'!_:rg_ Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD +4-
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I‘=~-" Lecture 06 Probabilistic Graphical A&W
Models II: From Bayesian Networks to
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http://hci-kdd.org/biomedical-informatics-big-data
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TYU ML needs a concerted effort fostering integrated research @HCI-KDD

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.ho]zinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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TU Agenda for today @ HCI-KDD £

= 00 Reflection — follow-up from last lecture
" 01 Graphical Models and Decision Making
= 02 Bayesian Networks

= 03 Machine Learning on Graphs

= 04 Little Excursus: What is similarity?

= 05 Probabilistic Topic Models

=" 06 Graph Bandits (a very hot topic!)
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HCI-KDD -
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@ HCI-KDD =£-

hy = The identty of ORGANISM-1 is streplococcus ‘
h, = PATIENT-1 is fabrile
hy = The name of PATIENT-1 is John Jones

CF[h,El = B : There is strongly suggestive evidence (.8} thal
the identity of ORGANISM-1 s streplococcus

CFhy,E] = =3 : There is waakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CFlh,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

4

_ Protein |

Protein A
(d
Protein B Protein H

. Protein D / Protein G

Protein C Protein E

Protein F
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TU Quiz @ HCI-KDD +£-

Grazm

http://sbcb.bioch.ox.ac.uk/users/oliver/software/
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Iy @ HCI-KDD 4=

,_,, g . M
01 Graphical Models
and ffDeC|5|on Making
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TU

Grazm

@ HCI-KDD 4=

Holzinger Group
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TU  Decision Making: Learn good policy for selecting actions @ HCI-KDD £

Goal: Learn an optimal policy for selecting best actions
within a given context

Fort=1,...,T

1) The world produces an
uncertain “context” x; € X

2) The learner selects an action
a, €{1,..., K}

]

3) The world reacts with

areward r;(a;) € 1[0,1]

Holzinger Group 9 709.049 06



TU  Key Challenges @ HCI-KDD £

" Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks

with probabilistic graphical models

" |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop!

Holzinger Group 10 709.049 06



TU Example: Why is prediction in proteins so important for us?  @HCI-KDD -

Grazm
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TU Recommended background reading

Grazm

@ HCI-KDD 4=

Yy

Maphlne Leafnlng

stic Pe

Kavin P Murphy

Bishop, C. M. 2007. Pattern
Recognition and Machine
Learning, Heidelberg, Springer.
Chapter 8 on graphical models
openly available:
http://research.microsoft.com/en-
us/um/people/cmbishop/prml/

Holzinger Group

Murphy, K. P. 2012.
Machine learning: a
probabilistic
perspective, MIT

press. Chapter 26 (pp.

907) — Graphical
model structure
learning

12

Koller, D. & Friedman,
N. 2009. Probabilistic
graphical models:
principles and
techniques, MIT press.

709.049 06



Three types of Probabilistic Graphical Models @ HCI-KDD -

Grazl

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

1 O
P(X)=Eexp(z  XiX; +be) @ '@
j '

Directed: Bayes Nets, useful for designing
models (Details: Murphy 10)

"
x) = | | p(xx|pay)
k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

WA | Ia €I

.!rrl Jr-!a Jr. Jrrj
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TU Factor Graphs — learning at scale @ HCI-KDD -

Grazm

" What is the advantage of factor graphs?

Dependency | Efficient Usage
Inference

Bayesian Networks Yes Somewhat Ancestral
Generative
Process

Markov Networks Yes No Local Couplings
and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon

Holzinger Group 14 709.049 06



TU  From structure to function prediction

Grazm

@ HCI-KDD 4=

Topology

Y- ondary Structure Q7
“Prediction YR 7N s

BT E RN L T

s At~ 3D Structure
s i e i fa s
Primary sequence e
AQSVPTGI B IKAPALNSOGT TGEIVEVAY - L ] A
IDESInSENPOLNVRCSAGIVEEETHIYOD @ - il L
GESHGTHVAGT IAALMNEIGVLGVEPSASL - - - . =
TAVEVLDSTGIGITEW] ING L EWAT 510 . . A -
VINMSLGGFTGCSTALETVWDEAVSSCIVVA = . : — S . i
= AL, " : h .
b as . L
\ LT "
.- Gontacts and

Solvent Accessibility

I' II Prediction

AARGNEGSSGSTSTVGY PAKY PETIAVGAY
HEEHGRASFEEAGSELDVHAPFYVSIQSTLE
GETYGATRGTCMATFHVAGARALI LEKHFT
WTHADVRORLESTATYLOHSFYYCRCLINY
QAARD

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.

Holzinger Group
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TU Protein Network Inference G HCI-KDD £

Grazm

" Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

" |n this context, the problem of inferring a global
protein network for a given organism,

= - using all (genomic) data of the organism,

" is one of the main challenges in computational
biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.

Holzinger Group 16 709.049 06



TU  Problem: Is Graph Isomorphism NP-complete ? @ HCI-KDD £

Grazm

Borgwardt, K. M., Ong, C. S., Schénauer, S., T e s
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. ¢ a' o 6T 2
2005. Protein function prediction via graph (L& LA
kernels. Bioinformatics, 21, (suppl 1), i47-i56.

protein secondary sequence structure
structure

" Important for health informatics: Discovering
relationships between biological components

= Unsolved problem in computer science:

= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |tis also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete

Holzinger Group 17 709.049 06



TU Example: Protein Network Inference @ HCI-KDD -

Grazm

viol. 20 Suppi. 1 2004, pages 363370
DOl 10,7093 hiinformaticsbiha 10

Protein network inference from multiple

k
ot genomic data: a supervised approach
1 Y. Yamanishi'-*, J.-P. Vert® and M. Kanehisa’

%

" Bipinformatics Center, Instifute for Chemnical Research, Kyoto University, Gokasho,
Ui, Kyoto 611-0011, Japan and “Computational Biology group, Ecole des Mines de
RFanis, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

(=]
—

il
i

True positive

Expression

= Protain inderaction

0.4
i
Ht--'"

Kexp (Expression) £ 7 Localizaion

Kppi (Protein interaction) 2 7 f/ !f} 4 e Pylogenetc proe

Kjoc (Localization) 7 —

K phy (Phylogenetic profile) s w

Kexp + Kppi + Kioc + Kphy AR IY YR N
(Integration) False positive
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TU Example: Data fusion and Protein Annotation @ HCI-KDD £

Grazm

Vol 20na. 16 2004, peges HM6-2635
ool 10 1083 binimfarmatica/hih2 04

Y A statistical framework for genomic data fusion

ot Gert R. G. Lanckriet?, Tijl De Bie®, Neflo Cristianini®,
1 Michael I. Jordan® and William Stafford Noble”*
Y

' Department of Blectrical Engineening and Computer Science, <Division of Computer
Scisnce, Department of Statistics, University of Calformia, Berkeley 94720, USA,
3Department of Blectrical Enginesring, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, * Department of Statistics, University of California, Davis 95618, USA and
IDepartment of Genome Sciences, University of Washington, Seattle 98195, LISA

1.0 F—
BD.E :
Toal
0.7 | | l
B SW Piam FFT Ll D E all
o440t o
| NI ED I g = ES
Kemel Data Similarity measure o = =
= 2{! 1 ’—X—‘
10 H [_"_l
Kaw profein sequences Smith-Waterman a
Kpfam profein sequences Pfam HMM
Kppr hvdropathy profile FFT
Ky profein interactions linear kernel
Ko profein interactions diffusion kernel
Kg DEne cXpression radial basis kemel
Kgnn random numbers linear kernel

(B} Membrane proteins

Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. |. & Noble, W. S. 2004. A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635.
Holzinger Group 19 709.049 06




TU

GGGGG

@ HCI-KDD -

Holzinger Group

02 Bayesian
Networks
“Bayes’ Nets”



TU Bayesian Network (BN) - Definition @ HCI-KDD

Grazm

" is a probabilistic model, consisting of two parts:
" 1) a dependency structure and
= 2) local probability models.

pCes, ) = | | p0xi | Pa(x)
=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.

