'[,l_-!. Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD %
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TU ML needs a concerted effort fostering integrated research @Hci-koD &

Graph Model

01 raphlcal Models
arf Decision Making

Data
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http://hci-kdd.org/international-expert-network
i Data .
Interactive pmjping Knowledge Discovery

Data Learning Data Prepro- Data
Visualization =~ Algorithms  Mapping  cessing Fusion

GDM e Graph-based Data Mining

TOM e Topological Data Mining

EDM e Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

€ hatneger it kad neg
Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14,
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Ty, @ HCI-KDD

Holinger Groug

= 00 Reflection — follow-up from last lecture
= 01 Graphical Models and Decision Making
= 02 Bayesian Networks

= 03 Machine Learning on Graphs

= 04 Little Excursus: What is similarity?

= 05 Probabilistic Topic Models

= 06 Graph Bandits (a very hot topic!)

Holzinger Graun 3 709,049 06

TU, Quiz @HEI-KDD

http://sbcb.bioch.ox.ac.uk/users/oliver/software/

Holzingor Graum 6 709,049 06

TU, Decision Making: Learn good policy for selecting actions QHCI-KDD

atn

Goal: Learn an optimal policy for selecting best actions
within a given context
Fort:= 1,y T
1) The world produces an
uncertain “context” x; € X

2) The learner selects an action
a; € {1, K3}

j =k
3) The world reacts with

Bed5|de areward r.(a;) € [0,1]
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TU, Key Challenges @HCI-KDD -

= Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks
with probabilistic graphical models

= |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop!

Holringer Groug 0 T09.049 06

TU, Three types of Probabilistic Graphical Models @HCIKDD A
Undirected: Markov random fields, useful

’ s e.g. for computer vision (Details: Murphy 19)

¢‘_‘. P(xJ=%exn(zwﬂaxﬁ+2%"') "'"

Directed: Bayes Nets, useful for designing
" ‘ ‘ models (Details: Murphy 10)

K
pi3e)= H plagipay)
k=1

Factored: useful for inference/learning

p(x) = [] fo(xs)

Holzingar Group 3 T09.049 06

TU, Protein Network Inference @ HCI-KDD 4

= Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

= |n this context, the problem of inferring a global
protein network for a given organism,

= - ysing all (genomic) data of the organism,

= js one of the main challenges in computational
biology

Yamanishi, Y., Vert, .-P. & Kanehisa, M. 2004, Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.
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TU, Example: Why is prediction in proteins so important for us? ~ @Hcl-Ko0
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TU, Factor Graphs - learning at scale @ HCI-KDD 4

TU, Recommended background reading

@HCI-KDD oL

Bishop, C. M. 2007. Pattern
Recognition and Machine
Learning, Heidelberg, Springer.
Chapter & on graphical models
openly available:

A

Machine Learni

Murphy, K. P. 2012.
Machine learning: a
probabilistic
perspective, MIT

press. Chapter 26 (pp.

Koller, D. & Friedman,
N. 2009. Probabilistic
graphical models:
principles and
techniques, MIT press.

= \What is the advantage of factor graphs?

Bayesian Networks Ancestral
Generative
Process

Markov Networks Yes No Local Couplings

and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon

Holringer Group 1 T09.049 06

phism NP-complet @HCI-KDD -

TY, Problem: Is Graph Isc

Borgwardt, K. M., Ong, C. 5., Schénauer, 5.,
Vishwanathan, 5., Smola, A. ). & Kriegel, H.-P.©
2005. Protein function prediction via graph
kernels, Bioinformatics, 21, (suppl 1), i47- 156

secomiary sequence strecture
struciure

= |mportant for health informatics: Discovering
relationships between biological components

= Unsolved problem in computer science:

= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
= |t is also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete

Holzingar Group w T09.049 06

907) = Graphical
hanfrnsearth mllc_m.snft I:Dm:f'en riodal strochure
us/um/people; prmi {edtning
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TU, From structure to function prediction @ HCI-KDD -

30 Structure

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.

Holzinger Group 15 708,040 06

TU, Example: Protein Network Inference @HC-KDD -

vl 20 Buped. 1 00, fuages D370
DOE 20 10V R raseR TG 10

4 Protein network inference from multiple
Fﬁ genomic data: a supervised approach

Y. Yamanishi’-*, J.-P. Vert? and M. Kanehisa'

drmtitue for Kyoin Urfversity, Gokisha,
umsllmu mwfwmmmm Mo e
Poris, 35 rue Saint-Honond, 77305 Fordanetion coces,

a _.-7/'
~ ,_/” 7 A
] o .
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i3 r
; i P . [ ]
Keup (Expression) '& P e
Kppi (Protein interaction) 2 L‘rj i ; H:p_lﬁ_
Ko (Localization) af —
Koy (Phylogenctic profile) 2 =
Keap + Kppi + Kioe + Kpiy AR M
(Integration) Faie pasten
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TU, Example: Data fusion and Protein Annotation @ HCI-KDD &

vl 300 904, g - 05
T ee———

. A fr. rk for g ic data fusion

Gort A, G. Lanchriot”, Tl De Big”, Nollo Cristianin,
Michasl | Jordar?’ and William Stafford Noble™*
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5 e cxgormain e ——— 5
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18} Slombrane prsicms
Lanckriet, G. R., De Bie, T, Cristianini, N., Jordan, M. I. & Noble, W. 5. 2004, A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635,

Holringer Group 19 T09.049 06

TU, Example: Directed Bayesian Network with 7 nodes @HCIKDD A
p( X] ...... X -,-} =
p(X1)p(Xa2)p(X3)p(Xa| Xy, Xo, X3)-
p(X5| X1, X3)p(Xe| Xa)p(X7| Xy, X5)
X
;Y(; ')('r'

Holringer Groug ks T09.049 06
TU, Predicting the future on past data and present status @ HCIKDD

TU, Bayesian Network (BN) - Definition QHCI-KDD

current patient state next patient state

Risk factors Risk factors
Pathog i Pathogenesis
Disorders o Disorders
model
Pathophysiclogy Pathophysiclogy
Finding: Findings
‘yicn Tests
el Treatments
physician
b
Cal
past present future

van Gerven, M. A, )., Taal, B. G, & Lucas, P. ). F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.

