'!_:rg_ Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD +4-
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TYU ML needs a concerted effort fostering integrated research @HCI-KDD

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.ho]zinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.

Holzinger Group 2 709.049 05



TU  Keywords @ HCI-KDD £

= Reasoning

= Uncertainty

" Graphs

= Complexity

" Graph structures
= Network Medicine
= Knowledge Spaces
= Biomedical Networks
= Emergence

= Robustness

= Modularity

= Structure Learning

Holzinger Group 3 709.049 05



TU

Grazm

Advance Organizer (1/3) A-G @ HCI-KDD +£-

Adjacency matrix = simplest form of computational graph representation, in
which 0 or 1 denotes whether or not there is a directed edge from one node
to another (in graph theory adjacent nodes in a graph are linked by an edge);

Artifacts = not only a noise disturbance, which is contaminating and
influencing the signal (surrogates) but also data which is wrong, however
interpreted as to be reliable, consequently may lead to a wrong decision;

Computational graph representation = e.g. by adjacency matrices

Data fusion = data integration techniques that analyze data from multiple
sources in order to develop insights in ways that are more efficient and
potentially more accurate than if they were developed by analyzing a single
source of data. Signal processing techniques can be used to implement some
types of data fusion (e.g. combined sensor data in Ambient Assisted Living);

Global Distance Test (GDT) = a measure of similarity between two protein
structures with identical amino acid sequences but different tertiary
structures. It is most commonly used to compare the results of protein
structure prediction to the experimentally determined structure as measured
by X-ray crystallography or protein NMRM;

Graph theory = study of mathematical structures to model relations between
objects from a certain collection;

Graphs = a hypothetical structure consisting of a series of nodes connected by
weighted edges (graphs can be directed/undirected and stoichometric/non-
stoichometric regarding interaction classes);

Holzinger Group 4 709.049 05



TU Advance Organizer (2/3) H-P @ HCI-KDD £

Grazm

= Homology = in mathematics (especially algebraic topology and abstract algebra), it is
(opoloc homos = "identical") a certain general procedure to associate a sequence of
Abelian groups (i.e. does not depend on their order) or modules with a given
mathematical object such as a topological space or a group;

= Homology modeling = comparative modeling of protein, refers to constructing an
atomic-resolution model of the "target" protein from its amino acid sequence and an
experimental three-dimensional structure of a related homologous protein (the
"template"); in Bioinformatics, homology modeling is a technique that can be used in
molecular medicine.

= Insilico = via computer simulation, in contrast to in vivo (within the living) or in vitro
(within the glass);

= Multi-scale representation = in a graph, nodes do not have to represent biological
objects on the same scale, one node (e.g. a molecule) may have an edge connecting it
to a node representing a cell or tissue (the edge indicates that the molecule exerts an
effect on the cell/tissue);

= Network = graphs containing cycles or alternative paths;

= Network analysis = a set of techniques used to characterize relationships among
discrete nodes in a graph or a network;

= Network topology = the shape or structure of a network;

= Petri-Net = a special class of graph, consisting of two general classes or node: place
and transition nodes;

= Predictive modeling = a set of techniques in which a mathematical model is created or
chosen to best predict the probability of an outcome (e.g. regression);

= P-System = addresses the slowness of Petri-nets

Holzinger Group 5 709.049 05



TU

Grazm

Advance Organizer (3/3) R-V @ HCI-KDD +£-

Radius of a graph = average minimum path length (biological networks are not
arranged in a regular or symmetrical pattern);

Scale-free Topology = ensures that there are very short paths between any given pair
of nodes, allowing rapid communication between otherwise distant parts of the
network (e.g. the Web has such a topology);

Semi-structured data = does not conform with the formal structure of tables/data
models assoc. with relational databases, but at least contains tags/markers to separate
semantic elements and enforce hierarchies of records and fields within the data; aka
schemaless or self-describing structure; the entities belonging to the same class may
have different attributes even though they are grouped together;

Spatial analysis = a set of techniques, applied from statistics, which analyze the
topological, geometric, or geographic properties encoded in a data set;

Structural homology = similar structure but different function;

Supervised learning = machine learning techniques that infer a function or relationship
from a set of training data (e.g. classification and support vector machines);

Time series analysis = set of techniques from both statistics and signal processing for
analyzing sequences of data points, representing values at successive times, to extract
meaningful characteristics from the data;

Time series forecasting = use of a model to predict future values of a time series based
on known past values of the same or other series (e.g. structural modeling);
decomposition of a series into trend, seasonal, and residual components, which can be
useful for identifying cyclical patterns in the data;

Unstructured data = complete randomness, noise; (wrongly, text is called unstructured,
but there is some structure, too, so text data is a kind of weakly structured data);

Vertex degree = within a topology, the numbers of edges connecting to a node;

Holzinger Group 6 709.049 05



TU Glossary @ HCI-KDD £

Grazm

= ANSI = American National Standards Institute

=  CD = cardiac development

= CDA = Clinical Document Architecture

=  CHD = congenital heart disease

=  CMM = Correlated motif mining

= DPI = Dossier Patient Integre” = integrated patient record
= E=Edge

= EPR = Electronic Patient Record

= G(V,E) = Graph

= @Gl = gastrointestinal

= HER = Electronic Health Record

=  HL7 = Health Level 7

=  KEGG = Kyoto Encyclopedia of Genes and Genomes
= NP = nondeterministic polynomial time

=  OWL=Web Ontology Language

= PPl = Protein-Protein Interaction

=  SGML = Standard Generalized Markup Language
= TF=Transcription factor

= TG =Target Gene

=V =Vertex

= XML = Extensible Markup Language

Holzinger Group 7 709.049 05



TU Learning Goals ... at the end of this lecture you ... @ HCI-KDD £

Grazm

= ... have an idea of the complexity of data in
biomedical informatics

= .. are aware of the enormous importance of
graphs (=network structures) and graph theory

= ... have seen some application examples of
network structures from both macro-cosmos
and micro-cosmos and are fascinated about it;

= ... have a rough overview about some basics of
how to get point clouds out of data sets

= ... have an understanding of some challenges of
network science

Holzinger Group 8 709.049 05



TU Agenda for today @ HCI-KDD £

= 00 Reflection — follow-up from last lecture
= 01 Reasoning under Uncertainty

" 02 Where do graphs come from?

" 03 Why are graphs so awesome?

