TU, science is to test crazy ideas - Engineering is to put these ideas into Business @HCI-KDD &

Andreas Holzinger
VO 709.049 Medical Informatics
07.12.2016 11:15-12:45

- Lecture 07 Dimensionality
Reduction and Subspace Clustering
with the Doctor-in-the-Loop

a.holzinger@tugraz.at
Tutor: markus.plass@student.tugraz.at

http://hci-kdd.org/biomedical-informatics-big-data
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TU, Advance Organizer (1/2) @HCI-KDD

TU ML needs a concerted effort fostering integrated research @HcI-+o0 &

= Artificial neural network (ANN) = a computational adaptive model {inspired
by biological neural networks), consisting of interconnected groups of artificial
neurons; processes information using a connectionist approach.

= Association rule learning = a set of technigques for discovering interesting
relationships, i.e., “association rules,” among variables in large databases used
for data mining;

= (Classification = a set of techniques to identify the categories in which new
data points belong, based on a training set containing data points that have
already been categorized; these techniques are often described as supervised
learning because of the existence of a training set; they stand in contrast to
cluster analysis, a type of unsupervised learning; used e.g. for data mining;

* Cluster analysis = statistical method for classifying objects that splits a diverse
group into smaller groups of similar objects, whose characteristics of similarity
are not known in advance; a type of unsupervised learning because training
data are not used - in contrast to classification; used for data mining.

= Data mining = a set of techniques to extract patterns from large data by
combining methods from statistics and machine learning with database
management (e.g. association rule learning, cluster analysis, classification,
regression, etc.);

= Knowledge Discovery (KD) = process of identifying valid, novel, useful and
understandable patterns out of large volumes of data

Holingor Group . 709,049 07

TU, Learning Goals: At the end of this lecture you ... @ HCI-KDD &

http://hci-kdd.org/international-expert-network
Data

Interactive pmjping Knowledge Discovery

Data Leamlrlg Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDOM e Graph-based Data Mining
TOM ° Topological Data Mining
EDM e Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

© 8 hatnnger e dad ey
Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14,
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TU, Advance Organizer (2/2) @HCI-KDD o

TU, Keywords @HC-KDD -

... know the differences between classification
and clustering and why it is important for health;

= .. are aware that features are key to learning
and understanding;

= .. understand the curse of dimensionality;
= ... have an idea of dimensionality reduction;

= ... recognize the value of subspace clustering and
analysis with the doctor-in-the-loop;

= Understand why the question “What is
interesting?” is not easy to answer;
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* Deep Learning = class of machine learning algorithms using layers of non-linear
processing units for feature extraction (remember: features are key for learning and
understanding) - learning representations from data;

* Knowledge Extraction = is the creation of knowledge from structured (relational
databases, XML) and unstructured (text, documents, images) sources;

*  Multimedia = several data of different modalities are processed at the same time, i.e.

encompassing audio data (sound, speech), image data (b/w and colour images), video

data (time-aligned sequences of images), electronic ink (sequences of time aligned 2D
and 3D coordinates of a stylus, pen, data gloves etc.)

Principal Component Analysis (PCA) = statistical technigue for finding patterns in high-

dimensional data;

Sparse Data =

Supervised learning = inferring a function from supervised training data on the basis of

training data which consist of a set of training examples, the input objects (typically

vectors) and a desired output value (also called the supervisory signal).

= Supervised learning algorithm = analyzes the training data and produces an inferred
function, called a classifier (if the output is discrete) or a regression function (if the
output is continuous); the algorithm generalizes from the training data to unseen
situations,

= Support vector machine [SVM) = concept for a set of related supervised learning
methods to analyze data and recognize patterns, used for classification and regression
analysis.

*  Unsupervised | ing =

data is unknown.

clusters in data, where the class labels of training
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TU, Key Challenges @HCI-KDD

Classification

= Clustering

= Curse of dimensionality
= Dimensionality reduction
® |nterestingness

= Feature extraction

= Feature selection

= Mapping

= Subspace analysis

= Subspace clustering
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TU, Glossary @HCI-KDD

= Uncertainty

= Validation

= Curse of Dimensionality

= Large spaces gets sparse

= Distance Measures get useless

= Patterns occur in different subspaces

= Pressing question: “What is interesting?”
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ANN = Artificial Neural Network

ANOVA = Analysis of Variance

AUC - area under the curve

CDT = Clinical Decision Tree

DM = Data Mining

KDD = Knowledge Discovery from Data(bases)
LLE = Locally Linear Embedding

MDS = Multi Dimensional Scaling

= MELD = model for end-stage liver disease
MM = Multimedia

= NLP = Natural Language Processing

= PCA = Principal Components Analysis

= ROC = Receiver Operating Characteristic
SVM = Support Vector Machine
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TU, Agenda for today @HCI-KDD

= 00 Reflection — follow-up from last lecture
= 01 Classification vs. Clustering

* 02 Feature Engineering

= 03 Curse of Dimensionality

* 04 Dimensionality Reduction

= 05 Subspace Clustering and Analysis

= 06 Projection Pursuit

= 07 Conclusion and Future Challenges
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I-l-"- @ HCI-KDD A~
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I-l-"- @ HCI-KDD A~

01 Classification
vs. Clustering
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TU, Discovery vs. Prediction @ HCI-KDD 4
SUPERVISED LEARNING UNSUPERVISED LEARNING

Known

Classes

Class A® Training Set

Class Be Lﬂm

}

&) oo
-] I

GI-IIA CInlB Class A Class B
Class Prediction Class Discovery

Ramaswarmy, 5. & Golub, T. R. (2002) DNA Microarrays in Clinical Oncology. Journal of Clinical Gncalogy, 20, 7, 1932-1341,
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TU, Warm-up Quiz @HCI-KDD
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TU_ Classification (A) vs. Clustering (C) — Intro Quiz SHCI-KDD 5

1) The data is not labeled (clA/Clu)?
2) Identify structure/patterns (clA/Clu)?

3) Predicting an item set, identify to which set of
categories a new observation belongs (clA/Clu)?

4) Assigning a set of objects into groups (clA/Clu)?