Holzinger Group 21 709.049 06



TU Example: Directed Bayesian Network with 7 nodes @ HCI-KDD -

Grazm

p(X1)p(X2)p(X3)p(Xa| X1, X2, X3)-
p(Xs5| X1, X3)p(Xe|Xa)p(X7| X4, X5)

Holzinger Group 22 709.049 06



TU Clinical Case Example

Grazm

@ HCI-KDD -

Holzinger Group

23

Overmoyer, B. A,,
Lee, J. M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.

709.049 06



TU Important in Clinical practice -> prognosis ! @ HCI-KDD -

Grazm

= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information ! |

= Therefore valid prognostic
models can be of great benefit |
for clinical decision making and
of great value to the patient,
e.g., for notification and quallty
of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.

Holzinger Group 24 709.049 06



TU Predicting the future on past data and present status @ HCI-KDD -

Grazm

current patient state next patient state
é Risk factors E & Risk factors A
Pathogenesis Pathogenesis
Disorders pmj"]' Disorders
Pathophysiology Pathophysiology
S Findings Y S Findings )

physician Tests
model Treatments
physician

—_———

past present future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.

Holzinger Group 25 709.049 06



TU Example: Breast cancer - Probability Table

Grazm

@ HCI-KDD «£-

Category

Node description

State description

Diagnosis

Clinical his-
tory

Physical find-
ings

Mammo-
graphic
findings

Breast cancer

Habit of drinking alcoholic beverages and

smoking

Taking female hormones

Have gone through menopause
Have ever been pregnant

Family member has breast cancer

Nipple discharge
Skin thickening

Breast pain
Have a lump(s)

Architectural distortion

Mass
Microcalcification cluster

Asymmetry

Present. absent.

Yes. no.

Yes. no.
Yes. no.
Yes. no.
Yes. no.

Yes., no.

Yes. no.
Yes. no.
Yes. no.

Present. absent.

Score from one to three. score from four to five,

absent

Score from one to three. score from four to five,

absent
Present. absent.

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Holzinger Group
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TU Breast cancer - big picture — state of 1999 @ HCI-KDD -

Grazm

Alcoholic & Skin Nipple Breast
Smoking Thickening Discharge Pain
A
Hormones Have a

/ Lump

Menopause Breast Cancer
Pregnant Mass
A 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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TU 10 years later: Integration of microarray data @ HCI-KDD -

Grazm

" |ntegrating microarray data from multiple studies to increase
sample size;

= =approach to the development of more robust prognostic tests

EAEEAALER SahkaL AnB 1] Ak [ (1l i ikl i 4 ! 1 ERERE i HaEdREAGn AR
FEERE AR R R R b R EREb R R IR E X 333 3 137 FEREER D3 11 3333333 1333333331 ﬁli]f]i}l}ﬁ}”:':l}i
i%'i" Ei!“%i'ii lu haiar i iiaaeag i £ i " hibidd M ahebhda ' i1 'i'.l.ll;'lli 1 "i.lliiii.l. LhLk
§ 3 i W i o B f - x | O - 3

i 2 | ] L]

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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TU Example: Bayes Net with four binary variables @ HCI-KDD £

Grazm

Gene 1
P(on) 0.8
P (off) 0.2

Gene 2 Gene 1 Gene 1 Gene 1 Gene 1

on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4

Prognosis Gene2on Gene2on Gene2o0ff Gene 2 off
Gene3on Gene3o0off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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TU Concept Markov-Blanket @ HCI-KDD %

Grazm

Gevaert, O., Smet, F. D,,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian
networks.
Bioinformatics, 22, 14,
184-190.
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TU Dependency Structure -> first step (1/2) @ HCI-KDD £

Grazm

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

l

1

[

p(SID) « p(S) ]1[ f

/ Ty /
F(N'i) 1_[ [(N'ijk + Nijx)
[(N';j + Nyj) 1 1 I'(N'iji)

Nijk ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.
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TU Dependency Structure — first step (2/2) @ HCI-KDD -

Grazm

" Next, N;; is calculated by summing over all states of a variable:

= N = 7,}:1 Nijk - N'ijx and N';; have similar meanings but refer to prior
knowledge for the parameters.

= When no knowledge is available they are estimated using N;j, = N/(7iq;)

=  with N the equivalent sample size,

= 7; the number of states of variable i and

" g; the number of instantiations of the parents of variable i.
= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(S) is calculated by:

= p(8) =T 12, p(l — x) [T =y (M)
= with p; the number of parents of variable x; and o; all the variables that are

not a parent of x;.

= Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge froma to b

Holzinger Group 32 709.049 06



TU Parameter learning -> second step @ HCI-KDD -

Grazm

* Estimating the parameters of the local probability models corresponding
with the dependency structure.

e CPTs are used to model these local probability models.

* For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

* Each set of parameters was given a uniform Dirichlet prior:

p(911|5) = Dir(@ij|N'ij1, "'!N’ijk' ---»N,ijrl-)

Note: With 6;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 6;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N'ij1, ..., N';jr,) as parameters of this Dirichlet distribution. Parameter learning then consists of

updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(0U|D,S) = Dir(gile’ijl + Nijli "'JN,ijk + Nijki "'JN’ijTi + Nij?‘i)
with N;j, defined as before.
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TU Predicting the prognosis of breast cancer (integrated a.) @ HCI-KDD

Grazm

b ®

Gevaert, O., Smet, F. D,,
Timmerman, D., Moreau, Y. &
Moor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks. Bioinformatics, 22,

14, 184-190.
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TU Inference in Bayes Nets is intractable (NP-complete!) @ HCI-KDD £

= For certain cases it is tractable if:
" Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

" Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem

Holzinger Group 35 709.049 06



TU @ HCI-KDD -

GGGGG

3) Machine Learning
on Graphs

Holzinger Group



TU  Example: Lymphoma is the most common blood cancer @ HCI-KDD -

Grazm

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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TU ML tasks on graphs - @ HCI-KDD

Grazm

= Discover unexplored
Interactions in PPI-
networks and gene
regulatory networks

= Learn the structure

= Reconstruct the
structure

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, _ |
T. & Miiller, T. 2008. Identifying functional modules in e )—=O | A =@
protein—protein interaction networks: an integrated —® o\

exact approach. Bioinformatics, 24, (13), i223-i231.
Holzinger Group 38 709.049 06