" 04 Knowledge Representation in Networks
= 05 Graphs: Concepts, Metrics, Measures

= 06 Example: Graphs from Natural Images

= 07 Graphical Model Learning

Holzinger Group 9 709.049 05
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TU

Grazm

Reflection Quiz

@ HCI-KDD -

H Decision node
‘@ Chance node
i Quicome
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likelyhood * prior
evidence

Death from cancer
Probability %
Utility 5%

Fertile survival
Probability 98%
Utility 100%

Surgical death
Probability 0-5%
Utility 0%

Infertile survival
Probability 98%
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TU Preview-Quiz: Which concepts can you identify ... @ HCI-KDD -

Grazm

/ \M\‘ p(x) = 11; p(Xi|Xpa,)

L (X }

Q_‘CIQ\R
e
i
P

= Py (x1) Py (w2|x1) Py (23|21 ) Pypy (24| 21)

3

Graphical models are graphs where the nodes represent random
variables and the links represent statistical dependencies between
variables; This provides us with a tool for reasoning under uncertainty

Holzinger Group 12 709.049 05



TU Remember: Decision trees are coming from Clinical Practice =~ @HCI-KDD -

Grazm

Death from cancer
o Probability 2%
W Decision node Utility 5%

@ Chance node

“q Qutcome Fertile survival
Probability 98%
No further Utility 100%
surgery

Surgical death
Probability 0-5%
Utility 0%

Microinvasive
cancer of the

cervix . .
Infertile survival

Probability 98%

Radical Utility 95%

hysterectomy

Infertile survival

Survives (p=99-5%) Probability 5% Physician treating a patient
Utility 95% approx. 480 B.C.
Spread (p=2%) Beazley (1963), Attic Red-figured
Death from cancer Vase-Painters, 813, 96.

Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Probability 5%
Utility 5%

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281), 571-574.

Holzinger Group 13 709.049 05



TU Expected Utility Theory E (U|d) Neumann-Morgenstern @ HCI-KDD -

Grazm

For a single decision variable an agent can select = i
D = dforanyd € dom(D).
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax — al"g Imax E(U | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.

Holzinger Group 14 709.049 05



TU What are Probabilistic Graphical Models? @ HCI-KDD £

Grazm

= PGM can be seen as a combination between

" Graph Theory + Probability Theory +
Machine Learning

" One of the most exciting Al advances in the Ias1;
= Compact representation for exponentially- Iarg‘e* |. Bility)
distributions “—-«?,

: - .-.":L-" ST - =

= Example Question: 2
“Is there a path connecting two proteins?” :- =

= Path (X,Y):= edge (X,Y) 1 AN
= Path (X,Y):= edge (X,Y),path (Z,Y) .. AR
= This can NOT be expressed in first-order logic

= Need a Turing-complete fully-fledged language

Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.
Science, 303, (5659), 799-805.

Koller, D. & Friedman, N. 2009. Probabilistic graphical models: principles and

techniques, MIT press.
Holzinger Group 15 709.049 05



TU @ HCI-KDD -

GGGGG

01 Reasoning under
Uncertainty

Holzinger Group



TU Key Challenges @ HCI-KDD £

Grazm

= Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

= Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

= Causal and Probabilistic Inference:
= Uncertainties are present at all levels in health related systems
= Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.

= Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions.

=" |nthe increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

= Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X., Janzing, D. & Schoélkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov
Kernels. ISAIM, 2006.
[2] Dagum, P. & Luby, M. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard.
Artificial intelligence, 60, (1), 141-153.
[3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-
the-loop? Springer Brain Informatics (BRIN), 3, 1-13, doi:10.1007/s40708-016-0042-6.
Holzinger Group 17 709.049 05



TU  Taxonomy of Decision Support Models @ HCI-KDD £

Grazm

See lecture 8 for details!

Decision Model

Quantitative (statistical) Qualitative (heuristic)

W : Truth tabl Decision Reasoning
supervise Bayesian ru ables trees models
W . Boolean Expert
unsupervise uzzy sets Logic Non- systems

parametric

Partitioning Critiquing
systems

Neural

Logistic
network &

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer.

Holzinger Group 18 709.049 05



TU

Grazm

Dealing with uncertainty in the real world @ HCI-KDD -

The information available to humans is often
imperfect — imbalanced - imprecise - uncertain.

This is especially in the medical domain the case.
An human agent can cope with deficiencies.

Classical logic permits only exact reasoning:

IF Ais true THEN A is non-false and |} - 2t

IF B is false THEN B is non-true

s s OF Course
THatlise ¢ why | hate

Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!

Holzinger Group 19 709.049 05



TU  Original Example from MYCIN (See lecture 8 for details) @ HCI-KDD -

h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 is febrile
h, = The name of PATIENT-1 is John Jones

CF[h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.

Holzinger Group 20 709.049 05



TU Gamuts: Triangulation to find diagnoses @ HCI-KDD -

Grazm

Gamut F-137

PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. latrogenic (eg, surgical injury: chest tube; therapeu-
tic avulsion or injection; subclavian vein puncture)
2. Infection (eg, tuberculosis; fungus disease; abscess)
3. Neoplastic invasion or compression (esp. carcinoma

of lung)
UNCOMMON
1. Aneurysmg, aortic or other
Correlation of radiographic findings 2. Birth trauma (Erb’s palsy)
and Gamut with patients' clinical 3. Herpes zosler
and lab findings to arrive at the 4. Neuritis, peripheral (eg, diabetic neuropathy)
most likely diagnosis o : . o
5. Neurologic dlsaaseg (eg. hemiplegia: encephalitis;
polio; Guillain-Barré S.)
Reeder, M. M. & Felson, B. 2003. 6. Pneumonia
Reeder and Felson's gamuts in 7. Trauma
radiology: comprehensive lists of Reference
roentgen d’fferential diagl"OSiS, New 1. Prasad S, Athreya BH: Transient paralysis of the phrenic
i nerve associated with head injury. JAMA 1976:236:2532-
York, Springer Verlag. 7en3

Holzinger Group 21 709.049 05



TU Reasoning under uncertainty @ HCI-KDD -

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned

" Prior = belief before making a particular observation

= Posterio elief after making the observation and is
the\prior for t ext observation — intrinsically
increxgental

p(y;|z:)p(x;)

p(:l??;‘yj) — Zp(xgjyj)p(mi)

Holzinger Group 22 709.049 05



TU  Two types of decisions (Diagnosis vs. Therapy) @ HCI-KDD -2~

Grazm

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:

= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks vy, if an
obstruction of more than z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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TU @ HCI-KDD -

GGGGG

2) Where do Graphs
come from?

