'!_:rg_ Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD +4-
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~*~  Lecture 07 Dimensionality Ag®
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with the Doctor-in-the-Loop
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Tutor: markus.plass@student.tugraz.at

http://hci-kdd.org/biomedical-informatics-big-data
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TYU ML needs a concerted effort fostering integrated research @HCI-KDD

http://hci-kdd.org/international-expert-network
Data

Interactive pjning Knowledge Discovery

Data Learning  Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining

TDM 9 Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
@a.ho]zinger@héi-kdd_org 0 ’

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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TU Keywords @ HCI-KDD

Grazm

= Classification

" Clustering

" Curse of dimensionality

" Dimensionality reduction
" |[nterestingness

= Feature extraction

" Feature selection

= Mapping

= Subspace analysis

= Subspace clustering

Holzinger Group 3 709.049 07



TU

Grazm

Advance Organizer (1/2) @ HCI-KDD +£-

Artificial neural network (ANN) = a computational adaptive model (inspired
by biological neural networks), consisting of interconnected groups of artificial
neurons; processes information using a connectionist approach.

Association rule learning = a set of techniques for discovering interesting
relationships, i.e., “association rules,” among variables in large databases used
for data mining;

Classification = a set of techniques to identify the categories in which new
data points belong, based on a training set containing data points that have
already been categorized; these techniques are often described as supervised
learning because of the existence of a training set; they stand in contrast to
cluster analysis, a type of unsupervised learning; used e.g. for data mining;

Cluster analysis = statistical method for classifying objects that splits a diverse
group into smaller groups of similar objects, whose characteristics of similarity
are not known in advance; a type of unsupervised learning because training
data are not used - in contrast to classification; used for data mining.

Data mining = a set of techniques to extract patterns from large data by
combining methods from statistics and machine learning with database
management (e.g. association rule learning, cluster analysis, classification,
regression, etc.);

Knowledge Discovery (KD) = process of identifying valid, novel, useful and
understandable patterns out of large volumes of data

Holzinger Group 4 709.049 07



TU Advance Organizer (2/2) @ HCI-KDD £

Grazm

= Deep Learning = class of machine learning algorithms using layers of non-linear
processing units for feature extraction (remember: features are key for learning and
understanding) - learning representations from data;

= Knowledge Extraction = is the creation of knowledge from structured (relational
databases, XML) and unstructured (text, documents, images) sources;

= Multimedia = several data of different modalities are processed at the same time, i.e.
encompassing audio data (sound, speech), image data (b/w and colour images), video
data (time-aligned sequences of images), electronic ink (sequences of time aligned 2D
and 3D coordinates of a stylus, pen, data gloves etc.)

= Principal Component Analysis (PCA) = statistical technique for finding patterns in high-
dimensional data;

= Sparse Data =

= Supervised learning = inferring a function from supervised training data on the basis of
training data which consist of a set of training examples, the input objects (typically
vectors) and a desired output value (also called the supervisory signal).

= Supervised learning algorithm = analyzes the training data and produces an inferred
function, called a classifier (if the output is discrete) or a regression function (if the
output is continuous); the algorithm generalizes from the training data to unseen
situations.

= Support vector machine (SVM) = concept for a set of related supervised learning
methods to analyze data and recognize patterns, used for classification and regression
analysis.

= Unsupervised learning = establishes clusters in data, where the class labels of training
data is unknown.
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TU Glossary @ HCI-KDD =

Grazm

= ANN = Artificial Neural Network

= ANOVA = Analysis of Variance

= AUC - area under the curve

= CDT = Clinical Decision Tree

= DM = Data Mining

= KDD = Knowledge Discovery from Data(bases)
" |LE = Locally Linear Embedding

= MDS = Multi Dimensional Scaling

= MELD = model for end-stage liver disease
= MM = Multimedia

= NLP = Natural Language Processing

= PCA = Principal Components Analysis

= ROC = Receiver Operating Characteristic
= SVM = Support Vector Machine
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TU Learning Goals: At the end of this lecture you ... @ HCI-KDD s

= . know the differences between classification
and clustering and why it is important for health;

= ... are aware that features are key to learning
and understanding;

= ... understand the curse of dimensionality;
= ... have an idea of dimensionality reduction;

" ... recognize the value of subspace clustering and
analysis with the doctor-in-the-loop;

» Understand why the question “What is
interesting?” is not easy to answer;
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TU Key Challenges @ HCI-KDD £

Grazm

= Uncertainty

= Validation

= Curse of Dimensionality

" Large spaces gets sparse

= Distance Measures get useless

® Patterns occur in different subspaces

" Pressing question: “What is interesting?”

Holzinger Group 8 709.049 07



TU Agenda for today @ HCI-KDD £

= 00 Reflection — follow-up from last lecture
= 01 Classification vs. Clustering

" 02 Feature Engineering

" 03 Curse of Dimensionality

= 04 Dimensionality Reduction

= 05 Subspace Clustering and Analysis

= 06 Projection Pursuit

= 07 Conclusion and Future Challenges

Holzinger Group 9 709.049 07



IH. @ HCI-KDD £~

J0 Reflection

——_—— '5?-—'-!.:__:3_ 5
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TU  Warm-up Quiz

Grazm

@ HCI-KDD 4=

Crrrent FH’HI':'HI Kharre et Fﬂ'fﬂ::'ﬂf Marte

5y

} I Risk factors Risk factors
! Pathogenesis Pathogenesis
; Disorders "': Disorders
Pathophysiology Pathophysiology
Findings ' Findings
protein secondary sequence structure e Tests :‘
structure s Treatments 2
1 phyvsician
past present future
Gene 1
P{on) 0.8
P{off) 0.2
Gene 2 Gene 1 Gene 1 Gene 2 Gene 1 Gene 1
o off [+)] off

Plon) 0.3 0.6 Plon) 0.3 0.6
Plotf) 0.7 0.4 @ e Plofi 0.7 0.4

Prognosis Gene2on  Gene2on  Gene 2 off Gene 2 off

Gene 3 on Gene 3off GeneZon Gene 3 off
Pigood) 0.6 0.1 0.9 0.5
P{poor) 0.4 0.9 0.1 0.5
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Three types of Probabilistic Graphical Models @ HCI-KDD -

Grazl

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

@
P(X)z%exp(z XX +be) @l@..
g DI d

[ N //Q Directed: Bayes Nets, useful for designing

" \( i models (Details: Murphy 10)
X 4

/( % K

‘ p(x) = | | p(zk|pay,)

k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

Tutorial on Factor Graphs http://deepdive.stanford.edu/inference
Holzinger Group 12 709.049 07



Iy @ HCI-KDD -4~

01 Classification
vs. Clustering

Holzinger Group 13 709.049 07



TU  Classification (A) vs. Clustering (C) — Intro Quiz @ HCI-KDD £

1) The data is not labeled (clA/Clu)? &

2) ldentify structure/patterns (clA/Clu)?

3) Predicting an item set, identify to which set of
categories a new observation belongs (clA/Clu)?

4) Assigning a set of objects into groups (clA/Clu)?

5) Having many labelled data points (clA/Clu)

6) Using the concept of supervised learning (clA/Clu)?
7) Grouping data items close to each other (clA/Clu)?
8) Used to explore data sets (clA/Clu)?

Holzinger Group 14 709.049 07



TU Classification vs. Clustering

Grazm

@ HCI-KDD -4~

= Classification

Supervised learning, Pattern
Recognition, Prediction, ...)
Supervision = the training
data (observations,
measurements, etc.) are
accompanied by labels
indicating the class of the
observations;

New data is classified
based on the training set

Important for clinical
decision making
Example: Benign/Malign
Classification of Tumors

Holzinger Group

15

= Clustering

= Unsupervised learning, class

discovery, ...

The class labels of
training data is unknown

Given a set of
measurements,
observations, etc. with
the aim of establishing
the existence of clusters
in the data;

Example: K-Means
Algorithm for disease
clustering

15 709.049 07



TU

Grazm

Discovery vs. Prediction

@ HCI-KDD ==

Known
Classes
Class A® Training Set
Class Be
l | Train Model |
o -
2\

Independent
Test Set
Apply Model C (“Unknowns”)

Class A Class B
Class Prediction

SUPERVISED LEARNING UNSUPERVISED LEARNING

Dataset

Unknown
Classes

Cluster Samples

ASS|gn Class Labels

Class A Class B

Class Discovery

Ramaswamy, S. & Golub, T. R. (2002) DNA Microarrays in Clinical Oncology. Journal of Clinical Oncology, 20, 7, 1932-1941.

Holzinger Group
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TU @ HCI-KDD +£-

GGGGG

Why do we need

Classification
in Health Informatics?

Holzinger Group



TU  Why do we need Classification? @ HCI-KDD -

Grazm

V. ol | | A | x: data points

i i C,: Cancer present

\- C,: Cancer absent

x -- set of pixel intensities
= Typical questions include:
" |s this protein functioning as an enzyme?
" Does this gene sequence contain a splice site?
" |s this melanoma malign?

" Given object x — predict the class label y
= If y € {0,1} — binary classification problem
= Ify € {l,..,n}andisn € N — multiclass problem
" If y € R — regression problem

y: labels

features

decision
boundary

Holzinger Group 18 709.049 07



TU Learning Process: Algorithm selection is crucial @ HCI-KDD -

Grazm

Collect Select Select Train Evaluate
model classifier classmer

Identifican
» of require
Kotsiantis, S. B. (2007) Supervised machine data
learning: A review of classification techniques. I !

