/fig_tab/msb200940_F6. hlml
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TU, Example: opoloyéw (homologeo) @ HCIKDD

TU, Using EPRs to Discover Disease Correlations @HCI-KDD

Personalized
Medicine

Holzingar Groug 7 709,049 05

T0499

He, Y., Chen, ¥,
Alexander, P,
Bryan, P. N. &
Orban, 1. (2008)
NMR structures of
tweo designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.
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TU, @HCI-KDD oL

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. 5., lensen, P.
B., Schmock, H.,
Dalgaard, M., .
Andreatta, M., Hansen,
T., Speby, K., Bredkjaer,
5., Juul, A, Werge, T.,
Jensen, L. J, & Brunak,
5. (2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts, Plos
Computational Biology,
7,8 e1002141.
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TU, Conclusion @HCI-KDD

05 Graphs: Basic
concepts, metrics
and measures

Holzingar Groug 7 709,049 05

= Homology modeling is a knowledge-based
prediction of protein structures.

= |n homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.
= Homology modeling will be extremely

important to personalized and molecular
medicine in the future.

Holingor Group & 709,049 05

TU, Complex Biological Systems key concepts @ HCIKDD

= |n order to understand complex biological systems, the
three following key concepts need to be considered:

= (i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

= (ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

= (iii) modularity, vertices sharing similar functions are
highly connected.

= Network theory can largely be applied for biomedical
informatics, because many tools are already available

Holzingar Groug 7 709,049 05



TU, Network Basics on the Example of Bioinformatics @HCIKDD

G(V,E) Graph
V.. vertex
E ..edge {a,b}
abeViaxh

. i
Hodgman, C. T, . b e

French, A. & o i — Critical ik
Westhead, D. R. I ccarose
(2010) Bioinformatics. () oo neck Hr Second order tuib
Second Edition. New i o
York, Taylor & Francis. il o RGN
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TU, Some Network Metrics (1/2) @ HCI-KDD 4
Order = total number of nodes n; Size = total number of links (a): . ®
g | Cirarion i
Z Z ay N /
T ] [ ]
] L ]
e g g

Clustering Coefficient (b) = the degree of concentration of the connections of the node's
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

2t; G B oo
= -0 g _HZL* I
1

Path length (c) = is the arithmetical
@ 3 @ mean of all the distances:

1
@ | = ——— dis
: n(n— uzm. .

Costa, L. F,, Rodrigues, F. A, Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242,
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TU, Slide 5-15 Graphs from Point Cloud Data Sets @HCIKDD A
L I _T’fl/ e,
o —‘—-'/:f":f’
{ N v
4 7$/ﬂ o
5 j—\ \’_:}.
- 'J_I' 19 \ H

E A R i = . S R o YL Y
I B A o i 0
dab Initial set of points. b 1-Nearess-Neighbor Graph, i) Euclidess Misimem Spassing

B fwﬁl%gh
Fhit

<L
m.}\% ih) .1-:mu:3 Graph, 7 = L1

.3 black edpes. 4 = (L9: grey edper
Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grody, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Bocao Raton (FL): CRC Press, pp. 1-24.
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TU, Baby Stuff: Computational Graph Representation QHCI-KDD

0, otherwise
LEON

Adjacency (a-'ja-s"n(t)-s&) Matrix A = (a;) aj = [ 1, if(k} €E

(1) (2)
OO

001010

000011

© @, —|100010
o k" loooo11
111100

010100

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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TU, Some Network Metrics (2/2) @ HCI-KDD 4
= Centrality (d) = the level of “betweenness- centrality” of a node |
d P
oL . 0
g o ]

* Nodal degree (e} = number of links connecting i to its neighbors: k; = X, ay;

Modularity (f) = describes the possible

® ® formation of communities in the network, J ®
® ® indicating how strong groups of nodes [ 3PS ®
@ form relative isolated sub-networks within
L the full network (refer also to Slide 5-8).
Holringer Groug m” T09.048 05
TU, Finally a practical example @ HCI-KDD 4