Holzinger Group



TU Leonhard Euler (1707-1783) in 1736 ... @ HCI-KDD

MONS RLEGIVS: PRVESLA
SIVE BORYVSSIA VRAS
MARTTIMA ELEGAN TI5Y
AlMA FRINCIPLS SEDES.
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TU 252 years later: Belief propagation algorithm

Grazm

@ HCI-KDD 4=

Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.

Holzinger Group
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TU 275 years later ... the “Nobel-prize in Computer Science” @ HCI-KDD £

Grazm

Seanch TYPE HERE

A.M. ‘ez Ll Y L Bl

TURING E'FEmT@ae

AWARD E 1 f"]%!'h% ‘*‘»@

ALPHABETICAL LISTING YEAR OF THE AWARD RESEARCH SUBJECT

JUDEA PEARL

United States — 2011

For fundamental contributions to artificial intelligence through the
development of a calculus for probabilistic and causal reasoning.

B {=F R FLE ALITH =la; E qE E
D Photo-Essay :
Judeq Pearl created the representational and computational foundation lor the processing of mormation wnder
uncariainty.
September 4. 1906, Tel Aviy, He ia crediied with the invanlion ol Sayesian nefworks, 8 mathematical lormalism for delining complex probability

modeds, s wel as he principel algonthma wsed for inlerence in hege modals. This work nol only revolulonized
the Bedd of artdicial inteligence bul slso became an iImponiant ool for many other branchas ol engenesnng and

B.5., Electtical Engsieerinng {Techid, s Aatural sclences. He aler craaled a malhamatcal Iramework o o Il irlerence thil has had significant

whak M5, Electrondes (Mewark Calbege

) ¢ impact in ihe social schences
of Englneering tobik; M5, Phsics

(Rutgers University, 1965} Fh.D, Judea Paarl was born on September 4, 1836, in Tel Aviv, which was al thal time administered under ihe British
Hectrical Engineering (Polytechnic andate for Palestine. He grew up in Bnel Brak, a Biblical fown his grandisther went to reestablish in 1824 in
Institute of Brooklyn, 19465). 1056, aftar serving in the israel army and joining & Kibbutz, Judea decided 1o study engineering. He attanded he

Technion, whene ha met hig wile, Ruth, and received & B.5. degree in Electrical Enginearing in 1060, Recalling
e Technion facully members in a 2012 inlerdes In the Tachnion Magazine, he emphasgized he il of

httﬁ“?/“é“r"ﬁfﬁ ring.acm.org/vpi/pearl_2658896.cfm
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TU Nobel Prize in Chemistry 2013 @ HCI-KDD £

Grazm

Scientific Background on the Nobel Prize in Chemistry 2013

DEVELOPMENT OF MULTISCALE MODELS FOR

Photo: A. Mahmoud Photo: A. Mahmoud Photo: A. Mahmoud
. IPITEY 7 .
COMPLEX CHEMICAL SYSTEMS Martin Karplus Michael Levitt Arieh Warshel
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

http://news.harvard.edu/gazette/story/2013/10/nobel_prize_awarded_2013/
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TU But our question was: Where do graphs come from? @ HCI-KDD -

Grazm

= Parametric models

" gjven as direct input
(point cloud data sets)

" Given as properties of a
structure, e.g. biological

networks

= Givenasa
representation of
information (e.g.
Facebook data, viral
marketing, etc., ...)

Nonparametric models

We extract the graph
from other data [1]

we learn the structure
from samples and infer

flat vector data, e.g.
similarity graphs

encoding structural
properties (e.g.
smoothness,
independence, ...)

[1] Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D., Peters, J. F,,
Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture Notes in Artificial Intelligence,

LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563, d(2)!i3:10.1007/978-3-319-09891-3_50.

Holzinger Group
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TU  Our World in Data (1/2) — Macroscopic Structures @ HCI-KDD +£-

Grazm

- £
. -

__NGC 5139.0mega Centauri'by Edmund Halley in 1677, E

50, Atacama, Chile -

Holzinger Group 709.049 05




TU  Two thematic mainstreams in dealing with data ... @ HCI-KDD -

Grazm

Space

e.g. Topology

Dali, S. (1931) The persistence of memory Bagula & Bourke (2012) Klein-Bottle

Holzinger Group 31 709.049 05



TU Complexity Problem: Time versus Space @ HCI-KDD -

Grazm

exponential cubic qguadratic

O(n™ O(nz) o(n) linear

O(Vn)

A

Time

g n) logarithmic

O(1)

constant

 /

Data Input (Space)

P versus NP and the Computational Complexity Zoo, please have a look at
https://www.youtube.com/watch?v=YX40hbAHx3s
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TU  Our World in Data — Microscopic Structures @ HCI-KDD -

Grazm

1 A 1 44.542 51.034 101.284 0.01 27.20

2 A 1 45.640 50.230 100.38% 0.01 Z6.98

3 L 1 46.692 459.643 101.3058 0.01 Z6.80

4 A 1 46.395 S0.22ZZ 10Z2.381 0.01 Z6.91

5 jiN 4 47,283 45.516 100.951 1.00 Z6.:26

] A 2 45.277 47Y.860 101.761 1.00 Z6.17

7 jiN d 49,212 47.031 100.845 1.00 Z4.:21

&] A 2 49.060 47.195 93,830 1.00 19.77Y

=] ji} 2 47.435 47.021 10Z.300 1.00 Z6.31

10 o3 3ER A 2 46.270 46,350 102.404 1.00 27.98

ATON 11 N HI3 & 3 s0.147 46.186 101.370 1.00 Z3.83
ATOHM 12 <4 HI3 & 3 S51.122 45,389 100.60%  1.00 21.44
ATON 13 C HI3 & 3 s0.953 43.2905 100.845  1.00 Z0.3:2
ATOHM 14 @ HIZ &4 3 S0.530 43,595 101.5950 1.00 22.00
ATON 15 CBE HIZ & 3 S5Z.555 45.674 100.2590 1.00 19.68
ATOHM le <3 HIZ A 3 S52.940 47.090 100.611  1.00 21.44
ATON 17 ND1 HIS & 3 53.371 47.470 99,422 1.00 Z0.87
ATON 13 CDZ HIS & 3 S52.9586 45.17%5 101.433 1.00 Z21.65
A 3 53.8%76 458.730 93.47Y6 1.00 Z0.57

Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech
Technical University (CTU), 69-74
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TU Getting Insight: Knowledge Discovery from Data @ HCI-KDD -

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular

Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New
York, Springer, 199-212.
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TU

Grazm

First yeast protein-protein interaction network

@ HCI-KDD £+

o % \ %

l b iy ':‘:E"' “. oR ) ..
L R .
SAuivh WU
M. b

Holzinger Group 35

Nodes = proteins

Links = physical interactions
(bindings)

Red Nodes = lethal

Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, S.
P., Barabasi, A. L. &
Oltvai, Z. N. (2001)
Lethality and
centrality in protein
networks. Nature,
411, 6833, 41-42.
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TU  First human protein-protein interaction network @ HCI-KDD +£-

Grazm

Light blue = known proteins
Orange = disease proteins

Stelzl, U. et al.
(2005) A Human
Protein-Protein
Interaction
Network: A
Resource for
Annotating the
Proteome. Cell,
122, 6, 957-968.
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TU Non-Natural Network Example: Blogosphere @ HCI-KDD -

Grazm

Hurst, M. (2007), Data
Mining: Text Mining,
Visualization and Social
Media. Online available:
http://datamining.typep
ad.com/data_mining/20
07/01/the_blogosphere.
html, last access: 2011-
09-24
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TU Social Behavior Contagion Network

Grazm

@ HCI-KDD 4=

ol
eyl

Information object I %’

Holzinger Group 38

Aral, S. (2011)
Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.
Marketing Science, 30,
2,217-223.

709.049 05



TU Human Disease Network -> Network Medicine @ HCI-KDD £

Grazm

Barabasi, A. L.,
Gulbahce, N. &
Loscalzo, J. 2011.
Network medicine: a
network-based
approach to human
disease. Nature Reviews
Genetics, 12, 56-68.
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TU The Genetic Landscape of a cell @ HCI-KDD +£-

Grazm

Endosome &

vacuo]e sorting Cell polarity &
‘ morphogenesis

Amino acid . = \ , . ) .4 7.... IRNA
biosynthesis . " s : 3", . modification
& uptake ° g

o :’ % ',1 - - == Cell wall biosynthesis
& - & integrity

Protein folding &
glycosylation

ER-dependent
protein degradation

ER/Golgi

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L.,
Toufighi, K. & Mostafavi, S. 2010. The genetic landscape of a cell. science, 327, (5964), 425-431.
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TU Example for a weakly structured data set - PPI @ HCI-KDD -

Grazm
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TU @ HCI-KDD -
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04 Knowledge
Representation in
Network Medicine
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TU Network Science — Graph Theory @ HCI-KDD £

Grazm

Networks = Graphs

24 July XEE 30

ncC

MATTHIAS DEHMER

. UMIT = The Health and Life Sciences University, Institute for Bioinformatics and
- Translational Research, Hall in Tyrol, Austria

SUBHASH C. BASAK
. Natural Resources Research Institute
¢ University of Minnesota, Duluth
Duluth, MN, USA

http://www.wired.com/tag/network-science/

http://www.barabasilab.com/pubs/CCNR-ALB_Publications/200907-24_Science-
Decade/200907-24 Science-Coverlmage.gif
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TU Network of Networks in Biology @ HCI-KDD £

Grazm

Activate TFs

Form TF
complexes

Transcribe ,
Transcribe
enzymes _
roteins

Protein
interaction
networks

Image credit to Anna Goldenberg, Machine Learning Group, Toronto
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TU From data sets to networks @ HCI-KDD £

Grazm

Existing biological knowledge

Nature Reviews | Molecular Cell Biology

Image description find here:

http://www.nature.com/nrm/journal/v6/n2/fig_tab/nrm1570 F1.html
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TU Regulatory>Metabolic>Signaling>Protein>Co-expression @ HCI-KDD -

Grazm

Transcription factor Enzymes Receptors

R Q:'—o

Genec Metabolites Jr

‘@

Protein
complex

o0
% °p
e
@
Olo

Directed, Signed, Undirected,

weighted weighted Dwe*.:ted Undirected Undirected

Image credit to Anna Goldenberg, Toronto
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TU Example for a Medical Knowledge Space @ HCI-KDD £

Grazm

# Nodes: 641
# Edges: 1250

Agent
Condition

Average Degree: 3.888
Average Path Length: 4.683
il Network Diameter: 9

Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices:
State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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TU  Medical Details of the Graph @ HCI-KDD

Grazm

a®
= Nodes . ’ .
= drugs .:. ¥ " ™ ‘:..: :}
o clinicalguidelilze.O :. .

" patient conditions (indication, contrflndlcat‘or.)

= pharmacological grot;& a . \. . &
= tables and calculations o?s'yiicalscg S o

= algorithms and other medical doeum N *

= Edges: 3 crucial types of relation.s’h'lneﬁcirg medical,
relevance between two active substances  «7 a
= pharmacological groups ® | !o'
" indications ’.”
2 T

= contra-indications o i
i..
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TU Example for the shortest path @ HCI-KDD -

Grazm
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TU_ Example for finding related structures @ HCI-KDD -4

0O
O

Relationship between

Adrenaline (center black node) and
Dobutamine (top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light):

1. Application (one ore more indications +
corresponding dosages)

2. Single indication with additional details
(e. g. “VF after 37 Shock”)

3. Condition (e.g. VF, Ventricular
Fibrillation)
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TU Interactive Visual Data Mining @ HCI-KDD o

http://ophid.utoronto.ca/navigator {0 Y

JURISICA LAB

[BM Life Sciences Discovery Center

@ HCI-KDD =£-

Otasek, D., Pastrello, C., Holzinger, A. & Jurisica, ., 2014, iIsual Data Mﬁﬂné:_Ef?ective Exploration of the Biological
Universe. In: Holzinger, A. & Jurisica, I. (eds.) Interactive KnowTedge Discovery and'[)a:a Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Notes in Computer Sgience LNCS 8401. Heidelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2.
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Node Types
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TU

Grazm

Example: Graph Entropy Measures

@ HCI-KDD -

# Engineering
B Computer Science ! ‘;r
8| Physics
B Humanities
unkown

Holzinger et al.
2013. On Graph

Entropy Measures .

for Knowledge Q0dae
Discovery from = ;
Publication Network N AST )
Data. In: LNCS 8127, Al §

354-362.