Informatica, 31, 249-268. .
» Data pre-processing

Classifier

i ) Defimtion of
training set
L | Algorithm (| o
selection
Wolpert, D. H. & Macready, W. G. 1997. No
free lunch theorems for optimization. Parameter tuning —*|_ lraining
Evolutionary Computation, IEEE Transactions t i _
on, 1, (1), 67-82 FEvaluation
PorAml ) with test set
>_P(dy|f,m,a1) = Y P(dy,|f, m,a2).
f

f
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TU (Classifiers Examples @ HCI-KDD £

Grazm

= Naive Bayes (NB) — see Bayes’ theorem with
independent assumptions (hence “naive”)

= Decision Trees (e.g. C4.5)
" NN —if x; is most similartox, = y; =y,

T; = argmingepllz — zi||° = yi = y;

" SVM -—a plane/hyperplane A S
3 repeat

separates two classes of data— ¢ fri=t..ndo )

: . e ) 5 H(y)=Alyey) +w! ¥xy) —w¥(xi, yi)
very versatile for classification 7 e ZrEe 1Y) )

. . 8: if H(¥) = & + ¢ then
and clustering — also via the o SeSU{F)

. . . . . 10: W optimize primal over § = | J; §;

Kernel trick in high-dimensions i _oax

13: until no 5; has changed during iteration

Finley, T. & Joachims, T. Supervised clustering with support vector machines. Proceedings of the 22nd

international conference on Machine learning, 2005. ACM, 217-224.
Holzinger Group 20 709.049 07



TU SVM - Vapnik, 1992 @ HCI-KDD -

Grazm

= Uses a nonlinear mapping to &
transform the original data

(input space) into a higher o ¢ :
dimension (feature space) .\'ﬂ;}

= = classification method for both linear and nonlinear data;

= Within the new dimension, it searches for the linear optimal
separating hyperplane (i.e., “decision boundary”);

= By nonlinear mapping to a sufficiently high dimension, data
from two classes can always be separated with a hyperplane;

= The SVM finds this hyperplane by using support vectors (these
are the “essential” training tuples) and margins (defined by the
support vectors);

Holzinger Group 21 709.049 07



TU SVM vs. ANN

Grazm

@ HCI-KDD -4~

= Deterministic algorithm
= Nice generalization
properties

®" Hard to learn —learned in
batch mode using
quadratic programming
techniques

= Using kernels can learn
very complex functions

Holzinger Group 22

ANN

3
INPUTS OUTRUT

Ix

= Nondeterministic algorithm

= Generalizes well but
doesn’t have strong
mathematical foundation

= Can easily be learned in
incremental fashion

= To learn complex
functions—use multilayer
perceptron (nontrivial)

709.049 07



TU Clinical use: SVM are more accurate than ANN G HCI-KDD £

Grazm

100 r

80 r

Sensitivity

40 |

20

0 / ! | | ! !
0 20 40 60 80 100
100-Specificity

Kim, S. Y., Moon, S. K., Jung, D. C., Hwang, S. I., Sung, C. K., Cho, J. Y., Kim, S. H,, Lee, J. & Lee, H.
J. (2011) Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support
Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network.

Korean J Radiol, 12, 5, 588-594.
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TU Example: Multiclass cancer diagnosis (for Exercise) @ HCI-KDD +£-

Grazm

.
da | l
I | -
IIWIWWW%UMUMI i SAMPLES
BR BL ©On8 OO LE LU LY ME ML OV PA PR RBE UT
e e |0 | =
o |
b CLUSTERING |
TE Ll o ] l
S 12 | c
eoleal (S0 % | o DATASET MOLECULAR |
o e S I i (16,063 Genes, 218 Human Tumor Samples) ol
Ll | s |® a" a ‘ w
o [T e [333 pnRERRRERE RRR N[>
‘i',a_o ._i.- BR PR LU COLY BL ML UT LE RE PA OV ME CNS =
e % =*
a8/ 0 o [0, 0 o I
'. -" th‘:
l PSA
4ER
e g
3 - A [-] +1a 3 30

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe, E. & Mesirov, J.
P. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of
Sciences, 98, (26), 15149-15154, doi:10.1073/pnas.211566398.
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TU Counterexample: Move problem to a feature space H @ HCI-KDD -

Borgwardt, K., Gretton, A., Rasch, J., Kriegel, H.-P., Scholkopf, B. & Smola, A. 2006. Integrating
structured biological data by kernel max. mean discrepancy. Bioinformatics, 22, 14, e49-e57.
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TU @ HCI-KDD +£-

GGGGG

Why do we need

Clustering
in Health Informatics?

Holzinger Group



TU  Why do we need Clustering? @ HCI-KDD

Grazm

= Group similar objects into | wgg g |
clusters together, e.g. B SN E -

" For image segmentation I

= Grouping genes similarly affected by a disease

= Clustering patients with similar diseases

= Cluster biological samples for category discovery
" Finding subtypes of diseases

= Visualizing protein families

" |[nference: given x;, predict y; by learning f
" No training data set — learn model and apply it

Holzinger Group 27 709.049 07



TU Example K-means @ HCI-KDD

Grazm

= Partite a set of n observations into k clusters so,
that the intra-cluster variance is argmin

" p ...variance (objective function)
" S; ... cluster

" ¢j ... mean (“centroid” for cluster j)
Distance “medoid”

= D ... set of all data points x;
" k... number of clusters

l‘)

k n
v(D) = arg?“n-z'.-n,> : >: |(z; — ¢;)

j=1 i=1

Jain, A. K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31,
(8), 651-666, doi:http://dx.doi.org/10.1016/j.patrec.2009.09.011.
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TU Example @ HCI-KDD £

Grazm

Algorithm 1: Example for a classical weight balanced A-means algorithm

Input: d, k,n € N, X := {x1,...,: ra} CR% S:= {s1,...,5:} C R
Output: Clustering C' = (('y,.... (')) of X and the arithmetic means ¢q.. .., Ck
as sites

I. Partition X into a clustering €' = (C',..., (') by assigning x; € X to a cluster
C'; that is closest to site s; € S.

2. Update each site s; as the center of gravity of cluster C;: if |C';| = 0, choose
s; = a7 for a random [ < n with a; # s; for all j < k. If the sites change, go to

(1)

Merely an increase in awareness of physicians on risk
factors for ARA in children can be sufficient to change their
attitudes towards antibiotics prescription.

Our results can also be useful when preparing
recommendations for antibiotics prescription and to guide
the standardized health data record.

Yildirim, P., Majnari¢, L., Ekmekci, O. I. & Holzinger, A. 2013. On the Prediction of Clusters for Adverse
Reactions and Allergies on Antibiotics for Children to Improve Biomedical Decision Making. In:
Lecture Notes in Computer Science LNCS 8127. 431-445
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TU

Grazm

Summary: The 10 top algorithms everybody should know @ HCI-KDD -

CA.5 Wau et al. (2008) Top 10 algorithms in data mining. Knowledge & Information Systems, 14, 1, 1-37.

= for generation of decision trees used for classification, (statistical classifier, Quinlan (1993));
k-means

= simple iterative method for partition of a dataset in a user-specified n of clusters, k (Lloyd
(1957));

A-priori
= for finding frequent item sets using candidate generation and clustering (Agrawal & Srikant
(1994));
EM

= Expectation—Maximization algorithm for finding maximum likelihood estimates of parameters
in models (Dempster et al. (1977));

PageRank

= asearch ranking algorithm using hyperlinks on the Web (Brin & Page (1998));
Adaptive Boost

= one of the most important ensemble methods (Freund & Shapire (1995));
k-Nearest Neighbor

= a method for classifying objects based on closest training sets in the feature space (Fix &
Hodges (1951));

Naive Bayes

= can be trained efficiently in a supervised learning setting for classification (Domingos &
Pazzani (1997));

CART

= (Classification And Regression Trees as predictive model mapping observations about items to
conclusions about the goal (Breiman et al 1984);

SVM support vector machines offer one of the most robust and accurate methods among all well-
known algorithms (Vapnik (1995));
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TU @ HCI-KDD 4=

02
Feature Engineering

“Applied Machine Learning is basically feature engineering”.
Andrew Y. Ng, VP & Chief Scientist of Baidu;
Co-Chair/Founder of Coursera; Professor at Stanford University

http://www.andrewng.org
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TU  Advance Organizer @ HCI-KDD £

" Feature:= specific measurable property of a
phenomenon being observed.

" Feature engineering:= using domain knowledge
to create features useful for ML. (“Applied ML is
basically feature engineering. Andrew Ng”).

" Feature learning:= transformation of raw data
input to a representation, which can be
effectively exploited in ML.

Holzinger Group 32 709.049 07



TU Feature Space Basic Definitions @ HCI-KDD

Grazm

" |ntuitively: a domain with a distance function
= Formally: Feature Space ¥= (D, d)

= D = ordered set of features

= d: D XD - R{ ... atotal distance function; true for
"Vp,q €ED,p *q:d(p,q) > 0 (strict)

= and must be reflexive and syrpmettric Xz x € R?
. arge ;
Input (|abg,3|) 1
xeRY Y .
- A ~ * . :

L ]
X1 Xa | X3 | X4 5 ° ? .
0.32 | -0.27 | +1 0] 082 1 o o
-0.12 | 0.42 -1 1] 022 0 ] °
1 1
0 1

0.06 | 035 | -1 -0.37
091 | -0.72 | 41 -0.63 [

n examples

Each example (row) is now a
d+1-dimensional vector

: . o X1
Each input is a point in

. . ‘a"‘
Image credit to Pascal Vincent X3, . %Xy a d-dimensional vector space
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TU  Metric Space (e.g. Euclidean Vector Space) @ HCI-KDD -

Grazm

A Metric Space is a pair (X, d) where
X isaset and d: X x X — RT, called the metric, s.t.