TU  From structure to function

Grazm

@ HCI-KDD 4=

| Subscrbe i Recommend i Pubksh ]
jove

© A Protocol for Computer-Based Protein Structure and Function Prediction

Ambrish o=, Dong Xt, Jonaihan Poisson?, Yang Mang®S

LCemter for Computational Madicine and Bicinlormatics. University of Michigan. “Center b Bioinfoematics and Departmeant of Molecular Bioscience, Unhversity of Kansas
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TU Interesting: Hubs tend to link to small degree nodes @ HCI-KDD o

Grazm

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability
that a node with degree k links to a

node with degree K’ is;
kk'

0 — —
P 57

k=50, k'=13, N=1,458, L=1746

Psoss =0.15  p,, =0.0004

Jeong, H., Mason, S. P,, Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in

protein networks. Nature, 411, (6833), 41-42.
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TU Example: Subgraph Discovery @ HCI-KDD £

Grazm

de Sitter \facm m S!ring Theu:r':wr

HIGH ENERGY PHYSICS: (| /A0 N
THEORY S\l :

Quasinormal Modes of N *“ Microwave Anisot
Black Holes and Black Branes &A% it WA

\ R DR AnAItarnatwa To Cnmpactmmun ko
5 . CO _-_; yri___{etlmated bridgeness = 1276)

GENERAL RELATIVITY * 1+ s
AND QUANTUM COSMOLOGY - "+ 7 %

- i h n.
-l m’ ,.-‘ \ :
ke .‘__-,.- '. 19K _.
i TRt
Lt y i '8 .'1‘-' |,' |
et AT N
=) B ol Y
Q

Gopalan, P. K. & Blei, D. M. 2013. . e RS e
Efficient discovery of overlapping b = g% et el ;
communities in massive Al.argu Mml-lmmmhy o s S )

networks. Proceedings of the from aSn'lﬂH Dlmanalun s HIGH ENERGY PHYSICS:
National Academy of Sciences, A3 . . ' 'PHENOMENOLOGY

110, (36), 14534-14539. T -~—~==~=- S
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TU

Grazm

Why do we want to apply ML to graphs

@ HCI-KDD -

A)
B)
C)

Discovery of unexplored interactions
_earning and Predicting the structure

Reconstructing the structure

Which joint probability distributions does a
graphical model represent?

How can we learn the parameters and structure
of a graphical model?

52 months

The chemical space

1. Find a
target

3.Hit-to-lead:
»| characterize
hits

® 10 possible small or-
ganic molecules

.| 2. Identify
L hits

Holzinger Group

® 10?2 stars in the observ-
able universe

$500,000,000
to
$2,000,000,000

42 709.049 06



TU Example Question: Predicting Function from Structure @ HCI-KDD £

Grazm

) i,
B.cereus 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGRKNYEA
B.anthracis 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGREKNYEA
E.coli 1 ---MISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTLNKP------- VIMGRHTWES
H.sapiens 1 MVGSLNCIVAVSQONMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWES
H s ® Y 3, k% ® g oz qn W - pEEE .2 2
B.cereus 51 I---GRPLPGRRNIIVIRNEGYHVEGCEVV-HSVEEVFEL------ CKNEEEIFIFGGAQ
B.anthracis 51 I---GRPLPGRRNIIVITRNEGYHVEGCEVA-HSVEEVFEL------ CKNEEEIFIFGGAQ
E.coli 50 I---GRPLPGRKNIILSSQPGTD-DRVTWV-KSVDEAIAA------ CGDVPEIMVIGGGR
H. aapiens 61 IPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSS
* JHkk Rk Fsi:: 2 s®r3s.2 S T L WE,
B.cereus 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEIDMTNWKEIFVEKG- - -LTDEKNPYTYYY
B.anthracis 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG- - -LTDEKNPYTYYY
E.coli 99 VYEQFL- -PKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFH- - -DADAQNSHSYCF
H. aap:i.ens 121 VYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKF
ik : *® tede s ok ok R L .32 2 T B * o
N NH, OMe NH, OMe
- OMe @
ol Ll
HoN N OMe H,N \N - -
19 OMe 20 |

(CH3)4CO0H
NH, OMe NH, OMe Cl
NH,

N7 N7
py N g
N i H NJ*‘N
O(CH,)4COOH (CHp)sCOOH  °
23 24

HaN

How similar are two graphs? How similar is their
structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.
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TU  Graph Comparison @ HCI-KDD

Grazm

= Similar Property Principle: Molecules having
similar structures should have similar activities.

" Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

" Sets as sets: Measure similarity by the Jaccard
distance

» Sets as points: Measure similarity by Euclidean
distance

" Problems: Dimensionality, Non-Euclidean cases
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G HCI-KDD -

Holzinger Group

4) Little Excursus:
What is
similarity?




TU  What is Similar? G HCI-KDD -

Grazm

Image credit to Eamonn Keogh (2008)
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@ HCI-KDD =£-

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.

Holzinger Group
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Grazm

@ HCI-KDD 4=

Rock

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.

Holzinger Group
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TU Similarity and Correspondence

Grazm

@ HCI-KDD 4=

Bronstein, A. M., Bronstein, M. M. & Kimmel, R. 2008. Numerical
geometry of non-rigid shapes, New York, Springer.

http://www.inf.usi.ch/bronstein/

Structure Structure

Correspondence quality = structure similarity

(distortion)

Minimum possible correspondence distortion

Holzinger Group 49
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TU |nvariant Similarity @ HCI-KDD £
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Y
“

A
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TU  Gromov-Hausdorff dist: finding the opt. correspondence @ HCI-KDD -

Gromov, M. (1984) Infinite groups as
geometric objects.

o -
LN o
NAE T

Felix Hausdorff

Michail Gromov (1868-1942)

(1943-) p—k \
5 AR W i A A%
¥ ik -
(X, 6X) Correspondence (YV, (SY)
Metric space Metric space
1
dgr(X,Y) = —min max |6x(z;,x;) — 6y (y;,v;)
G ’ 5 € (ria el | X\ 11 J] |
(z4,y5)€C

Ve, Jy; st.(zs ;) € C  Vy;dz; s.t.(z;, y;) € C

Discrete optimization over correspondences is NP hard !
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TU Example @ HCI-KDD =%
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Az Az A
B GH> _

‘B
PP
O
O

©"

D, D; D

Sormani, C. 2010. How Riemannian Manifolds Converge: A Survey. arXiv preprint arXiv:1006.0411.
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5) Probabilistic
Topic Models



TU  Topic modelling — small topic but hot topic in ML @ HCI-KDD -

Grazm

S

/ [
TOPIC

MODELING

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING

DATA SCIENCE
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Geometry of Topic Models

@ HCI-KDD 4=

I k. P(wordl) 1
@ = topic
O = observed
document
G.j
f‘g ® = generated
.9.-; document
124
1 e
0o
L ) >
L' P(word2)
P(word3)

1

Blei, D. M. 2012. Probabilistic topic models. Communications of the ACM, 55, (4), 77-
84, doi:10.1145/2133806.2133826.
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TU  Generative statistical model for natural language @ HCI-KDD £