5) Having many labelled data points (clA/Clu)

6) Using the concept of supervised learning (clA/Clu)?
7) Grouping data items close to each other (clA/Clu)?
8) Used to explore data sets (clA/Clu)?
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I-l-"- @ HCI-KDD A~

Why do we need
Classification
in Health Informatics?
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TU, Three types of Probabilistic Graphical Models @HCIKDD A

.. " Undirected: Markov random fields, useful
4 < | e.g. for computer vision (Details: Murphy 19)

1 . SO
e P P(X) ==exp Wi xix; + x;by
¢ ¢ oo (G Zon) vis

@ ® Directed: Bayes Nets, useful for designing
" ‘ ‘ models (Details: Murphy 10)
o , i K
" ‘ plx) = H plagipay)
k=1

Factored: useful for inference/learning

x)—Hf(x

Tutcrlal on Factor Gmphs http://d ,“‘ tanford.edu/infi ce
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TU, Classification vs. Clustering @ HCI-KDD 4

= (Classification
= Supervised learning, Pattern
Recognition, Prediction, ...)
® Supervision = the training
data (observations,
measurements, etc.) are
accompanied by labels Given a set of
indicating the class of the measurements,
observations; observations, etc. with
= New data is classified the aim of establishing
based on the training set the existence of clusters
Important for clinical in the data;
decision making
= Example: Benign/Malign
Classification of Tumors

= Clustering

= Unsupervised learning, class
discovery, ...

The class labels of
training data is unknown

Example: K-Means
Algorithm for disease
clustering
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TU, Why do we need Classification? @ HCI-KDD -

L e  dara points
/ C,: Cancer present ¥ labels
| featares
i C,: Cancer absent decision
‘boundary

x -- set of pixel intensities
= Typical questions include:
= |s this protein functioning as an enzyme?
= Does this gene sequence contain a splice site?
= |s this melanoma malign?
= Given object x — predict the class label y
= |f y € {0,1} - binary classification problem
= Ify€{1,..,n}and isn € N — multiclass problem
= [f y € R — regression problem
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TU, Learning Process: Algorithm selection is crucial S HCI-KDD L
¢ Cotlest Seleci
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Wolpert, D. H. & Macready, W. G. 1997. No

free lunch theorems for optimization,

Evolutionary Computation, IEEE Transactions
on, 1, (1), 67-82.

Kotsiantis, 5. B. [2007] Supervised machine
learning: A review of classification technigues.
Informatico, 31, 249-268.

TR, ma) = X P(dlfma). [ | [ | N
5 7

Holzinger Grou ]

TU, SVMvs. ANN @HCIKDD

= SVM

® Deterministic algorithm = Nondeterministic algorithm

= Nice generalization = Generalizes well but

properties doesn’t have strong

" Hardto learn= learried in mathematical foundation

* Can easily be learned in
incremental fashion

batch mode using
quadratic programming

techniques = To learn complex

functions—use multilayer

= Using kernels can learn o
perceptron (nontrivial)

very complex functions
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TU, Counterexample: Move problem to a feature space -% @ HCI-KDD 54

)
r.a") = o), o)

=1

Borgwardt, K., Gretton, A, Rasch, J., Kriegel, H.-P., Schélkopf, B. & Smola, A, 2006. Integrating
structured biological data by kernel max. mean discrepancy. Bioinformatics, 22, 14, ed9-e57.
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TU, Classifiers Examples @ HCI-KDD 4

= Naive Bayes (NB) — see Bayes’ theorem with
independent assumptions (hence “naive”)

= Decision Trees (e.g. C4.5)
= NN —if x; is most similarto x, = y; =y,

Tj= u'.f‘_(,rm.*f'n_,g)||.r' - -!'a”2 = Yi=Y

= SVM —a plane/hyperplane ndbaptid i
separates two classes of da.ta =k Redsiende L rewis
very versatile for classification ¢ ""‘""”'""“;,’:.‘.:,‘,‘L o
and clustering — also via the @ & i)

: b w o optimise peimal owr 5w |, 5;
Kernel trick in high-dimensions |}, _o2¥

13 wntil mo 8, has changel dusiig ltemtion

Finley, T. & Joachims, T. Supervised clustering with suppert vector machines, Proceedings of the 22nd
international conference on Machine learning, 2005. RCM 217-224.
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TU, Clinical use: SVM are more accurate than ANN @HCI-KDD

100-Specificity

Kim, S. Y., Moon, 5. K., Jung, D. C., Hwang, . 1., Sung, €. K., Cho, . Y, Kim, S. H., Lee, J. & Lee, H.
1. (2011} Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support

Sy Accuracy Comparison between Support Vector Machine and Artificial Neural Network.
Korean I Radiol, 12, 5, 588-594.
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I-l-"- @ HCI-KDD A~

Why do we need
Clustering
in Health Informatics?
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TY, SVM - Vapnik, 1992 @HCIKDD

= Uses a nonlinear mapping to o
transform the original data /‘”‘ 1
(input space) into a higher (._J“.\‘ . _
dimension (feature space) B » | S

= = classification method for both linear and nonlinear data;

= Within the new dimension, it searches for the linear optimal
separating hyperplane (i.e., “decision boundary”);

= By nonlinear mapping to a sufficiently high dimension, data
from two classes can always be separated with a hyperplane;

= The SVM finds this hyperplane by using support vectors (these
are the “essential” training tuples) and margins (defined by the
support vectors);
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TU, Example: Multiclass cancer diagnosis (for Exercise) S HCI-KDD L

(V083 Gurs, 218 Humian Tumer Samphes)
[RERRIRRRERERE]

0N MW e v Ol

Ramaswamy, 5., Tamayo, P, Rifkin, ., Mukherjee, 5., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe, E. & Mesirov, 1.
P. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of
Sciences, 98, (26], 15149-15154, doi:10.1073/pnas 211566398,
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TU, Why do we need Clustering? @ HCI-KDD 4

= Group similar objects into g@
clusters together, e.g. g
= For image segmentation

= Grouping genes similarly affected by a disease
= Clustering patients with similar diseases
= Cluster biological samples for category discovery
= Finding subtypes of diseases
= Visualizing protein families
= |nference: given x;, predict y; by learning f
= No training data set — learn model and apply it
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TU, Example K-means @HC-KDD -

= Partite a set of n observations into k clusters so,
that the intra-cluster variance is argmin
= v ... variance (objective function)
= §; ... cluster
* ¢ ... mean (“centroid” for cluster j)
= D ... set of all data points x;
= )k ... number of clusters

k n

v(D) = argmin Z Z (i — ¢;)II?
=1 i=1

Jain, A. K, 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31,

(8), 651-666, doi:http://dx.doi.org/10.1016/j.patrec.2009.09.011.
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Distance “medoid”

I,l.-'_ @ HCI-KDD A~

02
Feature Engineering

“Applied Machine Learning Is basically feature engineering”.
= Andrew Y. Ng, VP & Chief Scientist of Baidu;
Co-Chair/Founder of Coursera; Professor at Stanford University

it/ fwww.andrewng org
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TU, Metric Space (e.g. Euclidean Vector Space) @ HCI-KDD -

A Metric Space is a pair (X, d) where
Xisasetand d: X x X — R*, called the metrie, s.t.