1. For all z,y,z € X, d(z,y) < d(z,z) + d(z,y).
2. For all z,y € X, d(z,y) = d(y, x).

3. d(z,y) =0 if and only if z = y.

Remark 1. One example is R? with the Euclidean metric. Spheres S™ endowed
with the spherical metric provide another example.

d: X >R

dlz,z) =0

2 z') symmetry

d(z',z*) < d(z',z°) + d(2°, 2°) triangle inequality
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TU Similarities of feature vectors @ HCI-KDD -2~

Grazm

() a2

Euclidian norm Manhattan norm Maximums norm
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TU Feature Selection: Overview @ HCI-KDD £

Grazm

All features
v Y
stlES SZ
® 9|& 9 ® Y
| ¥
Y B Y
Filter Predictor Embedded
approaches ‘ approaches
|
Yy Wrapper . ‘/l"—
Features Featurua‘ Predictor
approaches | L~ |
\J o~ S
F‘rr:dictur. [Fuuturus Predictor LBSSC.U
- - Elastic Net

Subset selection:
forward selection
backward selection
floating selection

Image credit to Chloe Azencott
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TU Feature Selection vs. Feature Extraction G HCI-KDD &«

Grazm

" Feature selection is just selecting a subset of the
existing features without any transformation

" Feature extraction is transforming existing
features into a lower dimensional space

X, e X, - (Tx])
X I Y1
2 X xz x?
. feature selection in . feature extraction YE f

F - } —

X, Yy

| "M | I M |

Xy XN | Xy

Blum, A. L. & Langley, P. 1997. Selection of relevant features and examples in machine learning.
Artificial intelligence, 97, (1), 245-271.
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TU

GGGGG

@ HCI-KDD -

Holzinger Group

03 Curse of
Dimensionality



TU Remember: The curse of dimensionality @ HCI-KDD

Grazm

1 dimension;
10 positions

2 dimensions:
100 positions
L

Bengio, S. & Bengio, Y.
2000. Taking on the curse
of dimensionality in joint
distributions using neural
networks. IEEE Transactions
on Neural Networks, 11,
(3), 550-557.

» 3 dimensions:
1000 positions!

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html
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TU Examples for High-Dimensional Biomedical Data (1/6)

Grazm

@ HCI-KDD 4=

= Medical Image Data (16 - 1000+ features)

Larvni | Loval 1l Lawwl 0 Lirval 1Y Lawvad ¥

—

Papilimry-miculos -
aarmal intorface |

Raticular dermis —

Subcutanesous 4
BT f

http://qgsota.com/melanoma/

MEG Brain Imaging
120 locations x 500 time points

x 20 objects

MEG0633

Holzinger Group

g |
¥y
1
"
Nature 508, 199-206
do0i:10.1038/nature13185
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TU Examples for High-Dimensional Biomedical Data (2/6) @ HCI-KDD £

Grazm

" Biomedical Signal Data (10 - 1000+ features)

*'“"'I-;,'J A e, ﬁ ,awf.,ﬂ'\rﬂ""*'-' .,.‘ul.nliﬁ

.‘. f # "

-l l.*‘--'l IH " 1-. I-I‘\f"-lh"l-‘ f,r' ""J.'". ‘u \l"ﬂl'i "-"ﬁ‘r]l.lll"
A fr Il“| r " r"" M - -.I
fil LY | " W :..,.I' "'l. ! TRV F \ I'” 8 ’ |L| | W y U LAS \J..,F",I’Ibl »

1 Hr"'.

i
. 1 4 = | ™ s S ¥ g i
AL/ AV all¥ I ) e 1IJ" v N W ! '.-"'-.“J!w“""wI ""\"f‘f"‘f
"t J
A . A ] P ._n o
y |'.|I ,Jh. # | h -hl -_4" y "I_hl il\\ ‘.,‘ I-' \.f ‘ ! ‘l"'l U] ¥ }J\"f ||'
“a 1'|. w v

M '- 'l. A A A
44 1”"‘1 v VAA' AVATAS! JI VAN
e v M N
Aot 'I N N A\ YA
|'Fr ﬁ | 4 |4'F * .* '- rf’l
= ,I \f L‘rr; ld Y '.,,'l 5.’_1_! V ¥ r 1 IIL..1|

“ :J-\: k‘f\' "'*r;-»,‘; 1‘-.-"{‘ Y |"I '.1 ‘,.,..\___"“‘ \t “'-._.a.'.m-d \

0 0.3 | 15 2

Iime (sec

http://www.mdpi.com/1424-
8220/14/4/6124/htm
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@ HCI-KDD 4=

Examples for High-Dimensional Biomedical Data (3/6)
= Metabolome data (feature is the concentration

Grazm

TU

Histidine
Succinic acid/methyl-malonic acid
Asparagine

Glycine
Arginine
Lysine
aline
Omithine

Glutamine
Thiamine
Allantoin
dTMP

Relative conc. ﬁﬁv

-2 -1 0

:
o

FTTETTEIT]

4 11
A

[ | Pyridoxal phosphate

| Pantothenic acid

IMP

Tyrosine

Nicotinic acid

H Cytosine
N-aceryl-glucosamine
Sap oo _

Aminolevulinic acid

mmaxtmnw:ﬁ_:m

omocysieineg
1L | SAM

TumpP
1| Glutamate
MP
uaning
Agmatine
Tryptophan
SSG
nne
Putrecine
L-camitine

rmine
Glutathione (GSH)
ridine
Cysteine
Nicotinamide
AICA
Adenosine
Riboflavin
ine
ﬁw
: Thymidine

%rﬁ%ﬁmrﬁmﬁ#

_| Thymine

Uracil

| Uridine
Cystathionine
Deoxyguanosine

Adenine
,, Guanosine
7 L | Leucine/isoleucine
- Methyltetrahydrofolate
1 | I Hypoxanthine

UPS, , W =K
mgm') SNISNT

of a specific metabolite; 50 — 2000+ features)

709.049 07

http://www.nature.com/ncomms/2015/151005/ncomms9524/fig_tab/ncomms9524 F5.html
42
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TU Examples for High-Dimensional Biomedical Data (4/6)

Grazm

@ HCI-KDD £

Microarray Data (features correspond to genes, up to 30k features)

raw data quantification gene expression
matrices data matrix
quantifications samples

genes

spots

quantification daturm

\ gane
expression
lewvel

publications

extarnal links {0 PubiMed)

SOUNCE gerie
(2.9 lamanarmy) [e.g. GENEANK)

Holzinger Group 43

sample annaotation
samples f_|‘

gene expression
matrix

gene axprassion lavels

genes
=

gena annotation

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock,
G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W.,
Ball, C. A. & Causton, H. C. 2001. Minimum
information about a microarray experiment
(MIAME)—toward standards for microarray data.
Nature genetics, 29, (4), 365-371.
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TU Examples for High-Dimensional Biomedical Data (5/6) @ HCI-KDD -

Grazm

» Text > 10° documents X 10° words/n-grams
features correspond to words or terms, between
5k to 20k features

= Text (Natural Language) is definitely very
important for health: :

= Handwritten Notes, Drawings
= Patient consent forms

= Patient reports

= Radiology reports

= \/oice dictations, annotations

" Literature !!!

https://www.researchgate.net/publication/255723699 An_Answer_to_Who_Needs_a_Stylus
_on_Handwriting_Recognition_on_Mobile_Devices
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TU Example for high-dimensional biomedical data (6/6) @ HCI-KDD -

Signaling Pathway » DNA molecule

13 responsible « Carries genetic information

protein kinases * Human DNA:
—310° Base pairs
— 4" Combinations

8 phosphorylated
responsible protein kinases

d—

Metabolic Enzymes

. 2 | 71 phosphorylation
Thought Experiment:

198 responsible 94 allosterically

metabolic enzymes . :
ALl | - 1080 Elementary particles S regulated responsible
26 phsphorylated - in the universe _ metabolic enzymes

responsible metabo + 10% Time steps since 198 l 226

enzymes — ,,big bang" :;flt_anzymatlt_: allosterlc_
W< v ) ) - - regulation regulation
» 10'20 Possible ,computations” §

Metabolites : in the universe. ..

R - 47 is faaaaaar larger! 35
44 changed metabolites * < 4 g allosteric

effectors

Yugi, K. et al. 2014. Reconstruction of Insulin Signal Flow from Phosphoproteome
and Metabolome Data. Cell Reports, 8, (4), 1171-1183,
doi:10.1016/j.celrep.2014.07.021.
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TU  Why are many features problematic? @ HCI-KDD £

= Hyperspace is large — all points are far apart

= Computationally challenging (both in time & space)
= Complexity grows with n of features

= Complex models less robust — more variance

= Statistically challenging — hard to learn

" Hard to interpret and hard to visualize (humans are
bound to R3/R2!)

= Problem with redundant features and noise

= Question: Which algorithms will provide worse
results with increasing irrelevant features?

= Answer: Distance-based algorithms generally trust
all features of equal importance
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TU Space and Time: Simple example on gait analysis @ HCI-KDD -

P,
PG i -
e 1] P, w BT 2%,
- P'ﬂ-_".' _\/, Iy"u = 1F 15
A B £ PC.IK) . P, = 0.T% (rosicoal)
- i, T
(o anglas = W * PCs + residual
1

\ thigh

i shank

/ foot

C normal walking obstacle staircase

g
Dominici, N., lvanenko, Y. P., Cappellini, G., Zampagni, M. L. & Lacquaniti, F. 2010. Kinematic
Strategies in Newly Walking Toddlers Stepping Over Different Support Surfaces. Journal of
Neurophysiology, 103, (3), 1673-1684, doi:10.1152/jn.00945.2009.