06 Example: How do
you get point cloud
data from
natural images?

Holringer Group L T09.049 05

TU, Example: Tool for Node-Link Visualization @HCIKDD

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004, IEEE, 167-174.
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TU, Network Topologies @HCI-KDD
a
regular small-world random
@ [ ] @
[+ | ct cl
° e, e ®,, . e °
=] @ ® ®
e g ® e q ® e g ®
randomness
b
L ]
Scale-free network

® Van Heuvel & Hulshoff (2010)
Holringer Group 7 T09.049 05
TU, Graphs from Images SHCI-KDD 5

A R oo
) Watershed Algorithm

d} SLIC superpixels

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grody, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Bocao Raton (FL): CRC Press, pp. 1-24.
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TU, Example Watershed Algorithm @HCIKDD A

atn

Algorithm 4.2 Watershed transform w.r.t. topographical distance basod on image integration
via the Dijkstra-Moore shortest patls algorithm

rebod
v seabe image @ = (V. E,im) with cost function cost

» labed of the

% [ Ues clistance image disf. On output, dist]s

7 for all v ¢ V do (» lsitiakize )
8 tablo| ~— 0 ; dist]e] +— ac
W end for

10 for all kocal minims m, do
1 for all ¢

12 Pablu| — o ; dintle] — im]e (« insitialize distance with values of minin )
13 end for

14 end for

1% while V' 4 # do

0w GetAlindist{V) (»find u € V' with sasallest distance valise dist|u]+)

hen

2 elso If Labfu] # WSHED and distu) + costlu, o] = dist[] and labjs] # labju] then

. [ WaHED

. endlir

ond for

20:_end while

Meijster, A. & Roerdink, J. B. A proposal for the impl ation of a parallel watershed
|goritt Comp Analysis of Images and Patterns, 1995. Springer, 790-795.
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TU, slide 5-20 Graphs from Images: Voronoi <> Delaunay @ HCI-KDD &

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, ). F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Notes in Artificial Intelligence, LNAI 8609, Heidelberg, Berlin: Springer, pp. 552-563.

For Vioronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
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TU, Watershed 4 Steps @HCI-KDD

atn

= 1) Transformation into a topographic map
= Convert gray values into height information
= 2) Finding local minima
= |nspecting small regions in sequence
» 3) Finding catchment basins
= Algorithm simulating flooding
= Graph algorithms such as Minimum Spanning Trees
= 4) Erecting watersheds
= Artificial divide between catchment basins
= Final segmentation lines

Holzingor Graum ) 709,049 05

TU, Are graphs better than feature vectors ? @ HCIKDD

atn

TU, Graphs from Images: Watershed + Centroid @HCI-KDD 5

= More expressive data structures
= Find novel connections between data objects

= Fit for applying graph based machine learning
techniques

= New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, 7,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin} 7-19

Holzinger, A, Blanchard, D., Blaice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In; The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014}, IEEE (2014} in print
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TU, Example: Watershed Segmentation of the human cortex @HCI-KDD 5

atn

8‘ -ﬁ‘

Holringer Graug
TU, watershed methods @HCI-KDD

Iei Gyral
“~_ Sulcal Regions Regions

-y
) U/ é \

catchment basins begin
filling with water watershed line forms here

http://iacl.ece.jhu.edu/~prince/ws/
Holzingar Group ] 709.049 05

landscapes with height structures

L Y
) -
= Topographic maps => ™ . -
®_o
e

= Segmentation into regions of pixels

= Assuming drops of water raining on the map

= Following paths of descent

= |akes called catchment basins

= Also possible: Flooding based

= Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6}, 583-598.
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TU, Finally a practical example @ HCI-KDD

07 Graphical
Model Learning

Holzingar Graun %0 709,049 05



TU, Learning Graphical Models from data @ HCI-KDD -

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges
in the biomedical domain:

Uncertainty and complexity

= The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. |, 1998, Learning in graphical models, Springer
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TU, Example for Graphical Model Learning @ HCI-KDD -

5 i Bayesian Network
Patient J46 | Tussis

Florian 1 Asthma mokes
Tamas 0 0
Matthias 1 0
Benjamin 0 1
Dimitrios 0 1 0 -
Rows are independent
during learning and
0 ? ?