1. For all z,y,2 € X, d(z,y) < d{x,z) + d(z,u).

2. For all 2,y € X, dizx,y) = d(y, x).

3. d(x,y) =0 if and only if = = y.

Remark 1. One example is RY with the Euclidean metric. Spheres 8" endowed
with the spherical metric provide another example.

%) =d(z*,x') symmetry
) < d(x',2*) + d(2®, 2*) triangle inequality
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TU, Example @HCI-KDD A

Algorithm 1: Example for o classical weight balaneed k-means algorithm
EN X:={ry,..., 2} CRY, Sim {mypo. ) C R

Input: . k.

Output: Clustering O = (Ch...., ) of X and the arithmetic means ..., o
s siles
1. Partition X into a clustering O = (', ....C4) by assigning r; € X to o cluster

€ that is closest to site s, € 5.

2. Update cach site s; as the center of gravity of eluster O i |C)| = 0, choose
s = for a random [ < n with o # =; for all j < k. I7 the sites change, go to
(1.).

factors for ARA in children can be sufficient to change their

attitudes towards antibiotics prescription.

Our results can also be useful when preparing i ;
dati prescription and to guide h »

Merely an increase in awareness of physicians on risk a

rec for
the standardized health data record. e

Yildirim, P, Majnari¢, L., Ekmekei, 0. I. & Holzinger, A. 2013. On the Prediction of Clusters for Adverse
Reactions and Allergies on Antibiotics far Children to Improve Biomedical Decision Making. In:
Lecture Notes in Computer Science LNCS 8127, 431-445
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TU, Advance Organizer SHCI-KDD 5

= Feature:= specific measurable property of a
phenomenon being observed.

= Feature engineering:= using domain knowledge
to create features useful for ML. (“Applied ML is
basically feature engineering. Andrew Ng”).

= Feature learning:= transformation of raw data
input to a representation, which can be
effectively exploited in ML.
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TU, Similarities of feature vectors @ HCI-KDD -

© ]

q q q

Euclidian norm Manhattan norm Maximums norm
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TU, Summary: The 10 top algorithms everybody should know @HCI-KDD A

Wi et al. (2008) Top 10 algarithms i Knowledge & Systems, 14, 1, 1-37.

= (4S5
= for generation of decision trees wsed for classification, (statistical classifier, Quinlan (1993));
= k-means
L Eim plenlterati\ne method for partition of a dataset in a user-specified n of clusters, k (Lioyd
1957));
= A-priori
L Eor ﬂn?ing frequent item sets using c ion and ing (Agrawal & Srikant
1994));

= EM
= Expectation—Maximization algorithm for finding
in models (Dempster et al. (1977));
=  PageRank
® asearch ranking algorithm using hyperlinks on the Web (Brin & Page (1998));
* Adaptive Boost
= gne of the most important ensemble methods (Freund & Shapire (1995));
= k-Nearest Nelghbor
= amethod for classifying objects based on closest training sets in the feature space (Fix &
Hodges [1951));
=  Naive Bayes
®= can be trained efficiently in a supervised learning setting for classification (Domingos &
Pazzani (1997));
* CART
* (Classification And Regression Trees as predictive model mapping observations about items ta
conclusions about the goal (Breiman et al 1984);
= SVM support vector machines offer one of the most robust and occurate methods among ofl well-
known algorithms (Vapnik (1995]);
Holzingar Graup ] 709,048 07
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TU, Feature Space Basic Definitions @ HCI-KDD -

= Intuitively: a domain with a distance function

» Formally: Feature Space F= (D, d)
= D = ordered set of features
= d: D x D - R} ... a total distance function; true for
“¥p,q €ED,p # q:d(p,q) > 0 (strict)

= and must be reflexive and symmetric = xER
target

input label}
xe R 4

] A
1]

Exch example (row) i now a

d+1-dimensional vector
Image credit to Pascal Vincent %,
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TU, Feature Selection: Overview @ HCI-KDD -
[All features]
All feature

ﬁ;il Embedded
approaches approaches
Features Features | | Predictor
; r I'-=.::A|Ivj->'.--::l-.-' Lasso
' = Elastic Net
Subset selection: e g
forward selection
backward selection
floating selection
Image credit to Chloe Azencott
Holringer Group % T09.048 07



TU, Feature Selection vs. Feature Extraction @HCI-KDD

= Feature selection is just selecting a subset of the
existing features without any transformation

= Feature extraction is transforming existing
features into a lower dimensional space

X X, X, Y, X
X, % X, X
tantirn_swiocter : . ¥z
- H ¥ =i
X ¥
"
Xy X

Blum, A, L. & Langley, P. 1997. Selection of relevant features and examples in machine learning.
Artificial intelligence, 97, (1), 245-271.
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TU, Examples for High-Dimensional Biomedical Data (1/6) @HCI-KDD

I-‘n'!- @ HCI-KDD -

* Medical Image Data (16 - 1000+ features)

http://qsota.com/melanoma/

MEG Brain Imaging
120 locations x 500 time points e i

x 20 ohjeets
MEG0633 4 v
Nature 508, 199-206
doi:10.1038/nature12185
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TU, Examples for High-Dimensional Biomedical Data (4/6) @HCI-KDD o

03 Curse of
Dimensionality
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TU, Examples for High-Dimensional Biomedical Data (2/6) @HCI-KDD o

TU, Remember: The curse of dimensionality @HCI-KDD L

Microarray Data (features correspond to genes, up to 30k features)

e

T datn quantfiessen gene asprrasion
s rrevp—

gens
masrin
i
&
N g ianiidin
Brazma, A., Hingamp, P., Quackenbush, 1., Sherlock,
G., Spellman, P, Stoeckert, C., Aach, 1, Ansorge, W,
= - L= Ball, €. A. & Causton, H. C. 2001 Minimum
o e | e information about a microarray experiment
(MIAME] —taward standards for microarray data.
Nature genetics, 29, {4), 365-371.
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http://www.mdpi.com/1424-

8220/14/4/6124/htm http:/fwww.clinicalgaitanalysis.com/data/
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TU, Examples for High-Dimensional Biomedical Data (5/6) @HCI-KDD o

1 dimemsion
» 10 positians
.