Holzingar Group k] T09.049 06

. @HCIKDD A
02 Bayesian
Networks
“Bayes’ Nets”

TU, Clinical Case Example SHCHKODA

Holzinger Group

3

TU, Example: Breast cancer - Probability Table

Overmoyer, B. A.,
Lee, . M. &
Lerwill, M. F.
(2011} Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast

and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.
T09.049 06
@HCI-HDD o4

is a probabilistic model, consisting of two parts:

1) a dependency structure and

2) local probability models.
n
PGy, xn) = [ [pCri| PaGe)
i=1

‘Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistit g in intellig netwaorks of plausible inference. San
Francisco, Morgan Kaufmann.
Holringer Groug ki T09.049 06

TU, Important in Clinical practice -> prognosis ! SHCI-KDD &

Category

MNode description

State description

Diagnosis

Clinical his-
tory

Physical find-

ings

Mammeo-
graphic

findings

Breast cancer

Habit of drinking aleoholic beverages and
smoking

Taking female hormones

Have gone through menopause

Have ever been pregnant

Family member has breast cancer

Nipple discharge

Skin thickening

Breast pain

Have o lumpis)

Architectural distortion

Mixss
Microcabeification clusier

Asymmetry

Present. ubsent.
Yes, no.
Yes, no.
Yes, no,

Yes, no.
Yes, no.

Yes. no.
Yes. no.

Yes, no,
Yes, no.

Present. absent,

Score from one 1o three, score Trom four 1o five,

absent

Seore from one to three. score Trom four 1o five.

absent
Present, absent.

‘Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Holzinger Group
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= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information !

= Therefore valid prognostic
models can be of great benefit
for clinical decision making and
of great value to the patient,
e.g., for notification and quality
of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.

Holringer Group kLl T09.049 06

TU, Breast cancer - big picture - state of 1999 SHCI-KDD &
Alcoholic & Skin Nipple Breast
Smoking Thickening Discharge Pain

| Homons | e
/ Lump

Menopause I—a Breast Cancer

Family Architectural Tissue Microcalei-
History Distortion Asymmetry fications

‘Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Holringer Group 7 T09.049 06



TUY, 10 years later: Integration of microarray data @ HCI-KDD &

= |ntegrating microarray data from multiple studies to increase
sample size;

= = approach to the development of more robust prognostic tests

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test, BMC Bioinformatics, 9, 1, 125-139.

Holringer Groug m 709,049 06
TU, Dependency Structure -> first step (1/2) @ HCI-KDD A

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

Sl TV TN g+ Ny
P(SID)Kp(S)l—H—[ V') (V'ijk i)
i=1 j=1

PN+ Ny) 4 2 T(N'ix)

Niji ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.

Halringer Graug 1 709,040 06
TU, Predicting the prognosis of breast cancer (integrated a.) @ HEI-KDD &

TU, Example: Bayes Net with four binary variables @ HCI-KDD &
Gene 1
P{on) 0.8
P(off) 0.2
Gene2 Genel Genel Gene2 Genel Genel
an off on off
P(on) 0.3 0.6 e P{on) 0.3 0.6
Ploff) 0.7 0.4 Ploff) 0.7 0.4

Prognosis Gene2on Gene2on Gene 2off Gene 2 off
Gene3don Gene3off Gene2on  Gene 3off
P{good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5
Gevaert, 0., 5met, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.

Holringer Groug B 709,049 06
TU, Dependency Structure — first step (2/2) @ HCI-KDD A

TU, Concept Markov-Blanket @HCI-KDD

h ®

Gevaert, 0., Smet, F.D.,
Timmerman, 0., Moreau, Y. &
Meor, B. 0. (2006} Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks, Bipinformatics, 22,
14, 184-190.

Holingor Group ) 709,049 06

= Next, Nj; is calculated by summing over all states of a variable:

= Ny = ‘;'=‘N,-,-R-N'Uk and N';; have similar meanings but refer to prior
knowledge for the parameters.

= When no knowledge is available they are estimated using Ny ;. = N/(riq;)

= with N the equivalent sample size,

= r; the number of states of variable i and

= g; the number of instantiations of the parents of variable (.

= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(5) is calculated by:

= p(S) =TT, TS, (i — x) Ty =y pOmaxy)

= with p; the number of parents of variable x; and o; all the variables that are
not a parent of x;.

= Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge from a to b

Halringer Graug n 709,040 06
TU. Inference in Bayes Nets is intractable (NP-complete!) SHCI-KDD &

Gevaert, 0., Smet, F.D,,
Timmerman, D.,
Moreau, Y. & Moor, B. D,
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian
networks.
Bioinformatics, 22, 14,
184-190.