'1|

Vi
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TU

GGGGG

@ HCI-KDD -

04 Dimensionality
Reduction

Holzinger Group



TU  Why should we reduce the dimensionality? @ HCI-KDD %=

" Data visualization only possible in R2 (R3 cave)

* Human interpretability only in R2/R3
(visualization can help sometimes with parallel
coordinates)

= Simpler (=less variance) models are more robust
= Computational complexity (time and space)

" Eliminate non-relevant attributes that can make
it more difficult for algorithms to learn

" Bad results through (many) irrelevant attributes?

» Note again: Distance-based algorithms generally
trust that all features are equally important.
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TU Problem @ HCI-KDD +£-

Grazm

" Given n data points in d dimensions
= Conversion to m data points in r < d dimension
* Challenge: minimal loss of information *)

= *)this is always a grand challenge, e.g. in k-Anonymization —
see later

= Very dangerous is the “modeling-of-artifacts”
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TU_ Approaches @ HCI-KDD -4

" Linear methods (unsupervised):
" PCA (Principal Component Analysis)
= FA (Factor Analysis)
= MDS (Multi-dimensional Scaling)
" Non-linear methods (unsupervised):
" [somap (Isometric feature mapping)
" LLE (locally linear embedding)
" Autoencoders
= Supervised methods:
" DA (Linear Discriminant Analysis)

= Subspace Clustering with a human-in-the-loop

Holzinger Group 51 709.049 07



TU

Grazm

Example 4: MDS: Find projection that best preserves d

@ HCI-KDD -4~

® Given n x n matrix of pairwise distances
between data points

® Compute n x k matrix X with coordinates of
distances with some linear algebra magic

® Perform PCA on this matrix X

x; Point in d dimensions

y; Corresponding point in r < d dimensio

0i4 Distance between z; and T

d;; Distance between y; and y;

e Define (e.g.) [:[Y] i Z

i

(u’u —;‘iU)
0ij

pl |p2 |p3 p5
pl |0 1 2 1
p2 |1 0 2 1
p3 |2 2 0 3
pd |3 4 1 1
p5 |1 1 3 0
r o
seatne
NEW YORK
*Hancisco i Beo e
IEL; ErsT)
*ANGELES m
HOUSTON
0 250 500 man
TmEs [souTH)

CITIES Lru.unnmmuuu sk sear B

587 212 TOI 1936 604 748 2139 2182 543
L1y 920 940 (745 B8 713 1858 (T37 597
212 920 B79 B3I 726 31 549 1021 1494
TOl 540 879 1374 968 W20 1645 189 (220
1936 [T45 B3 374 2339 245/ 347 959 2300
604 1188 IT26 968 2339 1092 2594 2734 923
T4B TI3 1631 420 2451 1092 25T 2408 205

239 1858 949 1645 347 2394 2571 678 2442
2182 IT3T 1021 1891 959 2734 2408 678 2329
543 597 494 1220 2300 923 205 2442 2329

e Find y;’s that minimize E by gradient descent

e Invariant to translations, rotations and scalings

Kruskal, J. B. 1964. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,

29, (1), 1-27.

Holzinger Group
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Iy @ HCI-KDD 4=

05 Subspace
Clustering™
and Analysis

* Two major issues
(1) the algorithmic approach to clustering and
(2) the definition and assessment of similarity versus dissimilarity.
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TU What is subspace clustering? @ HCI-KDD £

Grazm

= Definitions:

= K clusters

= N data points

= D dimensions (original space)

» d dimensions (latent subspace)

= Subspace Clustering is the process of clustering
data whilst reducing the d of each cluster to a
cluster-dependent subspace

Agrawal, R., Gehrke, J., Gunopulos, D. & Raghavan, P. 1998. Automatic subspace clustering of high
dimensional data for data mining applications. SIGMOD Rec., 27, (2), 94-105, doi:10.1145/276305.276314.
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TU Visual Analytics Pipeline @ HCI-KDD -

Grazm

Visual Data Exploration

O User interaction

VISUE“SEtIDn
Mapping
Transformation
O Model
visualisation K led
1—* Data Model nowledge |
bmldlng
Data
mining

Models
Parameter
refinement

Automated Data Analysis

Feedback loop

Keim, D., Kohlhammer, J., Ellis, G. & Mansmann, F. (eds.) 2010. Mastering the Information
Age: Solving Problems with Visual Analytics, Goslar: Eurographics.

http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf
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TU High-Dimensional Data e.g. from patient records @ HCI-KDD -