Holzinger Group 53
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TU

Grazm

Some selected open problems @ HCI-KDD o4

Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known.

Problem: What is the structural interpretation of graph measures ? They are
mappings which maps graphs to the reals. Thus, they can be understood as
graph complexity measures and investigating their structural interpretation
relates to understand what kind of structural complexity they detect.

Problem: It is important to visualize large networks meaningfully. So far, there
has been a lack of interest to develop efficient software beyond the available
commercial software.

Problem: Are multi-touch interaction graphs structurally similar to other
graphs (from known graph classes)? This calls for a comparison of graph
classes and their structural characteristics.

Problem: Which graph measures are suitable to determine the complexity of
multi-touch interaction graphs? Does this lead to any meaningful classification
based on their topology?

Problem: What is interesting? Where to start the interaction?

Holzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 (pp. 241-254). Berlin, Heidelberg: Springer.
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TU  Example: The brain is a complex network @ HCI-KDD -

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010)
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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TU Representative Examples of disease complexes @ HCI-KDD -

Grazm

Atrial septal defect

Examples of

4 functional
networks
driving the
development of
different
anatomical
structures in
the human
heart of a
37-dayold  “—
human embryo

Abnormal atrioventricular valve morphology

Abnormal outflow tract development

related disorders. Molecular systems biology, 6, 1, 1-9.
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TU  Example: Cell-based therapy @ HCI-KDD -

Grazm
A Early phenotypes
' N
E1. Abnormal heart E2. Abnormal looping E3. Abnormal E4. Abnormal atrio- Function of clusters
tube morphology morphogenesis sinus venosus ventricular canal
morphology
&,ﬂ .’b e , ® Transcription regulation
FGF/PDGFR signaling
Intermediate phenotypes
Other function
Late phenotypes
Mo. of proteins in clusters
00000
10 20 30 40 &80
— Direct interaction
------- Indirect interaction
. y
B
60
40
20
]

E1 E2 E3 E4 I 12 13 14 L1 L2 L3 L4
Lage et. al (2010)
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TU |dentifying Networks in Disease Research @ HCI-KDD -

Grazm

-
Z
L
=
KIDNEY é:l
=
<
L

metabolite network

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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TU  Three main types of biomedical networks @ HCI-KDD -

Grazm

@

=)
-

Prot_pin A Protein |

Protein B | Protein H

! Protein D / Protein G

: Protein E b

ot Pr:)tcin F @
Transcriptional regulatory Protein-Protein Metabolic network
network with two interaction network (constructed considering the
components: reactants, chemical reactions
TF = transcription factor and enzymes)
TG = target genes
(TF regulates the Costa, L. F., Rodrigues, F. A. & Cristino, A. S. (2008)
transcription of TG) Complex networks: the key to systems biology.

Genetics and Molecular Biology, 31, 3, 591-601.
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TU Example Transcriptional Regulatory Network @ HCI-KDD -

Grazm

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, S., Peralta-Gil,
M., Pefialoza-Spinola,
M. I., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7, (1), 5.
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TU Network Representations of Protein Complexes @ HCI-KDD -

Grazm

e True PPI topology

AN
Matrix-Mod;\ C @ Spoke-Model

Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks. PLoS Computational Biology, 3, 6, 1011-1021.
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TU Correlated Motif Mining (CMM) @ HCI-KDD -

Grazm

Boyen, P., Van Dyck, D., Neven, F., van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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TU Steepest Ascent Algorithm applied to CMM @ HCI-KDD -

Grazm

Input: PPI-network G = (V,E,;)A), {,de N, d < ¢
Output: {X™*,Y™*} best correlated motif pair found in G
1: {X*,Y*} « randomMotifPair()
2: mazxsup — f{X*,Y*},G)
3: SuUp «+— —0o0
4: while maxsup > sup do
{X,Y} —{X*Y*}
SUP <— Marsup
for all {X'.Y'} € N{X,Y}) do
if f({X',Y'},G) > maxsup then
{)(#’};*} e {){f?}/!}
10: maxsup — f{X",Y'}, G)

P eoSa S

Boyen et al. (2011)
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TU Metabolic Network

Grazm

@ HCI-KDD 4=

M1
M1
M1
M2
M2
M2
M4
M5

Matrix contains many sparse elements - In
this case it is computationally more efficient
to represent the graph as an adjacency list

Holzinger Group 64

M2
M4
M5
M1
M3
M4
M1
M1

Hodgman, C. T., French, A. &
Westhead, D. R. (2010)
Bioinformatics. Second
Edition. New York, Taylor &
Francis.
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@ HCI-KDD 4=
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Metabolic networks are usually b

Grazm
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TU Using EPRs to Discover Disease Correlations @ HCI-KDD -

Grazm

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. S., Jensen, P.
B., Schmock, H.,
Dalgaard, M., ®
Andreatta, M., Hansen,
T., Seeby, K., Bredkjeer,
S., Juul, A., Werge, T.,
Jensen, L. J. & Brunak,
S.(2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts. PLoS
Computational Biology,
7,8, e1002141.
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TU Heatmap of disease-disease correlations (ICD) @ HCI-KDD

Grazm
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TRALILANTE, LD ST s

Drug abuse
Liver disease -
HIV

L
»
=
L
g
a
- »
L]
am

Stratify Patient Cohorts. PLoS = A [

ASCITES

Comput Biol, 7, 8, e1002141. = CHEHY [ v .

WA DTHER FUNG TIONAL BITESTINAL DISTRDERS
= R0 ABDORINAL AND PELVIC PR

= s FEVER OF OTVER AND LSOV OF

-
- » B
[~ @ e ki IFAL WFECTION OF UNSPECIFED BITE
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TU Example: opoAoyéw (homologeo) @ HCI-KDD £

Grazm

T0499

He, Y., Chen, Y.,
Alexander, P,,
Bryan, P. N. &
Orban, J. (2008)
NMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.

VDAGTAEKYFKLIANAKTVEGVWTYKDE IKTFTVTE
L irrregxXrrerererretenld trerrererteld
DAGTAEKY I|IKLIANAKTVEGVWT\ILKDE IKTFTVTE

T0499 TTYKLILNLKQAKEEAIKE
N O I O I
T0488 TTYKL ILNLKQAKEEAIKE
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TU  Conclusion @ HCI-KDD -

= Homology modeling is a knowledge-based
prediction of protein structures.

" |n homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.