Holzinger Graun 0 709,049 06

TU, Parameter learning -> second step @HCI-KDD

= For certain cases it is tractable if:
= Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

= Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem

Holingor Group 709,049 06

+ Estimating the parameters of the local probability models corresponding
with the dependency structure.

* CPTs are used to model these local probability models.

* For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

= Each set of parameters was given a uniform Dirichlet prior:

p(6ij|S) = Dir(8IN'ij1, oo N'ijies oo s N' i)

Note: With 6;; a parameter set where  refers to the variable and f to the j-th instantiation of
the parents in the current structure, & contains a probability for every value of the variable x;
given the current instantiation of the parents, Dir corresponds to the Dirichlet distribution with
(N'ij10 s N'ijr, ) a5 parameters of this Dirichlet distribution. Parameter learning then consists of
updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(8i;]0.8) = Dir(BIN" ijy + Nijuu oos N ic + Nijico s N, + Nij)

with N defined as before.

Holringer Graug 3 709.049 06
TU, @HCI-KDD oL

3) Machine Learning
on Graphs

Holringer Group 3 709,049 06



TU, Example: Lymphoma is the most common blood cancer @HCIKDD A

TU, ML tasks on graphs

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

http://imagebank.hematology.org/

www.lymphoma.org

Holringer Groug k) T09.049 06

TU, Interesting: Hubs tend to link to small degree nodes QHCI-KDD

MNodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability

that a node with degree k links to a
node with degree k'is:
kk'

Pue =
2L
k=50, k'=13, N=1,458, L=1746

Pusy =015 p., =0.0004

Jeong, H., Mason, 5. P, Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in
protein networks. Nature, 411, (6833), 41-42.

Holringer Groug 40 T09.049 06
TU, Example Question: Predicting Function from Structure @HCI-KDD
- L) L L]
B cereus 1 MIVEPV AR ] ITNNLIWR L SLOTVERTTHOHP - LEMGROTES
Basthracis 1 - LPSELOYVIETTHONP - - LIMGRENTEA
RB.ooli 1 - SIS ARLAVTRVT O ERASIN - LA LAK PR TLARR - - - - - - EMORH TR
M. sapiens 1 MVGELEC VRSN IS GO LN PLENE PR Y FORNT T TESVEGE QML VENORE W S
R T T i
B, careua s :- ﬂl&;lm mninw
Boanthracis 41 1 CEFLPGKNNTIVTRMESTHVESCEYA CENEERLFIFOGAQ
B.oodt 89 I-- -GRPLPGRINTILSSOPGTD- DRVIWY - KEVIRATAR- - - - - - COUVFRINVIOGE
it -t e o
Boanthraais (50 IVDLFL - FYVDELTITEIREAFBOUTIFID DMTNEE  FVEED
R.eali ¥ VIEEL- - PEACKLYL T CAN VRGP0 T EPIORLT VISR - - - DADACNGHSYCT
W sagians e Twlwlﬂm‘ﬂ;!.rf:?l;?llPW-J‘IY_/E,(:NT:

How similar are two graphs? How similar is their

structure? How similar are their node and edge labels?

Boska, T. M. & Anderson, A. C. 2006. Structure-activity refationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. agents and 50, 3435-3443,

Holringer Group a3 T09.049 06

= Discover unexplored
interactions in PPI-
networks and gene
regulatory networks

= Learn the structure

= Reconstruct the

A5
structure n 7N
"|'J - / -
Lo
n
2 -0 P, o _o~¥—0
-3 ‘-0 2
Dittrich, M. T,, Klau, G. W., Rosenwald, A., Dandekar, - =
T. & Miiller, T, 2008. Identifying functional modules in ~O—~D 1 -8
protein—protein i { rks: an i d -2 =) =
exact approach. Bioinformatics, 24, (13), i223-i231.
Holringer Groug k] T09.049 06
TU, Example: Subgraph Discovery @ HCI-KDD -

Gepalan, P, K. & Blei, D. M. 2013,
Efficient discovery of overlapping

communities in massive W erarchy 153
networks. Proceedings of the om & Small Extra Dimension

; HIGH ENERGY PHYSICS:
National Academy of Sciences, ¥ 3 . 0 PHENOMENOLOGY
110, (36}, 14534-14539, —_ A
Holringer Groug L T09.049 06
TU, Graph Comparison @HC-KDD -

= Similar Property Principle: Molecules having
similar structures should have similar activities.

= Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

= Sets as sets: Measure similarity by the Jaccard
distance

= Sets as points: Measure similarity by Euclidean
distance

= Problems: Dimensionality, Non-Euclidean cases

Holringer Group a“ T09.049 06

TU, From structure to function @ HCI-KDD 4

jove
O A Protocol for -Based Protel
T e (- e e |
w
: e

http:/fwww.jove.com/fvideo/: p ol-for-c d-protei function
Holringer Group » T09.049 06
TU, Why do we want to apply ML to graphs @HCIKDD

= A) Discovery of unexplored interactions
= B) Learning and Predicting the structure
= () Reconstructing the structure

= Which joint probability distributions does a
graphical model represent?

= How can we learn the parameters and structure
of a graphical model?

The chemical space

53 e 0 i
& 10" possible small or-
ganic molecules
# 107 stars in the V-
"

Holringer Group 4z T09.049 06

I,l.-'_ @ HCI-KDD A~

4) Little Excursus:
What is
similarity?