Grazm

N Large Amount of Dimensions

Product Categories

Batles Batles
Bike and Hydration Tiesand  Bike and Hydration Tires and
Geogiaphy  Pscks  Cages Clesners Helmets  Packs  Locks Pumps  Tubes  Racks  Cages Clesners Helmets  Packs  Locks  Pumps  Tubes Socks  Tights  Vests  BottomBr Brakes  Chains  Cranksets Derailleur Forks  Handlebai Headsets Mountsin Pedals  Rosd Fram Ssddles TouringFriWheels  Road Bike:1
Wirgiria £2,362 45 £133 £2,021 £47E £180 €84 2 £B36 £39 £231 £1243 £302 £18 €3 €1 £1472 £42 £15 £832 £286  £1,684 £151 £31 €277 £1 £24 £709 £252 £ £ £1 £78 £763
Arizana £2.209 61 £33 £lEs £806 £75 €72 3 €1 €316 £S61 £8M e2d7 650 €5 65 51 £20 €37 €S €87 294 g2 £180 ] 44 €79 €755 o2 €59 = €l @25 727
Colorado £4,153 £146 €262 £4.326 £1631 £165 £228 fars £233 £372 £1,430 £1.017 £1.352 £136 £10 £10 £2 608 €17 £133 £1.500 £W3 £1,447 £1,706 £31 £13 £1 £225 £326 £1134 £53 £ £3 £1477 £727
Flarida £4422 €182 €205 £3848 €106 €180 €4 €33 0941 £889 €108 £M3 €397 w3 €23 €6 €208 €270 €383 3843 €M 2406 £1,005  £315 €764 £MT €54 £ £72 21 Rl € €3 £533
Hlircis €576 €27 €33 489 e297 5 ¢l522 €59 eld0l  el063 €51 €515 e €M €143 €25 206 €700 €93 2562 £1038 728 €097 el o0 €l046 2% 51 € £l260  £3%0
Indiana £1,250 £33 £92 £1,330 £474 £45 £24 £14 £334 £48 £458 £643 £136 £23 44 £22 £276 £36 £167 £153 £231 82 £176 £62 £78 £3 £36 £925 £207 £36 6 £1 €87 £578
Maine £2,069 €63 €137 £1.343 £507 €60 3z £z £372 £253 £701 476 €324 €43 £242 £ £1.375 €4z £ £2.926 £480 £545 £463 £119 £270 £21 £162 £40 £445 £40 £86 E11 £5,000 £7,500
Michigan £2.421 £86 £140 £2,642 €87 £60 £8d 2722 £478 £24 £518 £351 £723 £33 £57 £30 £1583 £16d £6 £2,512 663 £531 £252 £326 £194 £0 £478 £1,186 £1,509 £62 £75 £17 £4,159 £9,500
Mz i £1368 B3 €81 £1,140 £BE80 £75 €60 £483 £193 £408 £309 £250 £25 £23 £13 £11 €6 £58 £2,1770 £1108 £560 £297 £228 £397 £26 £255 £623 £651 £2 £24 £50 £340  £6,800
Nevada £1.656 €lzz €143 £1621 £738 £z £1.383 £195 a7 €672 £543 €581 £309 £ £332 €220 £130 £3.032 £1.131 £2.410 £1,239 £188 £1,958 £26 £68 £990 £1,766 £4,598 £2,714 £194 £8,000 £577
Mew Mewioc £1531 £56 £133 £1,336 £534 £105 £48 £14 £337 £123 £742 £136 £323 £64 £48 6 £231 £3 £212 £1,904 £108 £571 £368 £159 £240 £3 £348 £1383 £823 £525 £105 £73 £3,911 £29
(%) Newvok €327 €185 £3Z e43T  €2070 €185 €108 €3 0157 £829 £429 £3.962 L1461 €01 £I63 €4 £328  £201 €7 2265 €2325 €731 £780  £508 £97 245 £128 £4048 24593 £1416  £1500  £253  £4,003  £2.218
o] Ohio £1656 51 7 el0 eds2 € el243 e84 £286 48T €266 0 &0 el eds4 el el eds €381 0 20 f0 €850 B £30  £L020  £486 £0 0 £11  £2,450 £1767
S Wirginia £289 £24 £70 £1.739 £518 £328 £74 €31 £ £126 £274 £334 £m £73 18 £20 £576 £34 £4d £1,187 £273 £1,108 £245 £20 7 £8 £63 £287 £243 £4gd £4z £421 £3,532 £4,285
(o) Arizana 1927 23 €90 2926 ofT8 €83 el e €360 el @1 el 31 €22 €75 P 27 el 236 €13 £253 257 £20 o4 = £1s 97 263  £253  £630  £987 £3,33%  £3,379
Q Colorado £163 £143 £101 £1,.225 £1420 £102 £160 £34 £18 £378 €524 £2,038 £240 £26 £55 £6 £72 £23 £33 £3.055 £602 £38 £437 £113 £12 £2 £48  £2,188 £312 £40 £193 £430 £421 £451
7] Flarida £3.567 £33 £366  £3.442  £2080 €402 42 €83 €2737 €386 €130 €392 €7 €1B e’ €6 €323 £M8 €287 42 €69 f2382  £16  £166 €730 £ 64 £496  £764 841 £966  £775  £3,532
Hlinois ela’ €S0 eMS  el72 €21 €738 81 €51 £1006 €3 882 €36 €35 3 €45 €23 €405 ol P €2 eTa2 £57 £55 €75 € £206  £136 £57  £211  £235  £275  £4.288
m Indizra £38 8 £20 £334 £1.075 £18 £4 15 £13 £45 €82 £38 £197 3 £0 3 8 £2 £0 £53 54 £83 £6 £49 5 £ £23 £11 £2 £2 £3 £19 £13
— Maine 2430 €3 €22 £558  eTd2 £79 £ e el 43 43 w43 €30 £20 £3 el o £3 €28 €203 edd  £lg 2 - £ £s £33 37 32 £2 el s181
o Michigan £1615 £356 €0 £2,438 £533 £48 £165 £32 £1473 £65 £3 £133 £143 £2 £26 £6 £535 £16 £0 £221 £76 £113 £11 £75 £467 £10 £1 £381 £154 £1 £54 £28  £1,060
Mizzouri 867 £ £54 £1,241 £348 £151 £87 £22 £4ET £ fal: £397 24 £18 £20 i BB 94 48 £393 £51 £220 £136 £63 45 £0 £1 £632 £30 £12 £44 £1 £2,572
) Nevada €372 £ €23 3375 €84 €2033  e465 €7 €355 ediz =2 €36 €27 307 £33 & b & 6 £36 €13 £3842  g1e27 £50 €24 €52 = €35 €0 e200 €23 €2 €225
c Arizona £2,203 £61 £33 £1,651 £806 £75 £72 £13 €7 £316 £561 £834 £237 £60 £15 £5 £513 £20 £37 £145 £687 £294 £32 £180 £68 44 £73 £7156 £152 £59 £ £1 £25
= Colrsdo  £4.153  €M8 €262 4326 €163 €185 €228 €2 €233 £32 £1430 €100 €352 e18 €0 €0 £2608  EM7 €13 £1500 €WI  £1447  £L706 £a1 £13 £ €225 £926 €113 53 5 €3 €477
o Flarida £4422 €182 €206 £3848 €106 €80 £Md €33 151 e889  el208 ef3 €387 w3 €23 €6 €126 £270 £33 3843 €N3  £a0s 1008 £315  e76d £MT €54 el €72 €21 el P
Mirais 576 €27 £33 £483 £297 €45 £1522 £159 £1401 £1069 £51 £515 £110 £ £1436 £25 £208 £700 €93  £2,564 £1,036 £728 £1097 €21 160 £1.046 €4 £298 €51 £0 £1,260
E Indiana £1250 €33 €92 £330 5 € €M €33 €8 ed58 €843 €136 €23 4 €22 €27 €36 e®7  elS3 €291 g2 178 62 78 £3 £s6  £s2s £207 £36 € €l a7
Maine £2,063 £63 £137 £1,348 £507 £60 £132 12 £372 £253 £701 £476 £324 £43 £242 i) £1.975 £42 £1 £2326 £460 £545 £463 £119 £270 £21 £162 £40 £445 £40 £36 £11 £5,000
< Michigan £2,421 88 £W0 £2,842 83 £60 £84 £22 478 24 518 £351 £723 £33 57 £30 £1583 a2t} 6 2,512 £663 £831 £252 £326 £194 £0 £478  £1,186 £1,509 £62 £75 £17 £4,159
Missour £1368 63 €81 £ldD €560 £75 50 €83 B3 ed0B €309 €250 €25 €23 €3 i 6 €58 €210 €106 €560  e2s7  £228 €387 £26  £255  Ee23  £651 £2 £20 gs0  £390
m Nevads 1656 122 £143 1621 £738 2 £1.389 £195 €187 £B7Z £549 £581 £309 €18 £392 £220 £130  £3,032 £1131 €240 £1,233 £188  £1,558 £26 £68 £530 £1,766 £4,558 £2,714 £134  £8,000
1)) New Mayior  £1531 €56 133 £l9% €534 €IS €48 €M €337 €9 £Mz el €323 E3) 248 & e €3 eziz €104 €08 €571 £e2 £158  £240 £2 g3 £l83  gs2@  £s25 €108 g7 £3,911
S New York £3.217 £185 £312 €431 £2,070 £165 £108 €43 £1571 829 £423  £3,962 £1461 £101 £163 £14 £326 £201 €127 £22685  £2.3925 £731 £730 £509 £37 £46 £128 £4,048 £4,593 £1,416 £1,500 £253 £4,003
© Ohio €165 €51 87 0 ede2 €1 £1243  £194 €288 487 €266 0 0 e s e e £4e £38 £0 20 0 850 = £30  £1,020 2486 0 = £11 £2,450
- Virginia €289 €24 €0 £l73 eSB €328 €74 31 €31 elB £2M £33 et €73 €8 €20 €576 €34 w44 £1187 €273 ell6 £ £20 €7 E €62 £287  £243  £964 g2 £a21 £3,532
Arizana £1927 £23 €90 £2926 £178 £183 £178 £an £380 £132 €81 £125 £33 £22 €5 £3 817 £27 £132 £2.368 £19 £253 £257 £40 £84d €3 £15 £37 £63 £253 £630 £537 £3,334
Colorado €9 gdd gl elz25 eld20 ez el0 €34 € €38 £5 €203 €240 €26 €55 I €72 €23 €39 3055 e602 €3 a7 £113 €2 €2 fe2 £2188 £2312 240 g£193  gas0  ge21
Florida £3,567 £33 €366 £3,442 £2,180 £402 £42 €683 £2.737 £386 £1,302 £332 £71 £116 £12 €16 £3.234 €18 £2687 £42 €616 £2,352 £116 £166 £730 £3 £64 £436 £764 £341 £366 £775 £3,532
Hliris €376 €150 eMS  el721 €219 €738 £81 €51 £1008 €3 6ae €36 £35 43 45 €23 £1405 1 €36 £ £ e £57 £55 £75 £ £26  £136 £57  £211  £235  £275  £4,286
Indiana £35 £ €20 £334 £1075 £18 €4 £15 £13 £45 £82 £35 £137 €3 £0 £33 £ £2 £0 £53 £541 £83 £6 £49 5 £7 £23 £11 £2 £2 £3 £19 £13
Maine £430 3 £22 £558 £742 £79 =) £10 £21 €43 £43 £43 £130 £20 €3 €1 £100 3 £28 £203 €448 £109 £2 £9 £133 £ £9 £33 £37 £34 £2 £1 £181
Michigan £l €356 €0 £2438 €533 8 g6 €32 eldT3 65 € el e €2 €25 €6 €55 £ @ €221 €6 £z £11 75 w467 € £1 g21  £154 €1 £58 £28  £1,060
Missowri £B6T €7 £54 £1,241 £348 £151 £6T €22 £467 £2 £166 £397 £24 £16 £20 £ £663 £4 £46 £333 £31 £220 £136 £63 £445 £0 £1 £632 £30 £12 £44. £1 £2,572
Nevada 0372 €15 £23 £3575 €84 £2099 0465 €7 €355 w412 =" £36 @7 €307 £33 B £ = 5 £366 £13 £3842  £1,427 £50 £24 52 3 £35 0 £2o0 €23 @ €228
New Meyioc €675 el 1 el624  E1565 83 el 6 £19 51 £33 7 €30 3 & 2 w23 5 ed6 €253 €263 £160  £312 g2 el7 €3 €2 o £33 €0 P el e
New YVork £2,598 £148 157 £3,812 £1175 £183 €82 €63 £2533 659 £154 £123 £215 3 &7 fail £1882 €43 £60 £1194 £285 £111 £2 £5 £2,359 59 £z £35 £151 £1 £3 £2 €703 £2,572
Ohio 3z et w4 edd? 1057 Pl 0 B el €3 e23 e ey 0 0 €0 5 €2 £ P I 0 0 g2 €10 8 €35 P 0 €0 g3 240 €0

Holzinger Group 56 709.049 07



TU High-Dimensional Data — The Curse of Dimensionality @ HCI-KDD -

Grazm

" Many irrelevant subspace for
dimensions

= Correlated and e s,
redundant dimensions

subspace for
cluster 3

= Conflicting dimensions %

subspace for
cluster 2

" Wrong Interpretation of
global analysis results

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor" meaningful?
In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540. Berlin: Springer, pp. 217-235.

Kriegel, H. P., Kroger, P. & Zimek, A. 2009. Clustering High-Dimensional Data: A Survey on Subspace
Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transactions on Knowledge
Discovery from Data (TKDD), 3, (1), 1-58, doi:10.1145/1497577.1497578.
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TU High-Dimensional Data — The Curse of Dimensionality @ HCI-KDD -

Grazm

= NN problem: Given n data points and a query
point in an m —dimensional metric space

" find the data point closest to the query point.