2 dimessions:,

100 prositions
[]

Bengio, 5. & Bengio, Y.

2000, Taking on the curse
of dimensionality in joint
distributions using neural

networks, |EEE Transactions - :;::.:'..'::.'}:::..-

on Neural Networks, 11,

(3), 550-557.

ttpc/if al.ca)"
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TU, Examples for High-Dimensional Biomedical Data (3/6) @HCI-KDD o

= Text > 10° documents X 106 words/n-grams
features correspond to words or terms, between
5k to 20k features

= Text (Natural Language) is definitely very
important for health: e
= Handwritten Notes, Drawings .
= Patient consent forms \
= Patient reports
= Radiology reports
= \/oice dictations, annotations

= |jterature !!!

hittps://www.researchgate.net/publication/255723699_An_Answer_to_Who_Needs_a_Stylus
_on_Handwriting_Recognition_on_Mobile_Devices
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= etabolome data (feature is the concentration

1, s Borl)
" "5

g°gF"

&

http:/fwww.nature.com/ncomms,/2015,/151005/ncomms9524/fig_tab/ncomms9524_F5.html
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TU, Example for high-dimensional biomedical data (6/6) @HCI-KDD o

Signaling Pathway - DNA molecule
|- Carries genetic information

Metabolic Enzymes P . 71 phosphorylation

Thought Experiment:
198 responsible 9 pe P
« 10% Elementary particles
: in the universe
pa 'hla metabolic - 10% Time steps since

anzymes .b'g bﬂng-
* 10" Possible .computations®
Metabolites in the universe. ..
B - 4" is fanaaaar larger!

44 changed metabolites

Yugi, K. et al. 2014, Reconstruction of Insulin Signal Flow from Phosphoproteome
and Metabolome Data. Cell Reports, 8, (4), 1171-1183,
doi:10.1016/].celrep.2014.07.021.
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TU, Why are many features problematic? @HCI-KDD 5

Hyperspace is large — all points are far apart
Computationally challenging (both in time & space)
= Complexity grows with n of features

Complex models less robust — more variance
Statistically challenging — hard to learn

= Hard to interpret and hard to visualize (humans are
bound to R3/R2!)

= Problem with redundant features and noise

= Question: Which algorithms will provide worse
results with increasing irrelevant features?

= Answer: Distance-based algorithms generally trust
all features of equal importance

Holzinger Graun % 709,049 07

TU, Why should we reduce the dimensionality? @HCIKDD

TU, Space and Time: Simple example on gait analysis QHCI-KDD

= Data visualization only possible in R2 (R3 cave)

* Human interpretability only in R2/R3
(visualization can help sometimes with parallel
coordinates)

» Simpler (=less variance) models are more robust
» Computational complexity (time and space)

= Eliminate non-relevant attributes that can make
it more difficult for algorithms to learn

= Bad results through (many) irrelevant attributes?

* Note again: Distance-based algorithms generally
trust that all features are equally important.

€ rormal waking cbatacin suircase

Dominici, N., lvanenko, Y, P, Cappellini, G., Zampagni, M. L. & Lacquaniti, F. 2010. Kinematic
gies in Newly Walking Toddlers Stepping Over Diff Support Surfaces. Journal of
Neurophysiology, 103, (3), 1673-1684, doi:10.1152/jn.00945.2009.
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TU, Problem @HCI-KDD -

Hatringer Groug a9 709.049 07
TU, Example 4: MDS: Find projection that best preserves d @HCIKDD A
[ | L]
'I\I_Iu_"_ 2 ]l;__i[‘_l ¥
| E L

* Given n % n matrix of pairwise distances | |

between dam paints =m0 7

1
o 1 [ |

* Compute n x k matrix X with coordinates of =3 3 R ],q T B ‘ y 1 2
n
1

distances with some linear algebra magic 5 Bl i '[ |
PP 4

* Perform PCA on this matrix X | I

EFFEPFP] o

x; Point in o dimensions

w Corresponding peint in r <  dimensio

4y Distance between x, amd r;

d;; Distance between p; and y;

o Define {e.g)  Ely) Z("_~;
i fd

» Find y;'s that minimize £ by gradient descent

& [nvariant to translations, rotations aud scalings

Kruskal, ). B. 1964, Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,
29, (1), 1-27.
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= Given n data points in d dimensions
= Conversion to m data points in r <« d dimension
= Challenge: minimal loss of information *)

= *) this is always a grand challenge, e.g. in k-Anonymization —
see later

= Very dangerous is the “modeling-of-artifacts
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TU, @HCI-KDD oL

TU, @HCI-KDD oL

04 Dimensionality
Reduction

Holzingor Graun @ 709,048 07

TYU, Approaches @HCI-KDD

05 Subspace
Clustering™
and Analysis

* Two major issues
(1) the algorithmic approach to clustering and
(2) the definition and assessment of similarity versus dissimilarity.

Holingor Group 53 709,049 07

= Linear methods (unsupervised):
= PCA (Principal Component Analysis)
= FA (Factor Analysis)
= MDS (Multi-dimensional Scaling)
Non-linear methods (unsupervised):
= |somap (Isometric feature mapping)
= LLE (locally linear embedding)
= Autoencoders
= Supervised methods:
= | DA (Linear Discriminant Analysis)
= Subspace Clustering with a human-in-the-loop

Holingor Group 5 709,049 07

TU, What is subspace clustering? @ HCI-KDD &

= Definitions:

K clusters

N data points

D dimensions (original space)
d dimensions (latent subspace)

= Subspace Clustering is the process of clustering
data whilst reducing the d of each cluster to a
cluster-dependent subspace

Agrawal, R., Gehrke, J., D& P, 1998, ic subspace clustering of high
dimensional data for data mining applications. SIGMOD Rec., 27, (2], 94-105, doi:10.1145/276305.276314.
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TU, Visual Analytics Pipeline @ HCI-KDD -

Visual Data Exploration

mewon

Visualisation
M
Transformation
O — B

Data Knowledge
Data
mining

Parameder
refinement
Automated Data Analysis
Feedback loop
Keim, D., Kohlt J., Ellis, G. & I F. (eds.) 2010. Mastering the Information
Age: Solving Problems with Visual Analytics, Goslar: Eurographics.
http:/f i fwp-content/uploads/2010/11/VisM -book-lowres.pdf
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TU, High-Dimensional Data - The Curse of Dimensionality @HC-KDD -