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— “are not all thar far apart,” cpecially in
Haiw mamy genes Joes an KSR nced 1o commparison 1o the 73,000 genes in the hu
sarv el Last week ar the cenoane msetimge i g, nestes =iy Andersaonalf Uppsala
B here™ tao geniome researchers with radically University in S o arrivend e th
Jifferent approaches presented complemen- SO0 number., Bat vwith o consen
rary views of the basic eemis needind forllilie siis TiEWER my b e tham jaise o t
Uine research team, using comp i i r ciilarly s more i
\\‘_ wnplerely w m
s el 1
(&1
urarional m

e amaly wmbers game
srs L K4 emomies, congludel NESTE 2ETES e
thuat taw can be sstained with seqquicnged. =l w
just 230 thint the earliest life formis iy newly e
revuired oo - W = T 1 5
wahier messanch e e . licular b I
ina simple pareite and e Y fuw ‘i e hmed:
mared thar for this organism, e 1+ Bethesda, 3
B genes are pleney todothe | ihcle s ™
(b i E F W - pols—Duat tlunt iyt hang <ot Futh "
. Tinasn
J.hl 10 aliln't b el " B A e
M Yltheseh th bers ko B L
h precisely, o pred Mpropteres — e N
et =
Gename Mapping and Seq - T
9. Cold Spring Harbor, Mo Stripping down. Compuia ¥
May 8o 12 mabe of the m T e d el
LIIER . 2

Given the parameters a and [5, the joint distribution of a
topic mixture 6, a set of N topics z, and a set of N words w

is given by: N
p(ejz,w | o ﬁ) : p(e | C{‘) Hp(zf? [ e)p(wf? |Zﬂa B)
=

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation.
The Journal of machine Learning research JMLR, 3, 993-1022.
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Motivation: to get insight into unknown document sets

@ HCI-KDD 4=

SQHISLQITIER IO

oo

E + ## '8 @ 4 &~

first
t‘x“n’O
Seems
time
evidence
fact

Holzinger Group

s
; pub
words
farms students
used teachers 1]
english 5
language
foreign
teaching
association
languages
english
language
mbderi
study
aich
sense students
use university
words mia
word graduate
ning
little ge
less
character
great
work
use
form T made
5 2 good
time orm See i
work
language make
never
LT reat
reading g
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nietzsche
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new
literature yﬁgs
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history
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defoe
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sonnet
literar
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onitics medical
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philosophy
thought
man
nature
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king
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sir
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clizabethan
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plus
pl ms
voltaiie
rousseau
diderot
I'_ maoliere
aux
dont
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http://agoldst.github.io/dfr-browser/demo/#/model/scaled
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Example from Bioinformatics

@ HCI-KDD 4=

A

B

Functional module 1

FD-I

\ F/]B—A
FD-EE%@
0=
FD-J 5
FD-K

Protein complex

Hidden generative process

Functional module 1

Functional module 2
P(FD)
Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4
FD-A FD-X FD-W FD-P
2\ = O = O = O .
i Educt Product
Topic 1 Topic 2
Metabolic pathway
PP—— C ———— N
FD-A FD-l FD-E FD-A FD-l FD-E Statistical inference
o - Genome
FD-Z FD-J FD-K Genome ; -Z FD-J FD-
annotation 1 annotation 1 | FD-ZFD-J FD-K \
FD-A FD-E FD-B FD-A FD-E FD-B
y
FD-E FD-A FD-X ED-E FD-A FD-X / Potential
Ganome ? functional
Genome i H module 1
FD-J FD-P FD-K | _nnotation 2 annotation 2 | Fp-J FD-P FD-K AN
FD-W FD-A FD-| FD-W FD-A FD-l
e e
FD-A FDW FDX | _ e FD-A FD-W FD-X
ErKama i Potential
. tation 3
FDW FDV ED-p | annotation 3 annotaion 2 | row FD-v FD-P functional
module 2

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional modules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.
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TU Eval. scheme for inferred potential functional modules @ HCI-KDD £
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" b
4

. |
‘\b.‘_\‘i}

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring

functional modules of protein families with probabilistic

topic models. BMC bioinformatics, 12, (1), 1.
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TU Example

Grazm

@ HCI-KDD -4~

Topics

J

Documents

Topic proportions and
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

Haow many genes Joes an organism gl o comparison to the 75,000 venes igghe hu

survive! Last week ot the genome mecring T wnones Siv Andersy el
VETSILY i1 Sl ‘m

,
Rer. But coming up with o conserts
tary views of the hasic genes needed for L2 sus answermay be more than just o o

here,® two gename researchers with swlically
different approoaches presented complemen-

Uhne research ream, using computrer analy numbers -
ses to compare known genomes, concluded  more penomes are
thar today's arganisms can be sustamed with sequenced. “le may
yust 230 pepes, and chat the earliest lifeforms any newly sequenced genome,”

s
required 1 mere 128 genes. The P
= =

W way of organzs
" explains
Arcady Mushegan, a computational mo
ather researcher mapped genes
i simple parasite and esti- -/
aated ||.-| 1- U Ihn rLanism, !
800 genes are plenty to do the |,

jub—hut that anything short \\

of 100 wouldn't be enough. \‘_ ;
Althoogh the numbers don't i

match precisely, those predicrions

™ lecular bicloglst ar the Natnogal Center

DAFTED FROM NCH

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,

Stripping down, Computer analysis yiglds an esti-
May 8 10 12,

mate of the minimum medern and ancient genomes.

SCIENCE « VOL. 271 = 24 MAY 1996

h

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)

Holzinger Group
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TU We find topics through a Generative Probabilistic Model

Grazm

@ HCI-KDD -4~

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-browser/demo/#/model/grid

Eac
ano

Topics

Topic proportions and

Documents ,
assignments

gene 0.04
dna 0.02
genetic 0.01
life 0.02

evolve 0.01
organism 0.01

\_/”/—

brain 0.04
neuron 9.82
nerve 0.01

~;;;ﬁaf”’ﬂfp-‘

data 0.02
number 0.02
computer 0.01

S

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

How many cenes does anerganism negd 0 comparison to the 73,000 genes in the hu
survive! Last week at the genome meeling e, notes Siv Andersso ) BReereiT
here,” two genome researchers with radically =

different approaches presented complemen-

tary views of the basic genes needed for life e than jus

One research team, using compurer analy numbers ™

S5 [0 COIMPEre known genomes, concluded TILOFE Senoimes are g

that today's Grganisms can be sustained with sequenced. *It may be a way of organi-ime
just 250 genes, and that the earliestlife forms - any newly sequenced senome,” explains
required a mere 128 genes, The [ Arcady Mushegian, a computational mo
¥ - 1 . . 1 . i~
other researcher mapped genes 7 s, lecular biologist ar the Natingg 2

in a simple parasite and esti- /

3 . . / Haermaptilus
mated that for this oroanism, | gename
BO0 genes are plenty todo the |
job—but that anything shor
of 100 wouldn't be enough.