= Homology modeling will be extremely
important to personalized and molecular
medicine in the future.
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TU  Future Outlook G HCI-KDD £

Grazm

Personalized
Medicine
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TU Complex Biological Systems key concepts @ HCI-KDD £

Grazm

" |n order to understand complex biological systems, the
three following key concepts need to be considered:

= (i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

= (ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

= (iii) modularity, vertices sharing similar functions are
highly connected.

= Network theory can largely be applied for biomedical
informatics, because many tools are already available
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TU

Network Basics on the Example of Bioinformatics

@ HCI-KDD -

Grazm

Hol

G(V,E) Graph
V..vertex
E ..edge{a,b}
abevV,a#b

Hodgman, C. T,,
French, A. &
Westhead, D. R.

(2010) Bioinformatics.

Second Edition. New

York, Taylor & Francis.

zinger Group

----- Links comprising an
interaction cycle

— (ritical link

* Second order hub

: Clique/module

73
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TU Baby Stuff: Computational Graph Representation @ HCI-KDD -

Grazm

Adjacency (o-'ja-s°n(t)-sé) Matrix A = (a;y) ay, = { 1, if{jk} €E

0010107
000011
100010
000011
111100

010100

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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Example: Tool for Node-Link Visualization @ HCI-KDD £

Grazm

TU

L aH
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il il NN O EEEEEEENNBN]
HEEEEETEEEEEEEEREN
EEEE R EEEES S S SEE NN
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WO e nE NN NE NN
HEEETEEEENEEEN
‘AT EEEEEEE
RN EEE NN

@1t

v||

O XS

1 Data
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Jean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit
75

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. IEEE, 167-174.
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TU Some Network Metrics (1/2) @ HCI-KDD

Grazm

Order = total number of nodes n; Size = total number of links (a): @
adga / connection s
Zz aij Y /
S @ -
@ -
® g ®

Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

C . Zti C _ 1 Z C' b
"ok(k; - 1) T nls!
l
¢ J f’/"-i
Path length (c) = is the arithmetical @f”".} ©
3 mean of all the distances: '
1

| = —z d;;

2 n(n - 1) o Y
%]

i

Costa, L. F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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TU Some Network Metrics (2/2) @ HCI-KDD -

Grazm

= Centrality (d) = the level of “betweenness- centrality” of a node |

d @ k=2

=49
ki 4

T
= Nodal degree (e) = number of links connecting i to its nelghbors ki = 2 a;j

f
! ]
Modularity (f) = describes the possible .\ /.
- o formation of communities in the network,
@ ) indicating how strong groups of nodes . pu &

@ form relative isolated sub-networks within
o 9 the full network (refer also to Slide 5-8).

Holzinger Group 77 709.049 05



TU Network Topologies @ HCI-KDD -

Grazm

a
regular small-world random
o o -
¢l ok | c|
w ®,, o I - ®
- W [ (&% i -
® o ® ® 9 ® ® 9 ®
randomness g
b
o
Scale-free network
-] -
O o
® 9 ®

Van Heuvel & Hulshoff (2010)
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TU Slide 5-15 Graphs from Point Cloud Data Sets @ HCI-KDD £

Grazm

iy

AN -"!" /fi‘ I \\

lgv'\( \\\!‘ / ~
BN
i W

‘
d

Ah

(e

¥ >

9 ::_si.s\'- A\
VLS8 Es
N

N AR
See e RGN B
(a) Initial set of points. (b) 1-ball Graph. (c) 1-Nearest-Neighbor Graph. (d) Euclidean Minimum Spanning
Tree.

(e) 3-Nearest-Neighbor Graph. (f) Relative Neighborhood Graph. (2) Gabriel Graph, (h) B-Skeleton Graph. B — L.1:
black edges, 8 =0.9 grey edges.

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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TU  Finally a practical example @ HCI-KDD -

06 Example: How do
you get point cloud
data from
natural images?

Holzinger Group



TU  Graphs from Images @ HCI-KDD -

Grazm

et
%
N .

Tl

el &

c) Watershed Algorithm d) SLIC superpixels

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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TU Example Watershed Algorithm

Grazm

@ HCI-KDD -4~

Algorithm 4.2 Watershed transform w.r.t. topographical distance based on image integration
via the Dijkstra-Moore shortest paths algorithm.

1:

= e AN o

procedure ShortestPathWatershed;

INPUT: lower complete digital grey scale image G = (V, E, im) with cost function cost.
OUTPUT: labelled image lab on V.

#define WSHED 0 (*label of the watershed pixels *)

(+ Uses distance image dist. On output, distfv] = im[v], for all v € V. #)

for all v £ V do (+ Imitialize =)
lablv] «— 0 ; dist|v| — oo
end for
for all local mmima m, do
for all v = m,; do
lablv) — i ; dist[v] — im[v] (* mitialize distance with values of minima )
end for

4: end for

. while V' £ (1 do
16:
17:
18:
19:
20:
21:
22:
23:
24:
2h:

26:

u— GetMinDist(V) (+find u € V with smallest distance value dist|u] )
V — ¥\ {u}
for all v £ V with (u,v) £ E do
if dist|u] + cost[u,v] < dist[v] then
dist|v] — dist[u] + cost(u,v)
lablv| — lab|u]
else if labv| # WSHED and dist|u] + cost|u,v| = dist[v] and lablv| # lablu| then
lablv] = WSHED
end if
end for
end while

Meijster, A. & Roerdink, J. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 1995. Springer, 790-795.

Holzinger Group
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TU Graphs from Images: Watershed + Centroid @ HCI-KDD -

Grazm
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TU  Slide 5-20 Graphs from Images: Voronoi <> Delaunay @ HCI-KDD +£-

Grazm

4l ;
“'fiﬁé}ﬂ

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, J. F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
709.049 05
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TU Are graphs better than feature vectors ? @ HCI-KDD -

Grazm

" More expressive data structures
" Find novel connections between data objects

= Fit for applying graph based machine learning
techniques

= New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, P,,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin) 7-19

Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014), IEEE (2014) in print
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TU Watershed methods G HCI-KDD &«

Grazm

" Topographic maps => .

landscapes with height structures . : __

= Segmentation into regions of pixels

" Assuming drops of water raining on the map

" Following paths of descent

= |Lakes called catchment basins

" Also possible: Flooding based

" Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6), 583-598.
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TU  Watershed 4 Steps @ HCI-KDD &

" 1) Transformation into a topographic map
= Convert gray values into height information

" 2) Finding local minima
" |nspecting small regions in sequence

" 3) Finding catchment basins
" Algorithm simulating flooding
" Graph algorithms such as Minimum Spanning Trees

= 4) Erecting watersheds
= Artificial divide between catchment basins
" Final segmentation lines
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TU Example: Watershed Segmentation of the human cortex @ HCI-KDD -

Grazm

Sulci Gy t:al
Sulcal Regions Regions

A

catchment basins begin

filling w;‘th watcr watershed line forms here
/
A I T

- . N

http://iacl.ece.jhu.edu/~prince/ws/
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TU  Finally a practical example

@ HCI-KDD -

07 Graphical
Model Learning

Holzinger Group



TU  Learning Graphical Models from data @ HCI-KDD £

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges
in the biomedical domain:

Uncertainty and complexity

" The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. |. 1998. Learning in graphical models, Springer
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TU  Learning the Structure of GM from data @ HCI-KDD £

1) Test if a distribution is decomposable with regard to a given graph.