= NN problem: Given n data points and a query
point in an m —dimensional metric space

= find the data point closest to the query point.

i @ ‘Query Point
.‘s'_-;’

Nearest Cluster

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999, When is "nearest neighbor"
meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theary ICOT 99, LNCS 1540,
Berlin: Springer, pp. 217-235.
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TU, Overview of (major?) Subspace Analysis Technig @ HCI-KDD -

Subspace 1 Subspace o

rw, ¢ g mniltiple clustering solations

* Patterns may be found in subspaces (dimension combinations)
* Patterns may be complementary or redundant to each other

Holzingar Groug 61 T09.049 07

TU, High-Dimensional Data e.g. from patient records @HCIKDD A

of Records

Hotringar Groun 6 ToRDEROr
TU, challenges in High-Dim Data — Curse of Dimensionality @HCIKDD A
. Ha.pl P
= Concentration Effect mﬁdm
49 dHae) P Walirn — ot d{g.p) = d{g.p")

= Discriminability of similarity gets lost
= Impact on usefulness of a similarity measure
= High-Dimensional Data is Sparse

s i

MI = = 5 WIU;M L[] =
Optimization Problem and Combinatorial Issues
Feature selection and dimension reduction
24-1 possible subsets of dimensions ( -> subspaces)
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TU, Subspace Concept @HC-KDD -

Tatu, A, Maass, F, Faerber I, Bertini, E., Schreck, T, Seidl, T. & Keim, D. Subspace search and visualization to

make sense of in high-di i data. IEEE P onVisual ytics Science
and Technology (VAST), 2012 Seartle IEEE, 63-72, doi:10.1109/VAST.2012.6400488.
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TU, High-Dimensional Data - The Curse of Dimensionality @HCIKDD A

= Many irrelevant

dimensions
o F
= Correlated and |,..;;'1":;.'3..,... I
redundant dimensions Wt
. § i el ™
= Conflicting dimensions RN subspace fo

= Wrong Interpretation of
global analysis results

LY chusber 2
- ¢ % -
-
n
s

Beyer, K., Goldstein, )., Ramakrishnan, R. & Shaft, U. 1999, When is "nearest neighbor" meaningful?
In: Beeri, C. & Buneman, P. (eds.] Database Theory ICDT 99, LNCS 1540. Berlin: Springer, pp. 217-235.

Kriegel, H. P, Kroger, P. & Zimek, A. 2009. Clustering High-Dimensional Data: A Survey on Subspace
Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transactions on Knowledge
Discovery from Data (TKOD), 3, (1), 1-58, doi:10.1145/1497577.1497578.
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TU, Example: Full Space Clustering of High-Dimensional Data @HC-KDD -

MNormalized Distance
between records [ clusters

A
\\\\\\\\\\\\\\\\\\\\M\\\\\\\\\‘\\ \\ \\\\\ \\\\\\\\ \\\\U\\\ ‘\\\\\\\\\\\.\\}q

Data Records
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TU, Example of 12D Data -> 4095 subspaces (296 interesting) @HC-KDD -

@__):.-‘ ._- “ L I L T T e e T

R R e AT RO TR TR N R TR TR TRIN
vnwnuwnnuuhduuunnnnadnuuunl
'\z SEHEI e ke v oy
CEEWMTE IR S 0 R s s
R s st W I IR e s Rl i ses
SHHEE I s O T s O s
HEHPNMHJHQI SN N R ER A R
nnn"”Hunnquumnunnunuwuannnn

RN R R AT Y et S R TR TR T A IRAR TR Y
nnunuu-u“n~nuu~ummmm—mm; m
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TU, Motivation @ HCI-KDD 4

e
>a ¥
v %

Hund, M., Behrisch, M., Farber, I., Sedlmair, M., Schreck, T, Seidl, T. & Keim, D. 2015.
Subspace Nearest Neighbor Search-Problem Statement, Approaches, and Discussion,
Similarity Search and Applications, Springer, pp. 307-313,

Holringer Group L] T09.049 07

k-Mearest Nelghbor Query

distance function
set of dimensions

®

Query Object

Single Distance Function: d(’ - ’ )= R, basedon
fixed dimensions [shape, color, size, rotation]

TU, Application in a Clinical Scenario @ HCI-KDD -

(1) Relevant subspaces depend on the

patient and are unknown beforehand

Former

(2) Multiple subspaces might be relevant

(3) Subspaces helps to interpret the

nearest neighbors (semantic meaning)

Holzingar Group &7 T09.048 07

TU, Initial Subspace Model @ HCI-KDD 4

Relevance of Nearest Neighbors

A set of objects a, b, ¢ are NN of the query q in a subspace
s, iff a, b, and c are similar to g in all dimensions of s.
Relevance of a Subspace

A subspace is considered relevant, iff it contains relevant
nearest neighbors

%L . S

Dimensionality

Hund, M., Behrisch, M., Firbes, I, Sedimair, M., Schreck, T, Seidl, T. & Keim, D. 2015, Subspace Nearest Neighbor
Search-Probl, hes, and Di Similarity Search and Applications. Springer, pp. 307-313.
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TU, Motivation @ HCI-KDD 4

k-Hearest Neighbor Cue

distance function
set of dimenzions.

®

Query Object

k-Nearest Neighbors: Ranked list of most similar objects ' *

Holringer Groug 65 T09.049 07

TU, Subspace NN-Search: Definition and Characteristics @HCI-KDD -

1. Detect all previously unknown subspaces that are
relevant for a NN-search

2. Determine the respective set of NN within each

relevant subspace High-Dimension
Feature Space

Subspace NN Search - fiaceftad resulr view

Characteristics:
= Search for different NN’s in different subspaces
* Consider local similarity (instead of global)

* Subspaces are query dependent

* Subspaces are not an abstract concept but helps to
semantically interpret the nearest neighbors

Holringer Group L] T09.048 07

TU, Advantages of Subspace Modelling @ HCI-KDD -

= |nterpretability: reflects the semantic meaning
= |n which way are NN's similar to the query?
= = In all dimensions of the subspace

= Fulfills the downward-closure property

= Make use of Apriori-like algorithms for subspace
search

= No global distance function necessary
= Heterogeneous subspaces can be described

= Compute the nearest neighbors in every dimension
separately (with an appropriate distance function)

= Compute subspace by intersection

Holzingar Group n T09.048 07

TU, Effects in High-Dimensional Spaces @ HCI-KDD -

= Attention: Similarity measures lose their
discriminative ability

= Noise, irrelevant, redundant, and conflicting
dimensions appear

&

Query Object

ok om X

Holringer Group [ T09.048 07
TU, Again: What is a Relevant Subspace for NN-Search? @HCI-KDD -
- - * Nearest Neighbor

@ . T Search ?