Holringer Group 45 T09.049 06



TU, What is Similar? @HCI-KDD L TU, @HCIKDD - Ty, @HCIKDD -

Rock
Scissors

Bronstein, A M. Bronstein, Bronstein, A M. Bronstein,

M. M. & Kimmel, R. 2008. M. M. & Kimmel, R. 2008.

Numerical geometry of non- — Numerical geometry of non-

rigid shapes, New York, g rigid shapes, New York,

Image credit to Eamonn Keogh (2008) Springer. Springer.
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TY, Similarity and Correspondence @HCI-KDD - TY. Invariant Similarity @HCIKDD L TY, Gromov-Hausdorff dist: finding the opt. correspondence @HCI-KDD -

Gromov, M. (1984) Infinite groups as
geometric objects.

Bronstein, A, M., Bronstein, M, M. & Kimmel, R. 2008, Numerical
geametry of non-rigid shapes, New York, Springer.

http:/fwww.inf.usi.ch/bronstein/

Felix Hausdorff
(1868-1942)

Michail Gromov
(1943-)

(X.dy ) Correspondence (Y. dy)
Metric space Metric space

max |dx (z;, z;) — dy (wi, y5)|
(.r..,_a,r, eC . .

(.r‘_l.,_ul.]-'_t‘

Va; Jy; st.(x;,y) €C Vy; 3z; st.(z;,y) €C
Discrete optimization over correspondences is NP hard !

o  E
dgr(X,Y) = 5 "'1'.”"

Structure Structure

um pdssible correspo

=d(X,Y

Correspondence quality = structure similarity lenc

(distortion)

Minimum possible correspondence distortion X
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TU, Example @HCI-KDD TY, @ HCI-KDD A TU, Topic modelling — small topic but hot topic in ML @HCI-KDD
Ay Ay A A
3
GH

.
o —

MODELING

”3)”3.)”3 ai,” Q@ 5) Probabilistic
ocg 6 o, 6 Topic Models

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING
DATA SCIENCE

Sormani, C. 2010, How Riemannian Manifolds Converge: A Survey, arXiv preprint arXiv:1006.0411,
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TU, Geometry of Topic Models

@HCI-KDD oL

.
1 b, Piwordl)

7

1 Plword3)

Blei, D. M. 2012. Probabilistic topic models. Communications of the ACM, 55, (4), 77-
84, doi:10.1145/2133806.2133826.
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TU, Example from Bioinformatics @ HCI-KDD -

A Functional module 2

m 3 Enzyme2  Enzymo3  Enzymed la.gnd

roE—_ Y n-x [ SN - T
Product
a.-( Topic 2
Metabole pathway

B c P | Statistical infarence

PO PO P

| : G
[ 7 | ros o o
/ " PO DA P
\_ o q P
Tt
o |¢n—un =4 oW s PO | el
v

‘“‘ﬁ%@

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional medules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.

Holringer Group 58 T09.049 06

TU, we find topics through a Generative Probabilistic Model @HCI-KDD -

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-b rfdemo/#/model/grid

Documents

Each doc is a random mix of corpus-wide topics
and each word is drawn from one of these topics

Holzingar Group 61 T09.049 06

TU, & tive statistical model for

| language

@HCI-KDD oL

e

Given the parameters « and 3, the joint distribution of a
topic mixture &, a set of N topics z, and a set of N words w

is given by:

n=

N
p(G,z._w | o, B) — p(e lu] l_IIP(Zn | e)p(wu |Zn-. B)

Blei, D. M., Ng, A. Y. & Jordan, M. |. 2003. Latent dirichlet allocation,
The Journal of machine Learning research IMLR, 3, 993-1022.

Holzingar Groun

T09.049 06

@HCI-KDD oL

TU, Eval. scheme for inferred potential functional modules

functional modubes of protein families with probabilistic
topic models, BMCJ;&DIHIDHHMIKE. 12,(1), 1.

TU, Output Example: 4 learned topics (details in Blei, 2008) @HCI-KDD -
human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences COmmon tuberculosis simulations
Holringer Groug 62 T09.049 06

TU, Motivation: to get insight into unknown document sets @HCI-KDD A

———— TR R A N

. S w wen (R ——— —

=

http://agoldst.github.io/dfr-browser/demo/#/model/scaled
Holringer Group 57 T09.049 06

TU, Example @HCI-KDD A

Topic proportions and
assignments

I

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)

Holringer Group 60 T09.049 06

TU, LDA is an example for a probabilistic graphical model @HCI-KDD -
Proportions  Per-word
parameter topic assignment Topic
parameter
Per-document Observed
topic proportions word Topucs
. ™
-OrO-@—
o Zdn  Wdp ,8;( n
N

= Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)
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TU, Posterior inference @ HCI-KDD &
|/_\" [ " l Ir/""\'
T ./'J_'K_/\_'O o T
o B Zdn Wdn B n
N D K
(B.0.z,w)
p(B.0,31w) = — L&

J3 /o X0 P(B.0.2,W)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;
However, this do not scale well ...