L ] L -
L e & " Nearest Neighbor
. - Query Point
P 0» o
- .
.
»
»
. . .
[ ] i'-
L .
-:.- . * g .
™ ‘.‘: - L
----- L 1 ]
. = DMIN
Toiet j *Query Point
DMAX eols
' oo end
e [ 14+E)DMIN ™

~MNearest Cluster

Beyer, K., Goldstein, J., Ramakrishnan, R. & Shaft, U. 1999. When is "nearest neighbor"
meaningful? In: Beeri, C. & Buneman, P. (eds.) Database Theory ICDT 99, LNCS 1540.
Berlin: Springer, pp. 217-235.
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TU Challenges in High-Dim Data — Curse of Dimensionality @ HCI-KDD -

Grazm

] d(a,p) D
= Concentration Effect qm;edm

C .. - T W) P im0 d(g,p) = d(@.p")
= Discriminability of similarity gets lost

" |[mpact on usefulness of a similarity measure

= High-Dimensional Data is Sparse

=
o

il

o

Dimension b

i}
=1

Dimension ¢
N
n '\\ -

;\\

: B,
Dimension b

u

B
%
o

= .
=

,:-— . - : [ - T T T on 1] 18 s
0.8 05 1.0 1.5 0.0 111 1.0 1.5 20 Dime nsion a
Dimension a Dimension a

Optimization Problem and Combinatorial Issues
Feature selection and dimension reduction
2%-1 possible subsets of dimensions ( -> subspaces)
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TU Example: Full Space Clustering of High-Dimensional Data @ HCI-KDD -

Grazm

NEEERERRERREE

Normalized Distance
between records / clusters

e e A e s s e e A e e A e A B e A e A A A A S A AR A S AR R AR AN AR SN AN N

Data Records
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TU

Overview of (major?) Subspace Analysis Techniques

@ HCI-KDD 4=

Grazm
o
4 A om® /" 4 Subspace 1 4 Subspacen \
»
g “- o " e AAA -
m B L - = * ™ -
.-, Subspace = - ° S ad =
" 4 [oust = "
usicring .
° 4 ® = “eo P e e o o
L] . - A m ik . ® oo
S @ - -®

High-Dimensional Data

High-Dimensional
4 Feature Space

®

A. A -
®m =
Ae o H 4

" -

H'\,_.f‘umi'v.'.Rl.u Result:

Facetted Result View, e.g. multiple clustering sﬂiulmr'.ug,/

/Subspace NN Search - facetted result vf.e'w.:\|

A9 g A [ A o,
-, A -
il Y oa? g8%
m vy e “..
] g A
., A
- .. [ ]
— - @
i I

\-
r"rSubspa-::e Clustering - facetted clusters

F 3

-

-

-9

AN A A A AL
EEEEEE
¥ 22 oo sssese
| PN (I 2 X 2 X |

o o

Ha Ha

[
L

i

O

e Patterns may be found in subspaces (dimension combinations)
e Patterns may be complementary or redundant to each other

Holzinger Group
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TU Subspace Concept

@ HCI-KDD -4~

Grazm
A "- L 'T‘fa- T&p- L"} Eﬂ—} Tr‘—’a- :
PRES T 1 ]
Subspace
Subspace Search Inte rgsﬁng Grouping and Filtering Hgdundancy Subspace Interaction Cluster
Ho bt e.g. SURFING Subspaces e.g. Hierarchical Clustering | Reduced View e.g. coloring cluslers Colored View
based on subspace similarity
objectlD '_age" - "L:r'lt;avdnafes,
p "traveling subspace” "health subspace™

1 ABC ABC
2 'ABC _|ABC :
3 ABC___|ABC 2
4 _ABC ABC =
5 "ABC ABC : g
6 ABC ___|ABC
7 ABC ABC
8 ABC ABC
9 ABC__ laBC

Tatu, A., Maass, F., Faerber, |., Bertini, E., Schreck, T., Seidl, T. & Keim, D. Subspace search and visualization to
make sense of alternative clusterings in high-dimensional data. IEEE Symposium onVisual Analytics Science
and Technology (VAST), 2012 Seattle. IEEE, 63-72, d0i:10.1109/VAST.2012.6400488.
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TU Example of 12D Data -> 4095 subspaces (296 interesting) @ HCI-KDD £
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TU Motivation @ HCI-KDD £

Grazm

k-Nearest Neighbor Query

distance function
set of dimensions

¢

Query Object

Single Distance Function: d(‘ ) ’ ) = R, based on
fixed dimensions [shape, color, size, rotation]

Hund, M., Behrisch, M., Farber, I., Sedlmair, M., Schreck, T., Seidl, T. & Keim, D. 2015.
Subspace Nearest Neighbor Search-Problem Statement, Approaches, and Discussion.
Similarity Search and Applications. Springer, pp. 307-313.
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TU Motivation @ HCI-KDD £

Grazm
k-Nearest Neighbor Quer
distance function
set of dimensions
Query Object

k-Nearest Neighbors: Ranked list of most similar objects
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TU Effects in High-Dimensional Spaces @ HCI-KDD £

Grazm

= Attention: Similarity measures lose their
discriminative ability

" Noise, irrelevant, redundant, and conflicting
dimensions appear

k-Nearest Neighbor Quer

distance function
set of dimensions

¢

Query Object

Holzinger Group 66 709.049 07



TU Application in a Clinical Scenario

Grazm

@ HCI-KDD 4=

Nearest Neighbor

Search

(1) Relevant subspaces depend on the
patient and are unknown beforehand

(2) Multiple subspaces might be relevant
(3) Subspaces helps to interpret the

nearest neighbors (semantic meaning)

Holzinger Group 67

Sex, Age, Blood Type,
Blood Pressure,

Former Diseases,
Medication, ...
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TU Subspace NN-Search: Definition and Characteristics @ HCI-KDD

Grazm

1. Detect all previously unknown subspaces that are
relevant for a NN-search

2. Determine the respective set of NN within each

relevant subspace Hig-Dimensional
Feature Space

fSubspace NN Search - facetted result vimv\

A A g (]
“ * o mae o8, o0

- ®n n ey AN

Lt e Fa .,

[ ] A
Characteristics: o @ ® \ ®

e Search for different NN’s in different subspaces
e Consider local similarity (instead of global)
e Subspaces are query dependent

e Subspaces are not an abstract concept but helps to
semantically interpret the nearest neighbors
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TU Again: What is a Relevant Subspace for NN-Search?

Grazm

@ HCI-KDD -4~

® ¢

>

Subspace Clustering

@ *
>

>

Subspace Outlier Detection

Nearest Neighbor
Search ?

>

Subspace clustering aims at finding clusters in different axis-

parallel or arbitrarily-oriented subspaces [1]

Subspace Outlier Detection search for subspaces in which an
arbitrary, or a user-defined object is considered as outlier [2].

[1] Kriegel, H. P., Kroger, P. & Zimek, A. 2009. Clustering High-Dimensional Data: A Survey on
Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transactions on
Knowledge Discovery from Data (TKDD), 3, (1), 1-58, d0i:10.1145/1497577.1497578.

[2] Zimek, A., Schubert, E. & Kriegel, H. P. 2012. A survey on unsupervised outlier detection in
high-dimensional numerical data. Statistical Analysis and Data Mining, 5, (5), 363-387.
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TU Initial Subspace Model @ HCI-KDD -

Grazm

Relevance of Nearest Neighbors

A set of objects a, b, c are NN of the query g in a subspace
s, iff a, b, and c are similar to g in all dimensions of s.

Relevance of a Subspace

A subspace is considered relevant, iff it contains relevant
nearest neighbors

/Fl oD ./—r"*"*ﬂg]:}ﬂ\ 7 .p.lﬁ\
; kR - o'e
: —-= v te_ _ a_e_ - —r e D O -i-” - b
I
[ ] = ™ & o
I *: & *‘; #- & .o % " =
: < : e ** a8 *® nﬁ
| f} e _|_"__:"'_+__¢_‘_... L P A ——
I 4 ] * ee
T G o * . hpe * on_®
I /m-¢ * 1 0% . . g
| e @& | : +*'++ E{+ ﬁ
\n__IL ————————— .-_,j \,,__I _________ - j l\"r-ﬁl-ﬂ—ﬂ-ll-“ —soon & — -j

Dimensionality

Hund, M., Behrisch, M., Farber, |., Sedimair, M., Schreck, T., Seidl, T. & Keim, D. 2015. Subspace Nearest Neighbor
Search-Problem Statement, Approaches, and Discussion. Similarity Search and Applications. Springer, pp. 307-313.
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TU  Advantages of Subspace Modelling @ HCI-KDD -

" Interpretability: reflects the semantic meaning
" |n which way are NN’s similar to the query?
= = In all dimensions of the subspace

= Fulfills the downward-closure property

" Make use of Apriori-like algorithms for subspace
search

" No global distance function necessary
" Heterogeneous subspaces can be described

= Compute the nearest neighbors in every dimension
separately (with an appropriate distance function)

= Compute subspace by intersection
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TU Query Based Interestingness Measure for Dimensions @ HCI-KDD -

Grazm

A

3 2 g < e p.'“

ﬁ g - o *® o ™

= L N . - q

o [y ] e @ &

= I - w L e A

= I . | I e > e .

distance to p : distance to q ' dim,

Non-Characteristic Characteristic

. . . ) Data Distribution
Dimension Dimension
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TU Query Based Interestingness Measure for Dimensions @ HCI-KDD -

Grazm

A1 1 1 _a -l ___a__ a8 A __a
U N | [ [t S . s BB ___a

e o it bl | | ———— B N T = R S [—
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query A query B
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{

Discussion and Open Research Questions @ HCI-KDD -

(1)Determine Nearest Neighbors per Dimension

(2) Efficient Search Strategy

(3) Query-Based Interestingness for Dimensions

(4) Subspace Quality Criterion (Depends on
Analysis Task)

(5) Evaluation Methods and Development of

Benchmark Datasets

(6) Multi-input Subspace Nearest Neighbor

Search

(7) Visualization and User Interaction
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TU  Summary: Subspace Clustering in medical data @ HCI-KDD £

Grazm

r/FSubspaa:.:e NN Search - facetted result vieu?\‘ Geanlre Selection - single result view A
) A
High-Dimensional Se S *il% .:. 'y AAAAAA
Feature Space mey Al EEEEEN
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° ¢ 'L e .e N
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=:.' cre LI =:.: x e 00
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Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of
Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston, K., Aldo, F,,
Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250.
Cham: Springer International Publishing, pp. 358-368, d0i:10.1007/978-3-319-23344-4_35.
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TU  Further Subspace Cluster Visualization Techniques

Grazm

@ HCI-KDD -

= VISA by Assent et al. (2007)
" CoDa by Ginnemann et al (2010)
" Morpheus by Miller et al. (2008)

= Visual Analytics Framework by Tatu et al.