T I
Subspace Clustering Subspace Qutlier Detection

Subspace clustering aims at finding clusters in different axis-
parallel or arbitrarily-oriented subspaces [1]

Subspace Outlier Detection search for subspaces in which an
arbitrary, or a user-defined object is considered as outlier [2].

[1] Kriegel, H. P, Kroger, P. & Zimek, A. 2{])9 Clustering Hqgh—l]lmenslunal Data: A Survey on
Subspace C ing, Pattern-Based C| g, and Cs C ing. ACM Transactions on
knowledge Discovery from Data (TKDD), 3, {1L 1-58, doi:10.1145/1497577.1497578.

[2] Zimek, A., Schubert, E. & Kriegel, H. P. 2012, A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387.
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TU, Query Based Interestingness M e for Di i @HCI-KDD -
distance to p distance to §
Non-Characteristic Chi.l'aﬂel:lilll: Data Distribution
Dimension Dimension
Holringer Groug T T09.048 07



TU, Discussion and Open Research Questions @ HCI-KDD L

TY, Query Based Interestingness M e for Di i @HCI-KDD
s b 1 el a1 __a
@ - A - S [N R P p—
a0 At S L | | ES R [T
_ — e B e e it B it
e T MR e e e
_— e — e e -
. sl —— -
= = L L L | N Y . A
" T . TS ) T |
query A query B
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TY, Further Subspace Cluster Visualization Techniques @HCI-KDD -

= VISA by Assent et al. (2007)
= CoDa by Giinnemann et al (2010)
= Morpheus by Miiller et al. (2008)

= Visual Analytics Framework by Tatu et al.
(2012)

Holringer Group 7% T09.048 07

TU, Always Remember: The curse of dimensionality @ HCI-KDD &

(1)Determine Nearest Neighbors per Dimension
(2) Efficient Search Strategy

(3) Query-Based Interestingness for Dimensions
(4) Subspace Quality Criterion (Depends on
Analysis Task)

(5) Evaluation Methods and Development of
Benchmark Datasets

(6) Multi-input Subspace Nearest Neighbor
Search

(7) Visualization and User Interaction

Holringer Groug 74 T09.049 07

TU, Visual Analytics for Subspace Steering QHCI-KDD

= Existing techniques: exploration of subspace clusters

= Visualizations to make sense of clusters and its
subspaces

Is the parameter setting appropriate for the data?
What happens if algorithms cannot scale with
the #dimensions?
= We need methods to steer algorithms while
computing relevant subspaces ot

= Pruning of intermediate results
= Adjust parameters to domain knowledge

Holringer Group ” T09.049 07

TU, Please remember some definitions @ HCI-KDD &

{a) 11 Objects in Ope Unit Bin g

Umensonc

Dimension a Dimersion &

b) 6 Obj One Unie Bi
(010 leces in Une:Unle Bin. o5 ¢ Obijecm ta. One Ut Bl

= Data in only one dimension is relatively packed

= Adding a dimension “stretch” the points across that
dimension, making them further apart

= Adding more dimensions will make the points further
apart—high dimensional data is extremely sparse

= Distance measure becomes meaningless—due to
equidistance

Holringer Group kLl T09.048 07

= Data set - consists of a matrix of data values, rows represent
individual instances and columns represent dimensions.

= Instance - refers to a vector of d measurements.

= Cluster - group of instances in a dataset that are more similar to
each other than to other instances. Often, similarity is measured
using a distance metric over some or all of the dimensions in the
dataset.

= Subspace - is a subset of the d dimensions of a given dataset.

= Subspace Clustering — seek to find clusters in a dataset by
selecting the most relevant dimensions for each cluster
separately .

= Feature Selection - process of determining and selecting the
dimensions (features) that are most relevant to the data mining
task.

Holringer Group L T09.048 07

TU, Summary: Subspace Clustering in medical data @ HCIKDD

Subspace NN Search - facetted remlt view | Feature Selection - single rend view

&
Y

i

e

Hund, M., Sturm, W., Schreck, T., Ulirich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015, Analysis of
Patient Groups and Immunization Results Based on Subspace Clustering. In: Guae, Y., Friston, K., Alda, F.,
Hill, 5. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250.
Cham: Springer International Publishing, pp. 358-368, doi:10.1007/978-3-319-23344-4_35.
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TU, The doctor-in-the-loop @ HCI-KDD &

— — o= -

3

|

Hund, M., Boehm, D, Sturm, W., Sedlmair, M., Schreck, T, Ulirich, T., Keim, D. A, Majnaric, L. &
Holzinger, A. 2016. Visual analytics for concept exploration in subspaces of patient groups: Making
sense of complex datasets with the Doctor-in-the-loop. Brain Informatics, 3, (4), 233-247,
doi:10.1007/s40708-016-0043-5.
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TU, Note: Interesting Clusters may ONLY exist in subspaces!!

Parsons, L., Haque, E. & Liu, H. 2004. Subspace
clustering for high dimensional data: a review.
SIGKDD Explorations 6, (1), 90-105,
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TU, Similar concept : Principal Component Analysis (PCA) QHCI-KDD

= We assume 'that
= 1) data sets concentrate to a low d-dim. linear subspace
= 2) axes of the subspaces are representations of the data
= 3)identifying the axes can be done by PCA

Holringer Groug L] T09.049 07

TU, Interesting = the least Gaussian @ HCI-KDD &

= Remember: Gaussian distribution maximizes the
entropy!

= Now the objective is to minimize the entropy:
* min H(t) fort = w’x
= (i.e. tis normalized)

Friedman, J. H. & Tukey, ). W. 1974. A projection pursuit algorithm for exploratory data
analysis. |EEE Transactions on Computers, 100, (9), 881-890.