Although the numbers don't

ACRFTED FROK MOED

match precisely, those predicrions
ABagenes R
* Genome Mapping and Sequenc- el
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modem and ancient genomes

SCIENCE o VOLD 272 0« 24 MAY 19us

f

Holzinger Group

n doc is a random mix of corpus-wide topics
each word is drawn from one of these topics
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TU  Output Example: 4 learned topics (details in Blei, 2008) @ HCI-KDD -
human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis simulations

Holzinger Group
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TU LDA is an example for a probabilistic graphical model @ HCI-KDD +£-

Grazm

Per-word

Proportions : ,
topic assignment

parameter Towic
parameter
Per-document Observed |
topic proportions word Topics

R |
'_*9*0_’0‘ ?-—4

Zd.n Wd .n

S

" Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)

Holzinger Group 63 709.049 06



TU  Posterior inference @ HCI-KDD o

-Of-O-@— 1O

d.n Wd n

=

p(p.0.z,w)
A, =
p(B,0,z|w) Ts Jo 2o (B0 2. w)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;

However, this do not scale well ...

Holzinger Group
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TU  For “big data” stochastic variational inference @ HCI-KDD

Grazm

GLOBAL HIDDEN STRUCTURE
MASSIVE

DATA P 8
o S
Fd ¥

L
#
,

LY
K b
,
&

v »

Subsample \ _/ Infer local \ .| Update global

data 4 \ structure / structure
0O O e o
olie e 0

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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TU Stochastic variational inference in LDA @ HCI-KDD =%
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Yd | Pdn Ak

1|1 i
o Q—«-Q—{) ?*—4

R
>
Sy

1. Sample a document
2. Estimate the local variational parameters using the current topics
3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics
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TU Stoc

Grazm

hastic variational inference

@ HCI-KDD 4=

1: Initialize A(”) randomly.

2. Set the step-size schedule p; appropriately.

3: repeat

4:  Sample a document wy uniformly from the data set.

5. Initialize v = 1, fork € {1,..., K}.
6:  repeat
7 Forn e {1,..., N} set

gt x exp {E[log 4] + E[log e RPN | - = ) B

4l

Set Td = & 1T Zrl Lt B,
. until local parameters ¢4, and -4 converge.
10: Forke {l...., K'} set intermediate topics
.

.j'.ﬁ. =n+ 0D Z qﬁlﬁu Wy -

=1

1: - Set A = (1 — p)At-D 4 p A,
12: until forever

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational

inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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TU Approximate inference can be difficult to achieve @ HCI-KDD -

Grazm

KNOWLEDGE DATA
Y
S5

Make assumptions Discover patterns Predict & Explore

O0-0-0 [ EEE |

» Approximate inference can be difficult to derive.

» Especially true for models that are not conditionally conjugate
(Discrete choice models, Bayesian generalized linear models, ...)

» Holds us back from trying many models.
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TU Black Box Approach @ HCI-KDD -

Grazm

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL
(P BLACK BOX p(B.z|x)

VARIATIONAL

INFERENCE

» Easily use variational inference with any model
» No exponential family requirements

» No mathematical work beyond specifying the model
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TU  Conclusion: What are future challenges @ HCI-KDD £

Flexible and expressive components for building
models are of utmost importance

Scalable and generic inference algorithms (multi-
task and transfer learning)

Usability gets a totally new importance: Easy to
use algorithms for the non-expert user to stretch
probabilistic modeling into new areas

Topic models are one approach towards
detection of topics in document collections

Example: Identifying re-occurring patterns in
such data collections (gaining new knowledge)
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@ HCI-KDD -
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6) Graph Bandits



TU The complexities of optimization: Sébasitien Bubeck @ HCI-KDD £

Grazm

I’'m a bandit

Random topics on optimization, probability, and statistics. By Sébastien Bubeck

Bubeck, S. & Cesa-
Bianchi, N. 2012.

Home ORF523: The complexities of optimization Guest posts Archives About me Regret Ana IYSiS Of
Stochastic and
ORF523: The complexities of Nonstochastic Multi-
S . armed Bandit

optimization .

P Problems. Machine
This page collects together the posts for the graduate course on optimization | taught at Princeten in Lea rn | n g 5 (1) 1_
the Spring 2013. This materlal has been reorganized (some parts have been cut, some have been r = ’
extended) into a monograph which got recently published “Foundations and Trends in Machine 122 .

Learning. Vol. 8. No. 3-4. pp 231-357. 2015" (see here for the free version);
https://blogs.princeton.edu/imabandit/

Also very interesting: Bubeck, S. 2015. Convex optimization: Algorithms and complexity. Foundations

and Trends in Machine Learning, 8, (3-4), 231-357.
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TU What is a bandit? G HCI-KDD =%

Grazm

<107 MACHINE

= Slot-machine (bandit - robs your money)
" One-armed bandit

= Very simple model for sequential decision
making under uncertainty

= Main challenge: exploration versus exploitation

= Many application domains: A/B-Testing,
Crowdsourcing, optimization, search, ...
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TU  Multi-Armed Bandits problem @ HCI-KDD -

Grazm

= Multi-armed bandit:= a gambler strategically operating
multiple machines in order to draw the highest possible
profits

" There are n slot-machines (“einarmige Banditen”)
» Each machineireturnsarewardy = P(y; 0;)
* Challenge: The machine parameter 0; is unknown

= Which arm of a slot machine should a gambler pull to
maximize his cumulative reward over a sequence of
trials? (stochastic setting or adversarial setting)
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TU Machine Parameters of the k-armed Bandit @ HCI-KDD £

Grazm

Each arm a either

wins (reward=1) with fixed (unknown) probability u,, or
loses (reward=0) with fixed (unknown) probability 1 — u,
= All draws are independent given u,; ... u,

" Problem:
How to pull arms to maximize the total reward?
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TU

Grazm

Underlying Principle of the k-Armed Bandits problem @ HCI-KDD -

Let a; € {1, ...,n} be the choice of a machine at time t
Let y; € R be the outcome with a mean of (y,;)
Now, the given policy maps all history to a new choice:

m. [(”11 Y1), (a2,92), ..., (az1, !}r-l)] = Qt

The problem: Find a policy 7 that max(yr)

Now, two effects appear when choosing such machine:
= You collect more data about the machine (=knowledge)
= You collect reward

Exploration and Exploitation
= Exploration: Choose the next action a; to min{(H (b;))
= Exploitation: Choose the next action a; to max(y;)

models an agent that simultaneously attempts to acquire new
knowledge (called "exploration") and optimize his or her
decisions based on existing knowledge (called "exploitation").
The agent attempts to balance these competing tasks in order to

maximize total value over the period of time considered.