Florian inference!

Florian 0 0.3 0.2

Holringer Group - T09.049 05

I,l.-'_ @ HCI-KDD A~

Conclusion and
Future Challenges
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TU, Learning the Structure of GM from data @HC-KDD -

1) Test if a distribution is decomposable with regard to a given graph.
= This is the most direct approach. It is not bound to a graphical
representation,
= |t can be carried out w.rt. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.
2) Find a suitable graph by
= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.
3) Find an independence map by conditional independence tests.
= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.

ing the strength of dependences.

= It has the advantage that a single conditional independence test, if it fails,
can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.
Borgelt, C,, Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for

learning, reasoning and data mining, John Wiley & Sons.
Holringer Groug 92 T09.049 05

TU, Relational Representation Learning and Prediction @HCI-KDD

= Asthma can be hereditary
= Friends may have similar smoking habits

= Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

Asthma

2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

Cough

1.9 Smokes(x) A Friends(x,y)

=> Smokes(y)
1.5 Asthma (x) A Family(x,y)
= Asthma (y)
Holringer Groug 5 T09.049 05
TU, Future Outlook @ HCI-KDD 4

The future is in integrative ML, i.e. combining
relational databases, ontologies and logic with
probabilistic reasoning models and statistical
learning — and algorithms that have good scalability

. [w JAF ¥i= '
E o
25 g = 1
f?.i‘é%ég in

£E 2

f2ipofe 1 i
e :_'_'g ? :i E “o w00 0000 1500 2000 2s0f o
wg @ g g BT Dmain Size {Numiber of People )

2EEZEE
Bas isf

8223 Learns a model over
E=g3g3 15 uat
24k _E i 2z 900,030,000 random variables
S3EB8RIR Big models
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TU, Who of you smokes? @HC-KDD -

S

Wall inflamed
and thickened

Asthmatic airway Asthmatic airway
during attack

Normal airway

Beasley, R. 1998, Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC, The Lancet, 351, (9111), 1225-1232,
doi:http://dx.doi.org/10.1016/S0140-6736(97)07302-9.
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TU, Knowledge Representation > Reasoning > Learning SHCI-KDD 5

Program
Induction

Statistical
Relational
Learning

Generality

Lifted Learning

Graphical
Maodel
Learning

Networks

Knowledge Reasoning Machine
Representation Learning

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+
Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called
Problog, see: De Raedt, L, Dries, A, Thon, 1., Van Den Broeck, G. & Verbeke, M. 2015, Inducing probabilistic relational rules
from istic examples. b Joint Conf on Artificial i {ca).
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@HCI-KDD oL
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Thankyou!
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TU, @HCI-KDD oL
-
Questions
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TU, Recommended Books @HCI-KDD

BAYESIAN
REASONING
and

MACHINE
LEARNING

David Barber

Machine Learning

Murphy, K. P. 2012, Machine Barber, D, 2012,

learning: a probabilistic Bayesian reasoning and

perspective, MIT press. machine learning,
Cambridge University
Press,

http://webd.cs.ucl.ac.uk/s

Koller, D. & Friedman, N.
2009, Probabilistic
graphical models:
principles and
technigues, MIT press.

TU, Sample Questions @HCI-KDD

= What is the primary idea of a graphical model learning algorithm?
Where do graphs come from in the medical domain?

Where do decision trees originally come from?

What are probabilistic graphical models?

= Why is the topic "reasoning under uncertainty” so important for the
health domain?

* Why was MYCIN not a success in the clincial domain?
= What was the core essence in MYCIN?

What is the principle of GAMUTS?

Which two types of decisions do clinicians execute?
What is the goal of network medicine?

= What is a true PP| topology?

Why are structural homologies so important?

What is the vision of personalized medicine?

What does robustness in the context of complex biological systems
mean?