Holringer Groug L] T09.049 06

TU, Stochastic variational inference @HCI-KDD -

1: Initialize A randomly.
2. Set the siep-size schedule py appropriately.
3 repeat

4 Sample a document wy uniformly from the data et
s Initiakize v = 1, for k€ {1,.... K)
& repent
] Forme {1.....N}sat
éh, x exp {Eflog 8] + Eflog Gy, |} k€ {1..... K).
£ Setyy=oa+ ¥, G
% unt local paramcters ., and 44 converge.
w  Forke{l,.. . K} set intermediate topics

”
=0+ DY e

1 Set AW m (1= g A= 4 g
12: until forever

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347,

Holingor Group & 709,049 06

TU, Conclusion: What are future challenges @ HCI-KDD &

TU, For “big data” stochastic variational inference @ HCI-KDD L

= Flexible and expressive components for building
models are of utmost importance

= Scalable and generic inference algorithms (multi-
task and transfer learning)

= Usability gets a totally new importance: Easy to
use algorithms for the non-expert user to stretch
probabilistic modeling into new areas

= Topic models are one approach towards
detection of topics in document collections

= Example: Identifying re-occurring patterns in
such data collections (gaining new knowledge)

Holringer Group 0 T09.049 06

GLOBAL HIDDEN STRUCTURE

MASSIVE
o EREIEP

Subsampie Infer local Update global
data structure structure

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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TU, Approximate inference can be difficult to achieve @ HCI-KDD L
KNOWLEDGE DATA

3] &
l |

Make assumptions Discover patterns Predict & Explore

0-0-0 [ | N A

» Approximate inference can be difficult to derive.

= Especially true for models that are not conditionally conjugate
(Discrete choice models, Bayesian generalized linear models, ...)

* Holds us back from trying many models.

TU, Stochastic variational inference in LDA @HCI-KDD o

6) Graph Bandits

1. Sample a document

2. Estimate the local variational parameters using the current topics

3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics

Holringer Groug % T09.049 06
TU, Black Box Approach @ HCI-KDD &
REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

p(B.z|x)

» Easily use variational inference with any mode/
» Mo exponential family requirements
» No mathematical work beyond specifying the model

Holringer Group L T09.049 06
TU, The complexities of optimization: Sébasitien Bubeck @ HCI-KDD &
’ .
I’'m a bandit

Random topics on optimization, probability, and statisics. By Sébastien Bubeck

Bubeck, 5. & Cesa-
Bianchi, N. 2012.
Regret Analysis of
Stochastic and
Nonstochastic Multi-

ORF523: The complexities of
armed Bandit

optimization Problems. Machine
. Learning, 5, (1), 1-
122.

SRFA2Y: The compleumies of sptimizatian

https://blogs.princeton.edu/imabandit/
Also very interesting: Bubeck, 5. 2015. Convex optimization: Algorithms and complexity. Foundations

and Trends in Machine Learning, 8, (3-4), 231-357.
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TU, What is a bandit? @ HCI-KDD A

Slot-machine (bandit - robs your money)
= One-armed bandit

= Very simple model for sequential decision
making under uncertainty

Main challenge: exploration versus exploitation

= Many application domains: A/B-Testing,
Crowdsourcing, optimization, search, ...

Holringer Groug 3 T09.049 06

TU, Underlying Principle of the k-Armed Bandits problem @HCI-KDD -

* Leta; € {1,...,n} be the choice of a machine at time ¢t
= Lety, € IR be the outcome with a mean of {y,,)
= Now, the given policy maps all history to a new choice:

m: [(a1, ) (a2, y2)s oo (@, Yea)] = @

= The problem: Find a policy  that max{y;)
= Now, two effects appear when choosing such machine:
= You collect more data about the machine (=knowledge)
* You collect reward

= Exploration and Exploitation
= Exploration: Choose the next action a, to min{H(b,))
= Exploitation: Choose the next action a, to max{y;)

* models an agent that simultaneously attempts to acquire new
knowledge (called "exploration") and optimize his or her
decisions based on existing knowledge (called "exploitation").
The agent attempts to balance these competing tasks in order to
maximize total value over the period of time considered.

More information: http://research.microsoft. mmfen -us,/projects/bandits
Holzingar Groug 708,040 06

TU, Smooth Graph Function @ HCI-KDD 4

Holringer Group kLl T09.049 06

TU, Multi-Armed Bandits problem @ HCI-KDD 4

= Multi-armed bandit:= a gambler strategically operating
multiple machines in order to draw the highest possible
profits

= There are n slot-machines (“einarmige Banditen”)
= Each machine i returnsarewardy = P(y; ©;)
= Challenge: The machine parameter 0; is unknown

= Which arm of a slot machine should a gambler pull to
maximize his cumulative reward over a sequence of
trials? (stochastic setting or adversarial setting)

Holringer Groug 74 T09.049 06

TU. MAP-Principle: “Optimism in the face of uncertainty” @HCI-KDD -

|l - .
wepm (po+ 5 ] %
g [l

—

a; = nm;( rewy(a) + uncert, (a))

ag

Exploration

Exploitation
the higher the (theoretical)
uncertainty the higher the
chance to select the action

Auer, P, Cesa-Bianchi, N. & Fischer, P. 2002. Finite-time analysis of the multiarmed bandit

problem. Machine learning, 47, (2-3), 235- 256
Holringnr Group 709,048 06

TU, Knowledge Representation in MAB @HCI-KDD -

= Knowledge can be represented in two ways:

* 1)asfullhistory ke = [(a1,31), (az,¥2), o0, (@01, 0))
or

= 2)as belief b (0) = P(0|h:)

where @ are the unknown parameters of all machines

The process can be modelled as belief MDP:

,@@,@:.
N ZaN Za

1 ify = .
P(b' |y, a,b) = { I ol P(yla,b) = [, b{6.) P(y|6.)
C 5

) otherwise

Holringer Group L T09.049 06

TU, Machine Parameters of the k-armed Bandit @HCIKDD

Each arm a either

wins (reward=1) with fixed (unknown) probability u,, or
loses (reward=0) with fixed (unknown) probability 1 — p,
= All draws are independent given p; ... [,

= Problem:
How to pull arms to maximize the total reward?