(2012)

Holzinger Group
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TU Visual Analytics for Subspace Steering @ HCI-KDD -

Grazm

= Existing techniques: exploration of subspace clusters

= \/isualizations to make sense of clusters and its
subspaces

Is the parameter setting appropriate for the data?

What happens if algorithms cannot scale with
the #dimensions?

" We need methods to steer algorithms while
computing relevant subspaces o]

Domain Expert

" Pruning of intermediate results
= Adjust parameters to domain knowledge
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TU  The doctor-in-the-loop @ HCI-KDD -

Grazm

E peme— B gt i e — @ = @
.. o 1 JJI:.I+.LI:|LMI,...ILI.LI
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Hund, M., Boehm, D., Sturm, W., Sedlmair, M., Schreck, T., Ullrich, T., Keim, D. A., Majnaric, L. &
Holzinger, A. 2016. Visual analytics for concept exploration in subspaces of patient groups: Making
sense of complex datasets with the Doctor-in-the-loop. Brain Informatics, 3, (4), 233-247,
doi:10.1007/s40708-016-0043-5.
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TU Always Remember: The curse of dimensionality

Grazm

@ HCI-KDD -4~

ag a6 1. i5
Dimension a

(a) 11 Objects in One Unit Bin

Dimension b

15
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a5

an

[——
r

I

B |
1

Dimeansionc
-
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LI ST EEPEETY
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[ 1]
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1
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A .
g e
-1 *
B
Dimension b

. L P
o L
i 15 24 =0 ae

i is
Dimension a Dimension a

B

(b) 6 Objects in One Unit Bin

(c) 4 Objects in One Unit Bin

= Datain only one dimension is relatively packed

= Adding a dimension “stretch” the points across that
dimension, making them further apart

= Adding more dimensions will make the points further
apart—high dimensional data is extremely sparse

= Distance measure becomes meaningless—due to

equidistance

Holzinger Group
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TU Please remember some definitions G HCI-KDD &«

Grazm

= Data set - consists of a matrix of data values, rows represent
individual instances and columns represent dimensions.

= |nstance - refers to a vector of d measurements.

= Cluster - group of instances in a dataset that are more similar to
each other than to other instances. Often, similarity is measured
using a distance metric over some or all of the dimensions in the
dataset.

= Subspace - is a subset of the d dimensions of a given dataset.

= Subspace Clustering — seek to find clusters in a dataset by
selecting the most relevant dimensions for each cluster
separately .

= Feature Selection - process of determining and selecting the
dimensions (features) that are most relevant to the data mining
task.
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TU

Grazm

Note: Interesting Clusters may ONLY exist in subspaces!!

Dimen=ion b

Hol

Parsons, L., Haque, E. & Liu, H. 2004. Subspace
clustering for high dimensional data: a review.
SIGKDD Explorations 6, (1), 90-105.
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TU Similar concept : Principal Component Analysis (PCA) @ HCI-KDD -

Grazm

10"

= We assume Tchat

= 1) data sets concentrate to a low d-dim. linear subspace
= 2) axes of the subspaces are representations of the data
= 3)identifying the axes can be done by PCA
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TU
Grazm

@ HCI-KDD Lo

Holzinger Group

06 “What i
interesting?




TU  Huber (1985): “What is interesting?” @ HCI-KDD -

Grazm

e Projection pursuit : Find a subset of coordinates of
the data which display “interesting” features. Often the
selection of the subset of coordinates is manual, but there
are automated algorithms which can find these subsets
automatically also. Finally one has to inspect each

projection and decide if its “interesting”.

Huber P.J.: Projection pursuit. Ann. Statist. 13, 2 (1985), 435-525.
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TU Interesting = the least Gaussian @ HCI-KDD £

Grazm

= Remember: Gaussian distribution maximizes the
entropy!

= Now the objective is to minimize the entropy:
* min H(t) fort = w'x I
" (j.e. tis normalized) /A

http://fedc.wiwi.hu-berlin.de/xplore/tutorials/mvahtminode115.html

Friedman, J. H. & Tukey, J. W. 1974. A projection pursuit algorithm for exploratory data
analysis. IEEE Transactions on Computers, 100, (9), 881-890.
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TU Example: Miller-Reavens Diabetes Study from 1979 (1/2) @ HCI-KDD £

Grazm

= 145 diabetes patients

" 6 dimensional data set:
" 1) age,
= 2) relative weight,
= 3) fasting plasma glucose,

= 4) area under the plasma glucose curve for the three
hour glucose tolerance test (OGTT),

= 5) area under the plasma insulin curve for the OGTT,
" 6) steady state plasma glucose response.

= Method: Projection Pursuit (PP)
= Result: R® — R3

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a
multidimensional analysis. Diabetologia, 16, 1, 17-24.
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TU Miller-Reaves Diabetes Study (2/2) @ HCI-KDD

Grazm

SSPG

A

Reaven, G. & Miller, R. (1979) An attempt to define the nature of chemical diabetes using a
multidimensional analysis. Diabetologia, 16, 1, 17-24.
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TU  Mapping the data from R® to R? @ HCI-KDD %

Grazm

Given a point cloud data set X and a covering U
= simplicial complex

[ X->R
[ X—>Z
9 "o U= {Uglaea
H::: —d(x,y)*

e TR =G ) exp(—
/ y

./I

Singh, G., Mémoli, F. & Carlsson, G. (2007). Topological methods for the analysis of high
dimensional data sets and 3D object recognition. Eurographics Symposium on Point-Based
Graphics, Euro Graphics Society, 91-100.
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@ HCI-KDD ==

Future topic: Topology based data analysis

Grazm
D © OO OMM
+ 4+ 4+ + 4+ 4
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sparse data
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sparse data

detached tumor bins
ER+ sequence

very sparse data

3

Nicolau, M., Levine, A. J. & Carlsson, G. (2011) Topology based data analysis identifies a

subgroup of breast cancers with a uniqgue mutational profile and excellent survival. Proceedings

of the National Academy of Sciences, 108, 17, 7265-7270.
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TU

GGGGG

@ HCI-KDD -4~

Holzinger Group

Conclusion and
Future Challenges



TU  Slide 8-39 Future Outlook @ HCI-KDD £

= Sometimes we have
= A small number of data sets
= Rare events — “little data”

" NP-hard problems (e.g. k-Anonymization, Protein-
Folding, Graph Coloring, Subspace Clustering, ...)

" Then we still need the “human-in-the-loop”

@ HCI-KDD =4
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TU  Future Outlook @ HCI-KDD &

" Time (e.g. entropy) and Space (e.g. topology)

= Knowledge Discovery from “unstructured” ;-)
(Forrester: >80%) data and applications of
structured components as methods to index and
organize data -> Content Analytics

" Open data, Big data, sometimes: “little data”
" |Integration in “real-world” (e.g. Hospital context)

" How can we measure the benefits of visual
analysis as compared to traditional methods?

" Can (and how can) we develop powerful visual
analytics tools for the non-expert end user?
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@ HCI-KDD 4=

k you!
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Iy @ HCI-KDD 4=
@
Questions
Holzinger Group 94 709.049 07



TU Sample Questions @ HCI-KDD 2

Why would we wish at all to reduce the
dimensionality of a data set?

Why is feature selection so important? What is the
difference between feature selection and feature
extraction?

What types of feature selection do you know?

Can Neural Networks also be used to select
features?

W
Su

W

ny do we need a human expert in the loop in
ospace clustering?

nat is the advantage of the Projection Pursuit

method?
Why is algorithm selection so critical?
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Iy @ HCI-KDD 4=
@
Appendix
Holzinger Group 96 709.049 07



TU Appendix: Nearest Neighbors @ HCI-KDD -

Grazm

“Children learn effortlessly by
example and exhibit a remarkable
lubewpe capacity of generalization. The field
lecturesonthe | of machine learning, on the other
Nearest Neighbor | hand, stumbles along clumsily in
Yiekiog search of algorithms and methods,
but nothing available today comes

even close to an average two-year-
old toddler ... ©

&) springer

Biau, G. & Devroye, L. 2016. Lectures on the nearest neighbor method, Springer,
doi:10.1007/978-3-319-25388-6.
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TU Complexity and really BIG DATA

Grazm

&

@ HCI-KDD -

Signaling Pathway

13 responsible
protein kinases

8 phosphorylated
responsible protein kinases

Metabolic Enzymes

198 responsible
metabolic enzymes
26 phsphorylated "
responsible metabolic
enzymes

Metabolites

44 changed metabolites

* DNA molecule
= Carries genetic information

*» Human DNA:
— 3107 Base pairs
— 4" Combinations

. 71 phosphorylation

94 allosterically
regulated responsible
‘metabolic enzymes

198 226
. enzymatic allosteric

S, X 5 -.regulation regulation

35
allosteric
effectors

Yugi, K. et al. 2014. Reconstruction of Insulin Signal Flow from Phosphoproteome
and Metabolome Data. Cell Reports, 8, (4), 1171-1183,

doi:10.1016/j.celrep.2014.07.021.