More information: http://research.microsoft.com/en-us/projects/bandits
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TU  MAP-Principle: “Optimism in the face of uncertainty” @ HCI-KDD -

wmng (RO R) %

Aeward

0.5 . . .
1(100) 2(10) 3 {30) 4 (70}

— max (rew. 1cert, (a
a; = max (rew;(a) + uncerty(a))

Exploitation Exploration

the higher the (estimated)
reward the higher the chance
to select the action

the higher the (theoretical)
uncertainty the higher the
chance to select the action

Auer, P., Cesa-Bianchi, N. & Fischer, P. 2002. Finite-time analysis of the multiarmed bandit

problem. Machine learning, 47, (2-3), 235-256.
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TU A bandit in a graph is still a bandit © @ HCI-KDD -

Grazm

e Let G a known graph with K nodes {1,2,...,K}

e Let f be a unknown function defined on the set of nodes

e Fort=1to n,

e Select a node /;
e Observe reward r, = f(/l;) + €,

e Goal: maximize sum of expected rewards
e Equivalently minimize regret:

n

Ro = S(F — F(0)

t=1

where f* = maxj<j<k f(i).

e We care about the case when K > n
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TU  Smooth Graph Function @ HCI-KDD -

Grazm
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TU Knowledge Representation in MAB @ HCI-KDD -

Grazm

= Knowledge can be represented in two ways:

= 1)asfull history  h; = [(a1,11), (a2, v2), ..., (@r1, Y1)
or

= 2)as belief b.(0) = P(0|h:)

where 0@ are the unknown parameters of all machines

The process can be modelled as belief MDP:

l |f bf — bff}.ﬂ.;j] ‘
0 otherwise |

P('|y,a,b) = { P(yla,b) = [, b(6a) P(y|6a)
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TU The optimal policies can be modelled as belief MDP @ HCI-KDD £
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1 ifb =bls,s,¢ ,
P(b'|s', s,a,b) = 15550 ,  P(s'|s,a,b) = [,b(8) P(s'|s,a,0)

0 otherwise

V (b, s) = max [E(T“H: a,b)+> ., P(s'|a,s,b) V(¢ b’)}

Poupart, P., Vlassis, N., Hoey, J. & Regan, K. An analytic solution to discrete Bayesian
reinforcement learning. Proceedings of the 23rd international conference on Machine learning,

2006. ACM, 697-704.
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TU Applications @ HCI-KDD £

Grazm

= Clinical trials: potential treatments for a disease
to select from new patients or patient category
at each round, see:

W. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Bulletin of the American Mathematics Society, vol. 25, pp. 285-294, 1933.

= Games: Different moves at each round, e.g. GO

= Adaptive routing: finding alternative paths, also
finding alternative roads for driving from Ato B

= Advertisement placements: selection of an ad to
display at the Webpage out of a finite set which
can vary over time, for each new Web page
visitor
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TU  Multi-Armed Bandits and Clinical Trials @ HCI-KDD =%
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i ndomizec
) D 9 adNe

i.i.,'\

http://fortune.com/2015/10/26/cancer-clinical-trial-belmont-report/
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TU Example: Clinical Trials in rare diseases @ HCI-KDD -

Grazm

Limitations of drug design for rare diseases due to:

" Lack of understanding of the underlying
principles of the rare disease
= Motivation: Research advances
= Unbalanced economic motivation (cost/benefit)
= Motivation: Orphan Drug Act and other regulations
= Unavailability of # patients for standard trials
" This is the true bottleneck!

Villar, S. S., Bowden, J. & Wason, J. 2015. Multi-armed Bandit Models for the Optimal Design of
Clinical Trials: Benefits and Challenges. 199-215, doi:10.1214/14-STS504.

Holzinger Group 84 709.049 06



TU  Why should Bandit Strategies be of help here? @ HCI-KDD £

Grazm

" The goal of Standard Randomized Controlled Trials
(RCT) are a controlled learning setting:

= Control for Type | and Type Il errors, dependent of trial
Size Nprcr

" |n the case if the patient population N is smaller than the
trial size np-7r: underpowered trial — problem!

" |f we change the goal to

= “learning sufficient - to treat N as effectively as
possible”,

= then bandit strategies — optimal policy for max. the
expected reward - are perfectly suited!

Kuleshov, V. & Precup, D. 2014. Algorithms for multi-armed bandit problems. arXiv:1402.6028.
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= Learning — experimenting with all treatments

= Earning — selecting one treatment only, based on
experimentation results

= Question 1: How much learning is best — for an
optimal treatment of N patients?

= Suppose N patients with a rare disease:

= Experimental Group E and control group C

= e.g. control = response rate pc and little information
about experimental group

= Question 2: How many allocations of treatment to
E are necessary (= how much experimentation?)
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DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS

By RicHArRD BELLMAN
RAND CORPORATION, SANTA MONICA, CALIFORNIA

Communicaled by Einar Hille, August 13, 1956

1. Initroduction.—The purpose of this note is to indicate how a suitable combina-

tion of the classical method of the Lagrange multiplier and the functional-equation
method of the theory of dynamic programming! can be used to solve numerically, Richard Ernest
and treat analytically, a variety of variational problems that cannot readily be

treated by either method alone. BELLMAN
A series of applications of the method presented here will appear in further (1920-1984)
publications.
2. Functional Egquation Approach.—Consider the problem of maximizing the
function
N
F(xy, zs, ..., xz5) = Z; g:(xy), (2.1)
subject to the constraints
N
(H') E ﬂﬁ(mj) < ¢y 1=12, ..., Mr
i=1
(2.2)
(b) =z, 20,

Bellman, R. 1956. Dynamic programming and Lagrange multipliers. Proceedings of the
National Academy of Sciences, 42, (10), 767-769.
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Some Statistics on rare diseases (orphan diseases) @ HCI-KDD =%

7,000 + different types - more being discovered every day

>10% of the world population is suffering (if all of the
people with rare diseases lived in one country, it would
be the world’s 3rd most populous country)

80% of rare diseases are genetic, so are present
throughout a person’s lifetime, even if symptoms do not
immediately appear

>50% of the people affected by rare diseases are children
Are responsible for 35% of deaths in the first year of life

The prevalence distribution is skewed — 80% of all rare
disease patients are affected by 350 rare diseases

>50% of rare diseases do not have a disease specific
foundation supporting or researching their rare disease

https://globalgenes.org/rare-diseases-facts-statistics/
https://www.hon.ch/HONselect/RareDiseases/
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TU Example Rare Disease: CADASIL @ HCI-KDD o4+

= Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy

" js a hereditary disease affecting all the small cerebral arteries.
It causes subcortical infarcts and damages the white matter
(leukoencephalopathy) and it is due to various mutations of
the Notch3 gene situated on chromosome 19:

AL Tal

L YA EZTEb10

- . 1 Ll L 1 Yalc 88491
—_—l S R 0 000 YAC 417c3
YAC Tete? L1 0 I . L

L 1 | I | | P74 L ICAF y 9000036

Wi 244012

Joutel, A. et al. 1996. Notch3 mutations in CADASIL, a hereditary aduIt-ons%fg%ﬂgcgiomcausing stroke and
dementia. Nature, 383, (6602), 707-710, doi:10.1038/383707a0.
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Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009. CADASIL. The

Lancet Neurology, 8, (7), 643-653, doi:http: //dx d0| org/10.1016/51474-4422(09)70127-9.
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Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M.-G. 2009. CADASIL. The

Lancet Neurology, 8, (7), 643-653, doi:http: //dx d0| org/10.1016/51474-4422(09)70127-9.
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TU Final conclusion G HCI-KDD £
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" Bandit strategy: Is experimentation worth it for a
small number N?

= Reconcile clinical trials and clinical practice

= Extensions should deal with randomization, delayed
responses and uncertainty around N

= Bayesian bandits need Online-ML

® Bandits are a great source of inspirations and
building blocks for solving many problems

" Future work: convex optimization, contextual,
combinatorial, ...