Holringer Group 5 T09.049 07
TYU, Mapping the data from R° to [i? @HCI-KDD -
T Given a point cloud data set X and a covering U
| = simplicial complex
&
R fiX->R
A fiX->Z
% il U= {Uslaea
. ‘e
]
°® g —d(x,y)
P e 0 =€) exp| ——
P ¥
Singh, G., Mémoli, F. & Carlsson, G. (2007). Topological hods for the analysis of high

dimensional data sets and 30 object recognition. Eurographics Symposium on Point-Based
Graphics, Euro Graphics Society, 91-100,
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TU, @HCI-KDD oL

06 “What j
interestin
Projection Pursuit
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TU, Example: Miller-R Diabetes Study from 1979 (1/2) @ HCI-KDD A

= 145 diabetes patients

= 6 dimensional data set:
= 1) age,
= 2] relative weight,
= 3) fasting plasma glucose,

= 4) area under the plasma glucose curve for the three
hour glucose tolerance test (OGTT),

= 5) area under the plasma insulin curve for the OGTT,
= 6) steady state plasma glucose response.

= Method: Projection Pursuit (PP)

= Result: R® — R3

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a

| analysis. Diabetologia, 16, 1, 17-24.
Holringer Group L] T09.049 07
TU, Future topic: Topology based data analysis @ HCIKDD
ER-- sequence

FILTER COLOR SCALE

Basal-like
sparse dats [
4
aparse dafe
1
. tparse date
{ ot WrEyy, - .
‘\' ity “._ ER+ sequence
I-Like 4 il

& Narmal

Nicolau, M., Levine, A, ). & Carlsson, G, (2011) Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings
of the National Academy of Sciences, 108, 17, 7265-7270.
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TU, Huber (1985): “What is interesting?” SHCI-KDD &

e Projection pursuit : Find a subset of coordinates of
the data which display “interesting” features. Often the
selection of the subset of coordinates is manual, but there
are automated algorithms which can find these subsets
automatically also. Finally one has to inspect each

projection and decide if its “interesting”.

Huber P.J.: Projection pursuit. Ann. Statist. 13, 2 (1985), 435-525.

TU. Miller-Reaves Diabetes Study (2/2) SHCI-KDD &
55P3
. IL’Q,)
TN, df’a‘v e,/jl
: SN Ny
1 - -
e =, i LN

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a
Itidi ional analysis. Diabetologio, 16, 1, 17-24.
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TU, @HCI-KDD oL

Conclusion and
Future Challenges
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TU, slide 8-39 Future Outlook SHCI-KDD &

= Sometimes we have
= A small number of data sets
= Rare events — “little data”

= NP-hard problems (e.g. k-Anonymization, Protein-
Folding, Graph Coloring, Subspace Clustering, ...)

= Then we still need the “human-in-the-loop”

@ HCI-KDD -

Holringer Grou L 709,049 07

I-‘n'!- @ HCI-KDD -

TU, Future Outlook @HCI-KDD L

Questions

Holringer Groug ] 709,049 07

TU, Appendix: Nearest Neighbors @HCI-KDD L

* Time (e.g. entropy) and Space (e.g. topology)

= Knowledge Discovery from “unstructured” ;-)
(Forrester: >80%) data and applications of
structured components as methods to index and
organize data -> Content Analytics

= Open data, Big data, sometimes: “little data”
®* |ntegration in “real-world” (e.g. Hospital context)

= How can we measure the benefits of visual
analysis as compared to traditional methods?

= Can (and how can) we develop powerful visual
analytics tools for the non-expert end user?

Holringer Grou 92 709,049 07

TU, Sample Questions SHCI-KDD &

“Children learn effortlessly by
example and exhibit a remarkable

: ] capacity of generalization. The field
Lectures on the of machine learning, on the other
NearestNeighbor  hand, stumbles along clumsily in
Method search of algorithms and methods,
but nothing available today comes
even close to an average two-year-
old toddler ... “

E springer

Biau, G. & Devroye, L. 2016, Lectures on the nearest neighbor methad, Springer,
doi:10.1007/978-3-319-25388-6.

Holinger Groug 7 709,049 07

= Why would we wish at all to reduce the
dimensionality of a data set?

= Why is feature selection so important? What is the
difference between feature selection and feature
extraction?

= What types of feature selection do you know?

= Can Neural Networks also be used to select
features?

= Why do we need a human expert in the loop in
subspace clustering?

= What is the advantage of the Projection Pursuit
method?

= Why is algorithm selection so critical?

Holzingor Graum % 709,049 07

TU, Complexity and really BIG DATA @HCIKDD

@HCIKDD A

‘Thankyou!

Holringer Grou (3] 709,049 07

Ty, @HCIKDD A

Signaling Pathway vENA malacule m
|+ Carries genetic information
[+ Human DNA:

~310° Base pairs

= 4" Combinasors.

13 responsib

tein kinases | |ngylin

71 phosphorylation

lly

Metabolites

44 changed metabolites

Yugi, K. et al. 2014, Reconstruction of Insulin Signal Flow from Phosphoproteome
and Metabolome Data. Cell Reports, 8, (4), 1171-1183,
doi:10.1016/].celrep.2014.07.021,
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Appendix
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TU, Dimensionality reduction methods (selected) @HCI-KDD L

= Linear methods (unsupervised):
= PCA (Principal Component Analysis)
= FA (Factor Analysis)
= MDS (Multi-dimensional Scaling)
* Non-linear methods (unsupervised):
= |somap (Isometric feature mapping)
= | LE (locally linear embedding)
= Autoencoders
= Supervised methods:
= | DA (Linear Discriminant Analysis)
= Subspace Clustering with a human-in-the-loop
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TU, Example 1: PCA

@HCI-KDD oL

Vi, |

! I

* Subtract mean from data (center X)
* (Typically) scale each dimension by its variance

* Helpt 1o pay bess amtention i mageitude of dimenions
1

® Compute covariance matrix 5 S= ;x'x
® Compute k largest sigervectors of §
* These are the k principal

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Second Edition, New York, Springer, doi:10.1007/978-0-387-84858-7
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TU, Example 4: MDS: Find projection that best preserves d @HCIKDD
Saaaa ., 9
1
* Given n x n matrix of pairwise discances Ba" PEEF o 1
between dam paints pz 1 & 2 la |t °
* Compute n x k matrix X with coordinates of 2 2 Rk B | ‘ . = 2
distances with some linear algebra magic
M3 &t o 1| 4
® Perfarm PCA on this matrix X ] o
w1 p e o
x; Point in o dimensions I [N Ty |
3 e | wm mm ————
i Corresponding peint in r < o dimensio T o
& Distance between x, and g — e npnill| il el
Sen = v |
d;; Distance between y, and g; B s [ i
= i w2 e
diy— 8, | = o v o s |
» Define (e.g.)  Ely) ( -
L5
# Find y;'s that minimize £ | fient descent
» Invariant to translations, rotations aud sealings