Holringer Group 75 T09.049 06
TU, A bandit in a graph is still a bandit © @ HCI-KDD -
e Let G a known graph with K nodes {1,2,..., K}

e Let f be a unknown function defined on the set of nodes
s Fort=1ton,

* Select a node |,

» Observe reward r, = () + ¢,

e Goal: maximize sum of expected rewards

Equivalently minimize regret:
n

Ro =Y (F* — (L)),
t=1

where f* = maxj<j< f(i).
We care about the case when K > n

Holringer Group 7 T09.049 06

TU, The optimal policies can be modelled as belief MDP @HCIKDD

A\ .'@
O_". i /__.’\J
&%

@_\

o

o5

/"’\’I_

-i_f

e

S0t it o' = bs’, 5, qa) 5 ’
P(t|s', 8,a,b) . C ., P(s']s.a.b) = [, b(0) P(s'|s.a,0)
otherwise

Vb, s) = max [E[J"l.‘f.ﬂ b) + 3, P(s'|a,s,b) V(' H)

Poupart, P, Viassis, N., Hoey, 1. & Regan, K. An analytic solution to discrete Bayesian
reinforcement learning. Proceedings of the 23rd international conference on Machine learning,
2006. ACM, 697-704.
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TU, Applications @HCI-KDD

= Clinical trials: potential treatments for a disease
to select from new patients or patient category
at each round, see:

W The On the likelihood that one ity exceeds another in view of the
evidence of two samples, Bulletin of the American Mathematics Society, vol, 25, pp. 285-294, 1933,

= Games: Different moves at each round, e.g. GO

= Adaptive routing: finding alternative paths, also
finding alternative roads for driving from Ato B

= Advertisement placements: selection of an ad to
display at the Webpage out of a finite set which
can vary over time, for each new Web page

visitor
Holringar Groug 82 709,049 06
TU. Why should Bandit Strategies be of help here? @HCI-KDD 5

= The goal of Standard Randomized Controlled Trials
(RCT) are a controlled learning setting:

= Control for Type | and Type Il errors, dependent of trial
size Nper

= |n the case if the patient population N is smaller than the
trial size npcr: underpowered trial — problem!

= |f we change the goal to

= “learning sufficient - to treat N as effectively as
possible”,

= then bandit strategies — optimal policy for max. the
expected reward - are perfectly suited!

Kuleshov, V. & Precup, D, 2014. Algorithms for multi-armed bandit problems. arXiv:1402.6028.

Holingor Group L3 709,049 06

TU, Some Statistics on rare di (orphan di ) @HCI-KDD 5

TY, Multi-Armed Bandits and Clinical Trials @HCI-KDD

http://fortune.com/2015/10/26/cancer-clinical-trial-belmont-report/

Holzinger Graun L 709,049 06

TU, Learning vs. Earning dilemma @ HCI-KDD &

= 7,000 + different types - more being discovered every day

>10% of the world population is suffering (if all of the
people with rare diseases lived in one country, it would
be the world’s 3rd most populous country)

80% of rare diseases are genetic, so are present
throughout a person’s lifetime, even if symptoms do not
immediately appear

= >50% of the people affected by rare diseases are children
= Are responsible for 35% of deaths in the first year of life

= The prevalence distribution is skewed — 80% of all rare
disease patients are affected by 350 rare diseases

= >50% of rare diseases do not have a disease specific
foundation supporting or researching their rare disease

https://globalg g/rare-di facts-statistics/
https:/fwww.hon.ch/HONselect/RareDiseases/
]

Holingor Group 709,049 06

= Learning — experimenting with all treatments

= Earning — selecting one treatment only, based on
experimentation results
= Question 1: How much learning is best — for an
optimal treatment of N patients?
= Suppose N patients with a rare disease:
= Experimental Group E and control group C

= e.g. control = response rate pc and little information
about experimental group

= Question 2: How many allocations of treatment to
E are necessary (= how much experimentation?)

Holingor Group L3 709,049 06

TU, Example Rare Disease: CADASIL @HCI-KDD

TU, Example: Clinical Trials in rare diseases @ HCI-KDD &

Limitations of drug design for rare diseases due to:
= Lack of understanding of the underlying
principles of the rare disease
= Motivation: Research advances
= Unbalanced economic motivation (cost/benefit)
= Motivation: Orphan Drug Act and other regulations
= Unavailability of # patients for standard trials
= This is the true bottleneck!

Villar, 5. 5., Bowden, J. & Wason, J. 2015. Multi-armed Bandit Models for the Optimal Design of
Clinical Trials; Benefits and Challenges. 199-215, doi:10.1214/14-5T5504,

Holzinger Graun B 709,049 06

TU, Answer to Q2: Dynamic Programming @ HCIKDD

= Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy

= is a hereditary disease affecting all the small cerebral arteries.
It causes subcortical infarcts and damages the white matter
(leukoencephalopathy) and it is due to various mutations of
the Notch3 gene situated on chromosome 19:

2 2 s
WA AT

&I @ &

et
Joutel, A. et al. 1996, Notch3 mutations in CADASIL, a hereditary adult-onset conditioncausing stroke and
dementia. Nature, 383, (6602), 707-710, doi:10.1038/383707a0.
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DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS
By Ricnany BeLisman
TAND CORFORATION, RANTA MONICA, CALIFGRNTA
Communicated by Binar Hulle, August 13, 1558
1. Iniroduction.—The purpose of this note ia to indicate how & suitable combina-
1 Hiplier and the functional :

tion of the classical mothod of the P o
method of the theory of dynamic programming® can be used to solve numerically, Richard Ernest
and treat analytically, o variety of variational problems that cannot readily be
treated by either method slone. BELLMAN