Berry, D. A. & Fristedt, B. 1985. Bandit problems: sequential allocation of experiments
(Monographs on statistics and applied probability), Springer.
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TU Sample Questions (1/3) @ HCI-KDD &

What kind of graphical models are used in medical
informatics?

Which type of graph is particularly useful for
inference and learning?

What is the key challenge in the application of
graphical models for health informatics?

What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

What main difficulties arise during breast cancer
Prognosis?

What can be done to increase the robustness of
prognostic cancer tests?

Inference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?
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TU  Sample Questions (2/3) @ HCI-KDD &

= Why do we want to apply ML to graphs?

= Describe typical ML tasks on the example of
olood cancer cells!

" |f you have a set of points — which similarity
measures are useful?

" What is the advantage of factor graphs?
= Why is the Gromov-Hausdorff distance useful?

" What is the central goal of a generative
probabilistic model?

= Describe the LDA-model and its application for
topic modelling!
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TU  Sample Questions (2/3) @ HCI-KDD &

Briefly describe the stochastic variational inference
algorithms!

What is the principle of a bandit?
How does a multi-armed bandit (MAB) work?
In which ways can a MAB represent knowledge?

What is the main problem of a clinical trail — and
maybe the main problem in clinical medicine?

Why are rare diseases both important and relevant?
Describe an example disease!

What is the big problem in clinical trials for rare
diseases?

What did Richard Bellman (1956) describe with
dynamic programming?
Why are graph bandits a hot topic for ML research?
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= 1=thisis a factor graph of an undirected graph — we have seen this in protein networks (refer to slide
Nr. 70 in lecture 5). Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For example, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A,B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
information please consult: http://deepdive.stanford.edu/inference

= 2=thisis the decomposition of a tree, rooted at nodes into subtrees

= 3= metabolic and physical processes that determine the physiological and biochemical properties of a
cell. As such, these networks comprise the chemical reactions of metabolism, the metabolic
pathways, as well as the regulatory interactions that guide these reactions. With the sequencing of
complete genomes, it is now possible to reconstruct the network of biochemical reactions in many
organisms, from bacteria to human. Several of these networks are available online: Kyoto
Encyclopedia of Genes and Genomes (KEGG)[1], EcoCyc [2], BioCyc [3] and metaTIGER [4]. Metabolic
networks are powerful tools for studying and modelling metabolism.

= 4= MYCIN —expert system that used early Al (rule-based) to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for
patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have
the suffix "-mycin".

= 5= Protein-Protein Interaction network (undirected graph here)

= 6= PPl with critical node, bottleneck, hub, etc.
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TU GM are amongst the most important ML developments @ HCI-KDD -

= Key ldea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

(Vi,J, k) P(X = z;|Y = y;,Z = 2) = P(X = x;|Z = z)
can be abbr. with P(X|Y,Z) = P(X|Z)

" Graphical models express sets of conditional
independence assumptions via graph structure

" The graph structure plus associated parameters define
joint probability distribution over the set of variables
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DIRECT SUBMISSIONS o B

(o

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http://www.ebi.ac.uk/intact/
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TU Slide 4-19: Biomedical databases ... @ HCI-KDD £

= . are libraries of life science data, collected from
scientific experiments and computational analyses.

= ... contain (clinical, biological, ...) data from clinical
work, genomics, proteomics, metabolomics,
microarray gene expression, phylogenetics, etc.

= Examples:

= Text: e.g. PubMed, OMIM (Online Mendelian Inheritance
in Man);

= Sequence data: e.g. Entrez, GenBank (DNA), UniProt
(protein).

" Protein structures: e.g. PDB, Structural Classification of
Proteins (SCOP), CATH (Protein Structure Classification);
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RCSB PDB  Deposit v+ Search~ Visualize + Analyze + Download ~

“« - |—\ | I_‘v_) An Information Portal to e
| Ll o) 113331 Biological ear

L

PROTEIN DATA BANK Macromolecular Structures

Advanc ]

EMDataBank [l Structu
Pt n@m DNTARASE Knowledgebase

Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with
Physicochemical and Biological Annotations. In: Central European Multimedia and Virtual
Reality Conference. Prague, Czech Technical University (CTU), 69-74
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RCSB PDB  Deposit + Search~ Visualize + Analyze ~ Download ~ Learn ~ More ~

NOTE: Use your mouse to drag, rotate, and zoom in and out of the structure. Help

Biclogical assembly 1 assigned by authors and generated by PISA

Select a Viewer

JSmal (JavaScript) E‘

Structure Details

Structure Biological Assemnbly 1 F‘
Symmetry Type Global Symmetry "‘
Symmetry c2

Stoichiometry A2B2

Select Orientation

4 Front C2 axis 4

Select Display Mode

Secondary Structure Subunit Symmetry

Display Options
Style Cartoon F‘
Color Secondary Structure "‘
Surface Mone ‘v‘
[CIH-Bonds ]SS Bonds
[ Rotation V| Black Background
[“1 Polyhedron [Tl Axes



TU Slide 4-21 Databases: From Molecules to Systems @ HCI-KDD £

Genomes
Ensembl, Ensembl
Genomes, EGA

Literature and ontologies
CitExplore, GO

Hl “""E”“““ﬁ"”“““““"'"E = Nucleotide sequence
EMBL-Bank

Gene expression
ArrayExpress

Proteomes
UniProt, PRIDE

Protein families,
motifs and domains
InterPro

Protein structure
PDBe

Chemical entities

ChEBI, ChEMBL

Protein interactions
IntAct

van Kampen (2012),

Bioinformatics
Laboratory,
Academic Medical
Center, NL

Holzinger Group
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Systems
BioModels HIS
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Slide 4-22: Example Genome Database: Ensembl

@ HCI-KDD -4~

Ensembl release 73 - September 2013 @ WTS

BLAST/BLAT | BioMart | T | Downloads | Help & Documentation | Blog | Mirrors

Search: All species ¥ | for

e.g. BRCAZ or rat X:100000..200000 or coronary heart disease

Browse a Genome ENCODE data in Ensembl

ENCODE
The Ensembl project produces genome databases for vertebrates and other eukaryotic species, el
and makes this information freely available online. \ W

Popular genomes

Human Mouse
GRCh3T GRCM38
% Zebrafish
S | 7O

J Login to customize this list

Gene expression in different tissues

Retrieve gene sequence
All genomes = T Be
GEGCTTOTGECEOGAGT
GCGCCTCTOCTROGCCT:
AGGOGACACATTT! AL

- Selecta species — hd

View full list of all Ensembl species

Other species are available in Ensembl Pref and EnsemblGenomes
Use my own data in Ensembl

EE s S
.|

Variant Effect Predictor

" ‘e.,l ~

Find SNPs and other variants for my

-
CTTCTAATTET

G ACATTTTICC

Compare genes across species
g .
>

Learn about a disease or phenotype

>

Ensembl is a joint project between EMBL - EBI and the Wellcome Trust Sanger Institute to develop a software system which produces and maintains automatic annotation on selected eukary:

Ensembl receives major funding from the Wellcome Trust. Our acknowledgements page includes a list of additional current and previous funding bodies