Kruskal, ). B. 1964, Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,

29, (1), 1-27.
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TU, Example 7: Locally Linear Embedding (LLE)

"' ._.@m%

e(W)

Roweis, 5. T. & Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290, (5500),

2323-2326, doi:10.1126/5cience.290,5500.2323,

2
d(Y) = Zl Y, - ):,-w,,f,‘

i
Ed
H
H

106

TU, Example 2 ICA (Motivation: Blind Source Separation) @HCIKDD

= Suppose that there are k unknown
independent sources
s(t) = [s1(t)....,s:.(1)]T with Es(t) =0

= A data vector x(t) is observed at each time
point t, such that x(t) = A s(t)

where Aisa n X kfull rank scalar matrix

&D’.?‘O° ]
e Bl e L .
£ m|1;1:111ﬁ.%
s
BRI
AR
~ 450 8 HNES RS RTE &8
s \f\:“jf o -!f c"I\‘

Holzinger, A., Schever, R, Seaber, M., Wagner, . & Maller-Putz, G. 2012, Cs “ o B s of dge ¥ from
" Tawards in: Bohen, C, Khusi, 5., Uhotskd, L & Renda, M., (eds.) Information Technology in

Bio- and Medical Infoematics, Lecture Notes in Computer Sclence, LNCS 7451, Heldelberg, New York: Springer, pp. 166-168
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TU, Example 5: Latent Dirichlet Allocation (LDA) @ HCI-KDD -
= Al “Chilibren” [T i Wi s PP o Linweln Comicr,
M MLuox  ctoacs L i S g B of It i e gL S
PRGN e |every bt s mportann ot bl areas of =
A Hewrs sasd Moday I8

wi - The

[Mew Vork Phatmnc wit ench. The Suiliand

e st s are tosghe. will ot 5290000 The Hewest aleadig e
of the Lincwla. Crmr Comenlaltnd Comporaty § o will muske i sl

| dsnsticm, s

) kg o = 1

M Ny
plDa,B) = ].-.[ [;:-ZB,; o) (l-[ Zp|:".,,|ﬂ_f'rpln',,,. :J,,.|§I)dH,;
d=1* =1y

i®

Blei, D. M., Ng, A. Y. & Jordan, M. |. 2003.
Latent Dirichlet allocation. Journal of

Machine Learning Research, 3, (4-5), 993- « ] z w N

1022, A
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TU, Example 8: Autoencoders @ HCI-KDD -

; Compact
i P representation
o . /ofinput
min ¥ A(feog.x
MZI: (fog.)

= History: Dim-reduction with NN: Learning
representations by back-propagating errors
= Goal: output matches input

Rumelhart, D. A, Hinton, G. E. & Williams, R. J. 1986, Learning ions by back-p ing errors.
Nature, 323, 533-536.

Vincent, P, Larochelle, H., Lajoie, I, Bengio, Y. & Manzagol, P-A. 2010. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local dencising criterion. The Journal of Machine
Learning Research, 11, 3371-3408.

Holzingar Grougp w7 T09.048 07

TU, Example 3: Factor Analysis (FA) @ HCI-KDD -

= FA describes variability of observations given
unobserved latent variables = factors.

= Factors explain correlation between variables

= Similar to PCA, the difference is the conditional
probability of the data (i = diagonal matrix):

px|z) = N(x|Wz + p1, W)

Bishop, C. M. 2006. Pattern
Recognition and Machinge
Learning, Heidelberg,
Springer, Chapter 12.2.4
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TU, Example 6: Isomap @HCI-KDD -

A Global Geometric Framework
for Nonlinear Dimensionality
Reduction

Goal: Find projection oato nendinear mondfold
1. Construct eighborbood graph G:

For all x;.x;
onbvan & Tarmsbaum, ™ Vie de Siva.? johe C. Langford® I distigien(r,, 2} < ¢
s gt Then ade edge (z;,2;) t0 G

[ Y A i iy

2. Compute shartest distances along graph &zlx,, )

w—ir Ludaer - g e b T e
—— o e {5 by Floyd's algorithm)

g Amemiorl vemary inpti— VLI oty meeve s o 0% mpt

b [
st e sandly rarred i i daration t e the andiny
ol praetry of 8 dets 1oL Likke (latsil Sochigers st . privipel
omponent unatyus [FLA] it madtidsermcral g (MO ous aporaact

3. Apply wnltidimensional sealing to delr,, =)

http://isomap.stanford.edu/

ol o o et i of s ok, . gasaniand tn Carge
snprptctcay ta Tt nches

A

Tenenbaum, J. B., De Silva, V. & Langford, J. C. 2000. A global ic fi k for i
dimensionality reduction. Science, 290, (5500), 2319-2323, doi:10.1126/science.290.5500.2319.
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TU, Autoencoders are “old” @ HCI-KDD 4

= Sigmoidal neurons and backpropagation: Rumelhart*),
D. A, Hinton, G. E. & Williams, R. J. 1986. Learning
representations by back-propagating errors. Nature,
323, 533-536. )
Ay, z) = |ly — z|I3

= Linear autoencoders: Baldi, P. & Hornik, K. 1989. Neural
networks and principal component analysis: Learning
from examples without local minima. Neural networks,

2, (1), 53-58. _
i P

x

ABx — z||3

*) David Rumelhart (1942-2011) was Cognitive Scientist working on math. Psychology
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TU, Autoencoders -> Restricted Boltzmann Machines SHCI-KDD 5

= Based on Information processing in dynamical
systems: Foundations of harmony theory by
Smolensky (1986): Stochastic neural networks

where the unit activation i = probabilistic

1
Prio,=1)= 14 e-wetE, o

4 Binary hidden
or i h featares

w

Visible mavie
: E@@@Ea 5
Right: A restricted Boltzmann machine with

binaryhidden units and softmax visible units
Salakhutdinov, R., Mnih, A, & Hinton, G. (2007) Restricted Boltzmann machines for
collaborative filtering. ICML, 791-798,
Holringer Groug 19
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TY, Summary @HCIKDD

= Goal: Having m < p features
= Feature selection via
= A) Filter approaches
= B) Wrapper approaches
= C) Embedded approaches (Lasso, Electric net, see
Tibshirani, Hastie ...)
= Feature extraction
= A) Linear: e.g. PCA
= B) Non-linear: Autoencoders (map the input to the
output via a smaller layer)
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