A series of applications of the method presented here will appear in further (1920-1984)
publications,

2, Punctional Equation Approach—Cansider the problem of maximizing the
function

5
Play 2 .m0 = Todz), @n

subject to the constraints

{a) f’,cu(r.Jﬂe., =12 .. M

4=

22)
) zz0
Bellman, R. 1956. Dynamic prc ing and L Itipli Proceedi of the
Mational Academy of Sciences, 42, (10), 767-769.
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TU, cADASIL @HCI-KDD

Chabriat, H., Joutel, A, Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009. CADASIL. The

EJ.'..‘.EFJZ‘S;"“"’“' 8, (7), 643-653, doi :http:ﬁdxagm.orgf 10.1016/51474-442 2!09}?0127—9?.09.“& =



TU, CADASIL @ HCI-KDD 4

Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009, CADASIL. The
ng';llfetg‘eumlng\f, 8, (7), 643-653, doi:http: de‘?m .org/10.1016/51474-4422(09)70127- 9
ger up i
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TU, Sample Questions (2/3) @ HCI-KDD -

= Why do we want to apply ML to graphs?

= Describe typical ML tasks on the example of
blood cancer cells!

= |f you have a set of points — which similarity
measures are useful?

= What is the advantage of factor graphs?
= Why is the Gromov-Hausdorff distance useful?

= What is the central goal of a generative
probabilistic model?

= Describe the LDA-model and its application for
topic modelling!

Holringer Group 7 T09.049 06

I,l.-'_ @ HCI-KDD A~

Conclusion and
Future Challenges

Holringer Groug 2 T09.049 06

I,l.-'_ @ HCI-KDD A~

Questions
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TU, Sample Questions (2/3) @ HCI-KDD -

= Briefly describe the stochastic variational inference
algorithms!

= What is the principle of a bandit?

= How does a multi-armed bandit (MAB) work?

= |n which ways can a MAB represent knowledge?

= What is the main problem of a clinical trail —and
maybe the main problem in clinical medicine?

= Why are rare diseases both important and relevant?
Describe an example disease!

= What is the big problem in clinical trials for rare
diseases?

= What did Richard Bellman (1956) describe with
dynamic programming?

= Why are graph bandits a hot topic for ML research?

Holringer Group L] T09.049 06

TU, Final conclusion @ HCI-KDD 4

= Bandit strategy: Is experimentation worth it for a
small number N?

Reconcile clinical trials and clinical practice

= Extensions should deal with randomization, delayed
responses and uncertainty around N

= Bayesian bandits need Online-ML

= Bandits are a great source of inspirations and
building blocks for solving many problems

= Future work: convex optimization, contextual,
combinatorial, ...

Berry, D. A. & Fristedt, B, 1985. Bandit problems: sequential allocation of experiments
(Monographs on statistics and applied probability), Springer.
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TU, Sample Questions (1/3) @HCI-KDD -

= What kind of graphical models are used in medical
informatics?

= Which type of graph is particularly useful for
inference and learning?

= What is the key challenge in the application of
graphical models for health informatics?

= What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

= What main difficulties arise during breast cancer
prognosis?

= What can be done to increase the robustness of
prognostic cancer tests?

= |nference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?

Holringer Group 9% T09.049 06

TU, Solutions of the Quiz @ HCI-KDD 4

1=this is a factor graph of an undirected graph = we have seen this in protein networks (refer to slide
Mr. 70 in lecture 5}, Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For examgple, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A.B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
infarmation please consult: http://deepdive stanford edufinference

2= this is the decompaosition of a tree, rooted at nodes into subtrees

3= metabolic and physical processes that determine the iological and biochemi ies of a
cell. As such, these net se the chemical ions of ism, the ol
pathways, as well as the tegu!alorv interactions that guide these reactions. With the sequencing of
complete genomes, it is now possible to reconstruct the network of blochemical reactions in many
organisms, from bacteria to human, Several of these networks are available online: Kyoto
Encyclopedia of Genes and Genomes (KEGG][1], EcoCye 2], BioCye [3] and metaTIGER [4]. Metabolic
networks are powerful tools for studying and modelling metabolism.

*  d= MYCIN —expert s','stem that used eaﬂ\f Al [rule-based) 1o lduﬂl-f\f bacteria causing severe infections,
such as and and . with the dosage adjusted for
patient's body weight — the name dErM:d from the antibiotics themselves, as many antibiotics have
the suffix “-mycin”,
5= Protein-Protein Interaction network (undirected graph here}

B= PPl with critical node, bottleneck, hub, ete.
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Ty, @HCIKDD A

Appendix
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TU, Slide 4-19: Biomedical databases .. @ HC-KDD A

= ... are libraries of life science data, collected from
scientific experiments and computational analyses.

= ... contain (clinical, biological, ...) data from clinical
work, genomics, proteomics, metabolomics,
microarray gene expression, phylogenetics, etc.

= Examples:
= Text: e.g. PubMed, OMIM (Online Mendelian Inheritance
in Man);
= Sequence data: e.g. Entrez, GenBank (DNA), UniProt
(protein).