1EBI

http://www.ensembl.org/index.html
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EMBL-EBI Services Research Training Industry About us

f—rrzl / I_' N Ir—’]rj :,J ;,J' Examples. E-MEXP-31, cancer, p53, Goavadrs Advanced

Home Experiments Arrays  Submit Help About ArrayExpress

ArrayExpress - functional genomics data Data Content

ArrayExpress is a database of functional genomics exXperiments that can be queried and the data downloaded. It Updated today at 06:00

includes gene exprassion data from microarray and high throughput sequencing studies. Data is collected to MIAME © 43495 experiments

and MINSEQE standards. Experiments are submitted directly to ArrayExpress or are imported from the NCBI GEO & 1233850 assays

database. o 18.51 TB of archived data
Latest News

1 November 2013 - Need to keep your unpublished ArrayExpress microarray data private for longer?

Microarray experiment submitters, have you ever wondered if you could just change the release date of unpublished ArrayExpress data by yourself without emailing curators?
Now you can! Use our new release date changing tool (more details on this help page). Submitters of high-throughput sequencing experiments, please continue to email us at
miamexpressi@ebi.ac.uk for release date changes so we can make sure the sequence read records at the European Nucleotide Archive are kept in sync.

http://www.ebi.ac.uk/arrayexpress/
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Slide 4-24: Example Protein Interaction Database: IntAct

@ HCI-KDD 4=

Services

Training Industry About us

" Home

& Advanced Search

= Tools

= Data Submission

s Dawnloads

+ Documentation

s Acknowledgements
= Contact Us

l:u.lltl:er

mAD IntAct at EBI 28 Oct
Eintact project

Intact relaase 173 outl 434772

binary interactions from 12131

manually curated publications.

ebl.ac ukiintact/pages/d

Expand

o7 PslcQuic 24 Ot
V= @PSICoUIC

FSICGQUIC Bloconductor
package brings molecular
Interactions Into R
bloconductor.org’packages/relea
t3 Retweeted by IntAct at EBI

Expand

Holzinger Group

m Search ' Interactions (434941) i Erowse l Lists Lmnmnwwls l Molecule View

i »

Search: I Search Clear Show Advanced Fields » MIGL syntax reference &

* Froe text search will look by default for interactor identrfer, species, interaction id, detection Examples P
method, interaction type, publication identfier or author, interactor xrefs, inferaction xrefs = Gane name; 8.g, BRCAZ v

& For a mone spacific search, use MICH. syntax or advanced search = UniProlKB Ac, g, QOEE00

& Search based on exact word matches 6. BRCAZ will not match BRCAZE * UniProfkB id. 8.9 dmel Suppor

* Sgarch for isoforms of ‘F12345 by using F123457 = Pubmed Id: 8.9, 10831611 and feadback

IntAct provides a freely available, open source database system and analysls tools for molecular interaction data. All
interactions are derived from literature curation or direct user submissions and are freely available. To perform a search in
the IntAct database use the search box above,

Manually curated content is added to
IntAct by the following crganisations:

# MINT Prol:ﬂ

Publications Experiments Interactions Interactors

MINT UniProf
12131 31292 434941 79805
siB 12D
Citing IntAct Em
n'n CONNECTIONS
http://www.ebi.ac.uk/intact/
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EMBL-EBI o 1 ch  Tralning Industry About us

BioModels Database

BioModels Home Models Submit Support About BioModels Contact us

McAuley et al., (2012). A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation.

October 2013, model of the month by Mck Juty
QOriginal model. BIOMDOC00000434

Cardiovascular digease is by far the most prevalent disease in ageing populations. Comelated with
alterations in lipid metabolism profiles, it has estimated incidence rate of 30-40% in the UK population,
over the age B85. Low Density Lipoprotein Cholestersl (LODL-C), a prominent component in lipld
metabolism, stands out as a major contributory factor. Furthermore, it i apparent that nelther nutritional
status nor physical activity have any effect on the rising levels of LDL-C with age.

Besides its well publicized detrimental effects, cholesterol is also an important component of all cell
membranes, being a hormone precursor and playing a cruclal role In absorption of lipld soluble vitamins.
It's absorption from the gut is documented as being inefficient, and also displays high variability between
individuals (30-80%). The precise transport and enzymatic mechanisms involved, particulary pertaining
to how chelestercl traverses enterocyte membranes, is net well established.

The hepatic system is central in cholestercl metabolism, with the liver able to synthesize VLDs (very low
density lipoproteins), which are converted inte IDLs (Intermediate density lipoproteins (IDLs) through the
action of lipoprotein lipase (LPL). LPLs can be taken up by the liver directly, or further hydrolysed into
LOLs, the main chalastaral carrar in the bleod. LOLs may alse be taken up through the LOL-recaptor
{LDLR). which is highly expressed in the liver, and expressed in peripheral tissues. The hepatic receptor
is transcriptionally regulated by intracellular cholesteral levels.

It has been demonstrated that: a) There is age-associated decling In the clearance rate of LDL-C from the
blood, as well as a decrease in the number of hepalic LDLRs. b) Intestinal cholesterol absorplion
increases with age in some species.

In this paper, the authors take a mechanistic approach to construct a model, with these cbservations in
mind, making extensive use of published experimental measuremeants over the last seventy years. The
madel incorporates diefary cholesterol absorption in the intestine, and hepatic LDL-C clearance from the
plasma [1, BIOMDODDO000424], It consists of & compartments (= J. and is composed of a series of
coupled ODEs.

http://www.ebi.ac.uk/biomodels-main/
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Counts the number of “i-dimensional holes”

bi is the “i-th Betti number”

y e
R J/ﬂd}

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)

Zomorodian, A. & Carlsson, G. 2005. Computing Persistent Homology. Discrete &
Computational Geometry, 33, (2), 249-274.
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= Statement of Vin de Silva (2003), Pomona College:

= Let M be a topological or metric space, known as the
hidden parameter space;

= et R? be a Euclidean space, the observation space,
= and let f: M — R be a continuous embedding.

= Furthermore, let X € M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;,i € I} defined on a
probability space (Q, F, P), and denote Y = f(X) c R
the images of these points under the mapping f.

= \We refer to X as hidden data, and Y as the observed data.

= M, f and X are unknown, but Y is - so can we identify M?

De Silva, V. 2004. GEOMETRY AND TOPOLOGY OF POINT-CLOUD DATA SETS:
A STATEMENT OF MY RESEARCH INTERESTS.

https://www.pomona.edu/directory/people/vin-de-silva
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" Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014. On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5 19.
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Topic model toolkits

e Particular topic models

» Stanford topic model toolbox
http://nlp.stanford.edu/software/tmt

» Topic modeling at Princeton
http://www.cs.princeton.edu/~blei/topicmodeling.html

» MALLET (Java) http://mallet.cs.umass.edu

» Network topic models: Bayes-stack
https://github.com /bgamari/bayes-stack

» Gensim (Python) http://radimrehurek.com/gensim/

» R package for Topic models. http://epub.wu.ac.at/3987/

e Frameworks for generative models

» Variational inference: Infer.net
http://research.microsoft.com /infernet/
» Gibbs sampling: OpenBUGS http://openbugs.net/
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