= This is the most direct approach. It is not bound to a graphical
representation,

= |t can be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.

2) Find a suitable graph by measuring the strength of dependences.

= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.

3) Find an independence map by conditional independence tests.

= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.

= |t has the advantage that a single conditional independence test, if it fails,

can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.

Borgelt, C., Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for
learning, reasoning and data mining, John Wiley & Sons.
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TU  Who of you smokes?

Grazm

@ HCI-KDD 4=

Relaxed
smooth
muscles

Normal airway

Asthmatic airway

Air trappet
———inalveoli

J—
| Tightened
— \ smooth

Beasley, R. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351, (9111), 1225-1232,

doi:http://dx.doi.org/10.1016/S0140-6736(97)07302-9.

Holzinger Group

\ muscles
Wall inflamed
and thickened
Asthmatic airway
during attack
709.049 05



TU Example for Graphical Model Learning @ HCI-KDD -

Grazm

S ————  BaY€sian Network
I £ K

Florian Asthma Smokes
Tamas
Matthias
Benjamin
Dimitrios
Rows are independent
during learning and
Florian

inference!

Florian 0 0.3 0.2
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TU Relational Representation Learning and Prediction @ HCI-KDD -

Grazm

= Asthma can be hereditary
" Friends may have similar smoking habits

" Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

Smokes 2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)
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TU Knowledge Representation > Reasoning > Learning

@ HCI-KDD 4=

Grazm
= 4 Probabilistic £ & Program
- — 1,1 JRietamad .
© Programming = Induction
i o E O -
g a 5 2 £
[ Statistical - Statistical :
O Relational Models s = Relational @
T © : 5
Probabilistic ® o & iR E
Databases = g = =
™ U
o :
Graphical — “E GEPE":IEI
Models Bayesian E Leacr}n;
Networks &
Knowledge Reasoning Machine
i I
Representation Learnin

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+
Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called
ProbLog, see: De Raedt, L., Dries, A., Thon, |., Van Den Broeck, G. & Verbeke, M. 2015. Inducing probabilistic relational rules
from probabilistic examples. International Joint Conference on Artificial Intelligence (1JCAI).

Holzinger Group
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GGGGG

@ HCI-KDD -4~

Holzinger Group

Conclusion and
Future Challenges



TU  Future Outlook G HCI-KDD &«

Grazm

The future is in integrative ML, i.e. combining
relational databases, ontologies and logic with
probabilistic reasoning models and statistical
learning — and algorithms that have good scalability

w Smokes(x) A Friends(x,y) = Smokes(y) '

[s]

Run Time [s

0 5000 10000 15000 20000 25000
Domain Size (Number of People)

30000

m Learns a model over
900,030,000 random variables

Big models

Artificial Intelligence-Volume Volume Three,

Van Den Broeck, G., Taghipour, N., Meert, W.,
Davis, J. & De Raedst, L. Lifted probabilistic
2011. AAAI Press, 2178-2185.

inference by first-order knowledge
compilation. Proceedings of the Twenty-
Second international joint conference on
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@ HCI-KDD 4=

k you!
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Iy @ HCI-KDD 4=
@
Questions
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TU

Grazm

Sample Questions @ HCI-KDD o4

What is the primary idea of a graphical model learning algorithm?
Where do graphs come from in the medical domain?

Where do decision trees originally come from?

What are probabilistic graphical models?

Why is the topic "reasoning under uncertainty" so important for the
health domain?

Why was MYCIN not a success in the clincial domain?
What was the core essence in MYCIN?

What is the principle of GAMUTS?

Which two types of decisions do clinicians execute?
What is the goal of network medicine?

What is a true PPl topology?

Why are structural homologies so important?

What is the vision of personalized medicine?

What does robustness in the context of complex biological systems
mean?

How do you get point cloud data from a natural image?
Why is graphical model learning so interesting for medical problems?
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Iy @ HCI-KDD 4=
@
Appendix
Holzinger Group 102 709.049 05



TU Recommended Books

Grazm

@ HCI-KDD -

Machine Learning
A Probabilistic Perspective

Havin P, Murphy

Murphy, K. P. 2012. Machine
learning: a probabilistic
perspective, MIT press.

Holzinger Group

BAYESIAN
REASONING
and algorithms

MACHINE
LEARNING

David Barber

Barber, D. 2012.
Bayesian reasoning and
machine learning,
Cambridge University
Press.

http://web4.cs.ucl.ac.uk/s
taff/D.Barber/textbook/18
1115.pdf

103

Koller, D. & Friedman, N.
2009. Probabilistic
graphical models:
principles and
techniques, MIT press.
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TU Key Problems @ HCI-KDD £

Grazm

" Automated Machine Learning algorithms need
much training data — focus is on adjusting model
parameters without fully understanding the data
that the learning algorithm is modeling [1]

= Curse of dimensionality [2] — need for privacy
and anonymization [3] (see lecture 11)

= Weakly structured data [4]

[1] Smith, M. R., Martinez, T. & Giraud-Carrier, C. 2014. An instance level analysis of data
complexity. Machine learning, 95, (2), 225-256.

[2] Friedman, J. H. 1997. On bias, variance, 0/1—Iloss, and the curse-of-dimensionality. Data
mining and knowledge discovery, 1, (1), 55-77.