= Protein structures: e.g. PDB, Structural Classification of
Proteins (SCOP), CATH (Protein Structure Classification);
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TU, slide 4-21 Databases: From Molecules to Systems @ HCI-KDD &

_J Literature and ontolbg!es

- CitExplore, GO
Genomes _/b{d_/_‘__, P
Ensembl, Ensembl
Genomes, EGA an‘ 1 |u||"HH"'""""""“[ Nucl?;‘igf ;eq:ence
— w \‘f_—-‘”’ -Ban

Gene expression | Proteomes
ArrayExpress |— Uan'rol PRIDE

oo it ! i Protein structure
Protein families, — —=—== PDBe
motifs and domains
InterPro B | chemical entities

L ey hEBL CHEM|
Protein interactions ‘-,r-" " ChEBI ChEMBL
IntAct ( 2 ¢ /-\;
__,---“'/-/
van Kampen (2012}, Pathways
Bicinformatics Reactome
Laboratory, . _l_’f_m
Academic Medical Systems
Center, NL | BioModels HIS
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TU, GM are amongst the most important ML developments @HCI-KDD

= Key Idea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

(Vi,j, R)P(X = m;|Y = y;,Z = z) = P(X = ;| Z = z)
can be abbr. with P(X|Y,Z) = P(X|Z)

= Graphical models express sets of conditional
independence assumptions via graph structure

= The graph structure plus associated parameters define
joint probability distribution over the set of variables

Holringer Groug 1\ 709,040 06

TU, Slide 4-20 Example Database: PDB @HC-KDD -

Searchs Visusiza = Analyze =

DATA BaANKk *

EEDE @ee-- Riljmr
I

PROTEIN

Wiltgen, M. & Holzi A, (2005) Visualization in Bioinformatics: Protein Structures with
Physicochemical and Biological Annotations. In: Central European Multimedia and Virtual
Reality Conference. Prague, Czech Technical University (CTU), 69-74
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TU, slide 4-22: Example Genome Database: Ensembl @ HCI-KDD &
= =

g
P—— 4 _’
A %
bt ]
http://www.ensembl.org/index.html
Holringer Groug w7 709,049 06

TU, Where do the data come from? @ HCI-KDD &

DIRECT SUBMISSIONS & [

{m

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http:/fwww.ebi.ac.uk/intact/
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TU, Slide 4-23 Ex. Gene Expression Database: ArrayExpress @HCI-KDD A

Upciatedd fockry ot 0600

43498 wrzarimanty

o from the NODI GEO LEIIESD wiys

1851 THof archived data
£ Nerwprriser 3011 - Mo 10 ke your v frate fex longes?
By Exper e GBI, have o e e f pou £ st charge e releate date of Uttt AITaEreeis dati by yeursed withint esben it
! Une ur e releane e chrangog tael (mare Getads o i help page) Submitnen of Righ-VTLGPPE LequenCing Erpenmeney, Flease corerue i3 emad s af
ity . s For et et Chare 5 E Lin Mk fure [ s 1 records et the furronan Nuestste Archres ans ket o v

http://www.ebi.ac.uk/arrayexpress/
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TU, slide 4-24: Example Protein Interaction Database: IntAct @HCI-KDD L
IntAct)
T e[ e O DAt Woimeenoe @
preseos R T T T w
S T Lo 5
e | — E=rmese
oT || EESEEERSE :
s ®MINT Upre ¢
o = PEm aciens [— & -
Cre O O
= & = T .
T gt inn  fmmm
http://www.ebi.ac.uk/fintact/
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TU, Structural Patterns are often hidden in weakly str. data @HCI-KDD L

= Statement of Vin de Silva (2003), Pomona College:

* et M be a topological or metric space, known as the
hidden parameter space;

= |et R? be a Euclidean space, the observation space,

= and let f: M — R be a continuous embedding.

= Furthermore, let X © M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;, i € I} defined on a
probability space (1, F, P), and denote ¥ = f(X) c R4
the images of these points under the mapping f.

= We refer to X as hidden data, and Y as the observed data.

= M, f and X are unknown, but Y is - so can we identify M?

De Silva, V. 2004, GEOMETRY AND TOPOLOGY OF POINT-CLOUD DATA SETS:
ASTATEMENT OF MY RESEARCH INTERESTS.

; L e
tory/people/vin-de-silva

ttps:/fwww.
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TU, slide 4-25: Example for Systems Database: BioModels @HCIKDD

Mekutey ot ol (2013). "
imar 3913, madel o o e vy 0 2ty
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e

http:/f bi ac. uk/Bi del /
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TU, Topological Data Mining @ HCI-KDD -

= Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014, On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5_19.
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TU, Distinguish topological spaces @HCIKDD A

Counts the number of “i-dimensional holes"”

bi is the “i-th Betti number”

ia- ¢ IIJ

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

bi=1 b1=0 b1=2
b2=0 b2=1 b2=1

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)
Zomorodian, A. & Carlsson, G. 2005. Ci ing Persi Homology. Discrete &
Computational Geometry, 33, (2), 249-274.
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Topic model toolkits

s Particular topic models

» Stanford topic model toolbox
http://nip.stanford edu/software /tmt
Topic modeling at Princeton
http:/ /www.cs.princeton.edu/ "blei /topicmodeling html
MALLET (Java) http://mallet.cs umass.edu
Network topic models: Bayes-stack
https:/ /github.com/bgamari/bayes-stack
Gensim (Python) http:/ /radimrehurek.com /gensim,

» R package for Topic models. http://epub.wu.ac.at/3987/
® Frameworks for generative models

» Variational inference: Infer.net

http:/ /research.microsoft.com /infernet/
» Gibbs sampling: OpenBUGS http: //openbugs.net/
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