Holzinger Group
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TU  Dimensionality reduction methods (selected)

@ HCI-KDD -4~

" Linear methods (unsupervised):
" PCA (Principal Component Analysis)
= FA (Factor Analysis)
= MDS (Multi-dimensional Scaling)
" Non-linear methods (unsupervised):
" [somap (Isometric feature mapping)
" LLE (locally linear embedding)
" Autoencoders
= Supervised methods:
" DA (Linear Discriminant Analysis)

= Subspace Clustering with a human-in-the-loop

Holzinger Group 929
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TU Example 1: PCA @ HCI-KDD -

1.0

L]

:"/ e
' '?’1 gg

-05

=10

Firsl principal componen!

Subtract mean from data (center X)

(Typically) scale each dimension by its variance

® Helps to pay less attention to magnitude of dimensions

Compute covariance matrix S S=—-XTX

Cnmpute k largest eigenvectors of S

These eigenvectors are the k principal components

Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Second Edition, New York, Springer, doi:10.1007/978-0-387-84858-7
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TU Example 2 ICA (Motivation: Blind Source Separation) @ HCI-KDD -

Grazm

" Suppose that there are k unknown
independent sources

s(t) = [s1(1),...,s ()] with Es(t) =0

= A data vector x(t) is observed at each time
point t, such that X(t) = A s(t)

where A is a n X k full rank scalar matrix
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Holzinger, A., Scherer, R., Seeber, M., Wagner, J. & Miiller-Putz, G. 2012. Computational Sensemaking on Examples of Knowledge Discovery from
Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Béhm, C., Khuri, S., Lhotskd, L. & Renda, M. (eds.) Information Technology in
Bio- and Medical Informatics, Lecture Notes in Computer Science, LNCS 7451. Heidelberg, New York: Springer, pp. 166-168
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TU Example 3: Factor Analysis (FA) @ HCI-KDD -

Grazm

= FA describes variability of observations given
unobserved latent variables = factors.

= Factors explain correlation between variables

= Similar to PCA, the difference is the conditional
probability of the data () = diagonal matrix):

p(x|z) = N(x|Wz + p, W)

Bishop, C. M. 2006. Pattern
Recognition and Machine
Learning, Heidelberg,
Springer, Chapter 12.2.4
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TU Example 4: MDS: Find projection that best preserves d @ HCI-KDD £

Grazm
PL |p2 [p3 |p4 |p5 . @
® Given n x n matrix of pairwise distances pL 0 1 2 3 1 @ 1\
between data points 2 1 o 2 |a | i \ @
® Compute n x k matrix X with coordinates of p3 2 2 o [1 |3 - | 2\ / 2
distances with some linear algebra magic AN
pa 3 4 |1 |0 |1 & @

® Perform PCA on this matrix X

p5 1 1 3 1 |o

x; Point in d dimensions

CITIES Lru.unnmmuuu sk sear B

587 212 TOI 1936 604 748 2139 2182 543
920 940 (745 B8 713 1858 (T37 597
BT9 B3I I726 B3I 949 1021 1494

y; Corresponding point in r < d dimensio sl

0i4 Distance between z; and T

d;; Distance between y; and y;

e Define (e.g.) [:[Y] i Z

i

(u’u —;‘iU)
0ij

TOl 540 879 1374 968 W20 1645 189 (220
1936 [T45 B3 374 2339 245/ 347 959 2300
604 1188 IT26 968 2339 1092 2594 2734 923
T4B TI3 1631 420 2451 1092 25T 2408 205

239 1858 949 1645 347 2394 2571 678 2442
2182 IT3T 1021 1891 959 2734 2408 678 2329
543 597 494 1220 2300 923 205 2442 2329

e Find y;’s that minimize E by gradient descent

e Invariant to translations, rotations and scalings

Kruskal, J. B. 1964. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,
29, (1), 1-27.
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Example 5: Latent Dirichlet Allocation (LDA)

@ HCI-KDD 4=

Grazm
“Arts”  "Budgets™  “Children” “Education™ The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
. . . tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
NEW MILLION CHILDREN SCHOOL . : P . o
FILM TAX WOMEN STUDENTS real ap_partulmt}' to make a mark_ on the future of the pcl_famlmg arts \-jifth these granis an E.IC[
SHOW PROCRAM PEOPLE SCHOOLS every bit as important as our traditional areas of support in health, medical rescarch. education
MUSIC BUDGET CHILD EDUCATION and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
MOVIE BILLION YEARS TEACHERS announcing the grants. Lincoln Center’s share will be 3200.000 for its new building, which
PLAY FEDERAL FAMILIES HIGH will house young artists and provide new public facilities. The Metropolitan Opera Co. and
MUSICAL YEA]?‘ } “'GRK_ PUBLIC New York Philharmonic will receive 5400000 each. The Juilliard School, where music and
BEST SPENDING PARENTS TEACHER L - | N Y -
ACTOR NEW SAYS BENNETT the perfc-l_mmg arts are taught, _WI" get $250,000. The ]—]f:a_rst I ||1 a leading supporter
FIRST STATE FAMILY MANIG AT of thfz Lincoln Center Consolidated Corporate Fund, will make its usual annual 5100000
YORK PLAN WELFARE NAMPHY donation, too.
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI
M, Ni

(N initialize 63, := 1/k for all i and n ¢ 3

(2)  initialize y; := o+ N/k for all i ,U( D | OL. i_))) = 1—[ [?(Bff | o) l_[ Zﬁ'(:(;" | B(;)‘{}(H'{;,, |:{;”. B) ffﬂd

(3) repeat ) y .

) forn=1toN d=1"* n=1 zgy

(5) fori=1tok

(6) = B, exp(P(Y))

(7 normalize ¢! to sum to 1.

(®) PH =t 0

(&) until convergence

BQ\\

Blei, D. M., Ng, A. Y. & Jordan, M. |. 2003.
Latent Dirichlet allocation. Journal of

OO~

Machine Learning Research, 3, (4-5), 993- o 4] z W N y
1022.
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Example 6: Isomap

@ HCI-KDD -4~

A Global Geometric Framework
for Nonlinear Dimensionality

Reduction
Joshua B. Tenenbaum,™ Vin de Silva,® Jehn C. Langford®

Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 10° optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (FCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previous algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally aptimal solution,
and, for an important class of data manifolds, is guaranteed to converge
asymptotically to the true structure.

Goal: Find projection onto nonlinear manifold

1. Construct neighborhood graph G-
For all x;, x;
If distance(x;, x;) <€
Then add edge (x;,z;) to G

2. Compute shortest distances along graph d¢(x;, x;)
(e.g., by Floyd’s algorithm)

3. Apply multidimensional scaling to d¢(x;. x;)

http://isomap.stanford.edu/

c

Tenenbaum, J. B., De Silva, V. & Langford, J. C. 2000. A global geometric framework for nonlinear
dimensionality reduction. Science, 290, (5500), 2319-2323, d0i:10.1126/science.290.5500.2319.
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Example 7: Locally Linear Embedding (LLE)

@ HCI-KDD -4~

10.1126/science.290.5500.2323.

reduction by locally linear embedding. Science, 290, (5500),

Roweis, S. T. & Saul, L. K. 2000. Nonlinear dimensionality

2323-2326, doi
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TU Example 8: Autoencoders @ HCI-KDD

LT EN]

Compact
i P representation
) T 8 of input

m |

tf
min ANA(foaqg.x
¥ g _ D g (f g. )

LIECHT L

= History: Dim-reduction with NN: Learning
representations by back-propagating errors

" Goal: output matches input

Rumelhart, D. A., Hinton, G. E. & Williams, R. J. 1986. Learning representations by back-propagating errors.
Nature, 323, 533-536.

Vincent, P, Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. 2010. Stacked denoising autoencoders:

Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine
Learning Research, 11, 3371-3408.
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TU Autoencoders are “old” G HCI-KDD %=

= Sigmoidal neurons and backpropagation: Rumelhart™*),
D. A., Hinton, G. E. & Williams, R. J. 1986. Learning
representations by back-propagating errors. Nature,

323, 533-536. ”
&X{y,x) = l‘!/ = "H:’

= Linear autoencoders: Baldi, P. & Hornik, K. 1989. Neural
networks and principal component analysis: Learning
from examples without local minima. Neural networks,

2, (1), 53-58. , | "
min Z |ABx — z||5

*) David Rumelhart (1942-2011) was Cognitive Scientist working on math. Psychology
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TU Autoencoders -> Restricted Boltzmann Machines G HCI-KDD =%

" Based on Information processing in dynamical
systems: Foundations of harmony theory by
Smolensky (1986): Stochastic neural networks

where the unit activation i = probabilistic
1

Pr(oj=1) = =
1+ {.J—u'm-l-lﬂ- 04 Wjj

o Yolokam
w
Right: A restricted Boltzmann machine with

- Visible movie
binaryhidden units and softmax visible units

] ratings
Salakhutdinov, R., Mnih, A. & Hinton, G. (2007) Restricted Boltzmann machines for

Grazm
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collaborative filtering. ICML, 791-798.
109
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TU  Summary @ HCI-KDD £~

" Goal: Having m < p features

= Feature selection via
= A) Filter approaches
" B) Wrapper approaches

" C) Embedded approaches (Lasso, Electric net, see
Tibshirani, Hastie ...)

" Feature extraction
= A) Linear: e.g. PCA

" B) Non-linear: Autoencoders (map the input to the
output via a smaller layer)
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