= How do you get point cloud data from a natural image?
= Why is graphical model learning so interesting for medical problems?

Holringer Groug o T09.049 05

TU, Key Problems @HCI-KDD -

taff/D.Barber/textbook/18
1115.pdf
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TU, Slide 5-19: Watershed Principle @ HCI-KDD &
= Catchment basins:
= treating an image as a height field or landscape,
regions where the rain would flow into the same
lake
-)'Lf
£ O
[ m' ‘ L3
"..‘J ——
(a) [{9]
= Start flooding from local minima, and label ridges
wherever differently evolving components meet
Holringer Groug 106 T09.048 05

» Automated Machine Learning algorithms need
much training data — focus is on adjusting model
parameters without fully understanding the data
that the learning algorithm is modeling [1]

= Curse of dimensionality [2] — need for privacy
and anonymization [3] (see lecture 11)

= Weakly structured data [4]

[1] Smith, M. R., Martinez, T. & Giraud-Carrier, C. 2014. An instance level analysis of data
complexity. Machine learning, 95, (2), 225-256.

[2] Friedman, J. H. 1997. On bias, variance, 0f1—loss, and the curse-of-dimensionality. Data
mining and knowledge discovery, 1, (1), 55-77.

[3] Aggarwal, C. C. On k-anonymity and the curse of dimensionality. Proceedings of the 31st
international conference on Very large data bases VLDB, 2005. 901-909

[4] Holzinger, A., Stocker, C. & Dehmer, M. 2014, Big Complex Biomedical Data: Towards a
Taxonomy of Data. In: CCIS 455. Berlin Heidelberg: Springer pp. 3-18.

TU, @HCI-KDD oL

Appendix

Holringer Groug oz T09.049 05

TU, Example from Immunology: Structural Homology @ HCIKDD
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TU, @ HCI-KDD -
US, Palenl  sa ot e ol i 3 B i US. Patemt  wptme  seasdn % s w1

FIG. 5
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Nasturn e | mimeci
Calandra, T. & Roger, T. 2003, Macrophage migration inhibitory factor: a regulator of innate
immunity. Nat Rev Immunol, 3, 791-800.
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TiBlide 5-15 Graphs from Images: Voronoi <> Delauney @HCI-KDD

(a) Initial set of points. (i) Delaunay Triangulation Graph.
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TU, Example: Cell based therapy (1) (Heart transplantation) @ HCIKDD

TU, Example: Network Generated by Gene Duplication @ HCIKDD

High Modularity
(Modularity =

0.6717, Scaled

Modularity = 29);
Different colors

represent [ ]
different ®
modules o
identified by L
Guimera and L
Amaral's
algorithm [28].

Guimera R, Amaral LA!\P_
{2005} Functional
cartography of complex
metabolic networks.
Mature 433: B95-900.

Wang & Zhang (2007)
Holzingar Grougp n T09.049 05
TU, Additional Reading @HCI-KDD

Ventricular muscle Coronary Pacemaker and distal
Basket-weave architecture arterial tree conduction system

Cardiac muscle fiber weave Vascular smooth muscle cells Conduction system muscle cells

Chien, K. R., Domian, |. ). & Parker, K. K. (2008) Cardiogenesis and the complex biclogy of
regenerative cardiovascular medicine. Science, 322, 5907, 1494,

Holringer Groug o T09.049 05

TU, Genome-Phenome association in complex diseases @ HCIKDD

AUSALITY

T SECOND EDITION

" MDDELS, REASONING,
AND INFERENCE

IDEA PEARL

Pearl, J. 2009, Pearl, J. 1988.
Causality: Models, Probabilistic reasoning

Sinoquet, C. & Mourad,
R. 2014. Probabilistic

Reasoning, and in intelligent systems: Graphical Models for
Inference (2nd networks of plausible Genetics, Genomics, and
Edition), Cambridge, inference, San Postgenomics, OUP
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TU, Example: Cell based therapy (2) (Heart transplantation) @ HCI-KDD
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