[3] Aggarwal, C. C. On k-anonymity and the curse of dimensionality. Proceedings of the 31st
international conference on Very large data bases VLDB, 2005. 901-909

[4] Holzinger, A., Stocker, C. & Dehmer, M. 2014. Big Complex Biomedical Data: Towards a
Taxonomy of Data. In: CCIS 455. Berlin Heidelberg: Springer pp. 3-18.
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TU Example from Immunology: Structural Homology @ HCI-KDD -

Grazm

Top view of MIF Top view of 4-0T

Nature Reviews | Immunology

Calandra, T. & Roger, T. 2003. Macrophage migration inhibitory factor: a regulator of innate
immunity. Nat Rev Immunol, 3, 791-800.
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TU Slide 5-19: Watershed Principle @ HCI-KDD -

Grazm

= Catchment basins:

" treating an image as a height field or landscape,
regions where the rain would flow into the same
lake

(a) (b) (c)

= Start flooding from local minima, and label ridges
wherever differently evolving components meet
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TU @ HCI-KDD +£-

U.S. Patent May 7, 2002 Sheet 5 of 11 US 6,384,826 Bl U.S. Patent May 7, 2002 Sheet 6 of 11 US 6,384,826 B1

COMPUTE VORONOI DIAGRAM
OF SAMPLE POINTS |~ 645
§=(51,8,..,8,}

'

COMPUTE THE POLES
POFS

!

§ | COMPUTE THE DELAUNAY
TRIANGULATION OF - 655
SAMPLE POINTS AND POLES

'

DELETE TRIANGLES IN
WHICH ONE OR MORE —— 660
VERTICES ARE POLES

!

DELETE TRIANGLES WITH
NORMAL ANGLES DEVIATING |~ 665
FROM VECTORS TO POLES

!

EXTRACT A TWO-DIMENSIONAL
MANIFOLD ~— 670

FIG. 6

_— 650

FIG. 5
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TWslide 5-15 Graphs from Images: Voronoi <> Delauney @ HCI-KDD -

raz

h‘._ _
TS
PR

X/

L1/ ’ </ v
NAZAX

(a) Initial set ﬂf'l'mi'm; ’ (1) Delaunay Triangulation Graph.
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-!i-rla'!l @ HCI-KDD £~

Disease:
Cardiomyopathy
CSR TNNCI  Tissue expression:
Heart: z = 1.5786
Cardiac myocytes: z= 0.777
YHE gkeletal muscle: z = 0.565

Cellular component: Disease:
Myofibril Parkinson disease

TNNI3 Biological Process: Tissue expression:
Regulation of heart contractio

SNCAIP TH Caudate ngcl&us: z=0.668
SNCA Subthalamic nucleus: z = 0.251
Globus pallidus: z = 0.119
Cellular component:
Presynaplic membrane

Biological Process:

Disease:
Limb-G. muscular dystrophy

Tissue expression:
SGC SGCA g iotal musdle: 2 = 1.345 SEECRI0 Eteuehom
Heart: z = 1.066
Cardiac myocyte: z = 0.164
SGC Cellular component: Disease:
SGCB Sarcoglycan complex Carcot-Marie-Tooth disease 4F
Biological Process: MPZ Tissue expression:

Muscle development Dorsal root ganglion: z = 2,182
Spinal cord: z = 1.237
Skeletal muscles: z = 0.722
PMP22 " Cellular component:
Chromosome, telomeric region
Bioclogical Process:
Mechanosensory processes

5F1 Disease:

Sex reversal

= Tissue expression:
Testis: z= 0.432

Testis leydig cell: z = 0.338

Ovary: z = -0.678

Cellular component:

Mucleus

Einlagical Process:

Regulation of transcription

S0OX9
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TU Example: Cell based therapy (1) (Heart transplantation) @ HCI-KDD -

Grazm

Ventricular muscle Coronary Pacemaker and distal
Basket-weave architecture arterial tree conduction system

Cardiac muscle fiber weave Vascular smooth muscle cells Conduction system muscle cells

Chien, K. R., Domian, I. J. & Parker, K. K. (2008) Cardiogenesis and the complex biology of
regenerative cardiovascular medicine. Science, 322, 5907, 1494.
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TU

Grazm

Example: Cell based therapy (2) (Heart transplantation)

@ HCI-KDD 4=

Multiscale
spatial
coupling

Chien et al. (2008)

Holzinger Group

10'm —

102 m —

10°m —

104 m —

10°m —

10%m —

107 m —

108 m —

10%m —

“|

> - 3D myocardium
1-100 mm

2D tissue
400 - 1000 um

~
.

A =

Myocytes
20-200 um

Myofibril
10 - 100 um

Sarcomere

~2um

Actin-myosin motors

~5nm

111 709.049 05



TU Example: Network Generated by Gene Duplication @ HCI-KDD -

Grazm

High Modularity
(Modularity =
0.6717, Scaled
Modularity = 29);
Different colors

represent '

different \

modules - . f
e | —

identified by :|“'

Guimera and o —g

Amaral’s

algorithm [28].

Guimera R, Amaral LA
(2005) Functional
cartography of complex
metabolic networks.
Nature 433: 895-900.

Wang & Zhang (2007)
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TU Genome-Phenome association in complex diseases @ HCI-KDD -

Grazm

Pleotropic effects

CTTCACTCGTGTCTATITTGAATTGCCTAT |
b ™ == c

Two subnetworks
for lung physiology

Epistatic effects

Image credit to Eric Xing, Carnegie Mellon University, Pittsburgh
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TU Small-World Networks G HCI-KDD £

Grazm

Regular Small-world
=1
p=0 p=0.0001

Increasing randomness

/ 29.000 citations ..

Watts, D. J. & Strogatz, S. (1998) Collective dynamics of small-world networks. Nature, 393, 6684, 440-442.

Milgram, S. 1967. The small world problem. Psychology today, 2, (1), 60-67.
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Additional Reading

@ HCI-KDD ==

CAUSALITY

~ MODELS. REASONING.
AND INEERENCE

JUDEA PEARL

Pearl, J. 2009.
Causality: Models,
Reasoning, and
Inference (2nd
Edition), Cambridge,
Cambridge
University Press.

Holzinger Group

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

REVISED SECOND PRINTING

Pearl, J. 1988.
Probabilistic reasoning
in intelligent systems:
networks of plausible
inference, San
Francisco, Morgan
Kaufmann.

115

Probabilistic Graphical Models
tor Genetics, Genomics, and :II:T.I_'I:EI'TI NES

Sinoquet, C. & Mourad,
R. 2014. Probabilistic
Graphical Models for
Genetics, Genomics, and
Postgenomics, OUP
Oxford.
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