B8 ML needs a concerted effort fostering integrated research @Hci-koo

m Science is to test crazy ideas — Engineering is to put these ideas into Business @HCI-KDD +%
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Interactive pjning Knowledge Discovery
(6 e o

Data Learning Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM e Graph-based Data Mining
TDM o Topological Data Mining

EDM 0 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security

© a holzinger@@hei-kdd org
Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.
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B8 Red thread through the lecture today @ HCI-KDD 5%

B8 Machine Learning Jungle Top-Level View @ HCI-KDD &
| Cognition Visualization ' Data fusion |
' Perception g__t‘ |Preprocessmg|
“—']"—" ol riu®

/ Decision || Interaction | Integratton \

CONCEPTS THEORIES PARADIGMS MODELS METHODS TOOLS

| Dimensionality | Complexity | | Unsupervised | Gaussian P. | | Regularization | Python |

| Reinforcement | | Bayesian p(x) | | Supervised | I Graphical M. Scaling | | Church |

| Representation | Entropy/KL | | Semi-Superv. | | Neural Nets | | Aggregation | Anglican |

No-free-lunch :Vapnik-chernov.: LML | Kernel/SVM || Evolution | | Julia _

| Multi-Task Learning | Transfer Learning | | Multi-Agent-Hybrid-Systems |

Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML)

; Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust
Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0_1.
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= 01 Decision Making under uncertainty

= 02 Graphs — Networks

= 03 Example Medical Knowledge Representation
= 04 Graphical Models and Decision Making

= 05 Bayes Networks

* 06 Graphical Model Learning
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= 08 Markov Chain Monte Carlo (MCMC) \’,’
= 09 Metropolis Hastings Algorithm f@}
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@ HCI-KDD 2=
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01 Reflection
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B8 Dgecision trees are coming from Clinical Practice
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@ HCI-KDD 2=

Death from cancer
Probability 2%

H( Decision node Utility 5%

‘@ Chance node
4 Qutcome

Fertile survival
Probability 98%
No further Utility 100%
surgery
Surgical death
Probability 0-5%

Utility 0%

Microinvasive
cancer of the
cenvix Infertile survival

Probability 98%

Radical Utility 95%

hysterectomy

Infertile survival
Probability 5%
Utility 95%

Survives (p=99-5%)

Spread (p=2%)

Death from cancer
Probability 5%
Utility 5%

Physician treating a patient
approx. 480 B.C.

Beazley (1963), Attic Red-figured
Vase-Painters, 813, 96.
Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.

The Lancet, 358, (9281), 571-574.
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B Pre-Knowledge Quiz: Which concepts can you identify? @#He-kon i
X)= P Xi| Xpa;
I:i \ﬁ} p(x) = I1; p(XilXpa) S
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3

Graphical models are graphs where the nodes represent random
variables and the links represent statistical dependencies between
variables; This provides us with a tool for reasoning under uncertainty
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@ HCI-KDD 2=
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m @HCI-KDD £

01 Decision Making
under uncertainty

Laplace, P-S. 1781. Mémoire sur les
probabilités. Mémoires de [Académie
Royale des sciences de Paris, 1778, 227-332.
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B8 Human Decision Making: probabilistic reasoning @ HCI-KDD 5%

B8 Medical action is ... @HCI-KDD o5

UNCERTAINTY

— Y DIAGNOSIS CHOICE
b Working 4
—> j Me \ Acti
Selective Perception Hy mory A ction
> Attention | o A | T ° --m-e-- »>
BRIl Az
------- > A

Outcome

A 4

v

v

@24 Long-Term A ! oulcomes !
H QH) Memory (A)A°, i+Likelinoodand}

H EI consequences
Hy™  (H) Hypothesis »é“ i+ _of outcomes
(A) Action

Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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... permanengdecision making
underuncertainty!
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B8 Predicting Pragmatic Reasoning in Language Games @ HCI-KDD 5%

Frank, M. C. & Goodman, N. D. 2012. Predicting pragmatic reasoning in language
games. Science, 336, (6084), 998-998, doi:10.1126/science.1218633.
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@ HCI-KDD o5

B Recursive reasoning: a case for probabilistic programming@Hci-kon ;2

A

Participant bets

Speaker: Imagine you are talking to
someone and you want to refer to the
middle object. Which word would you use,
“blue” or “circle"?

C Prior: Salience Condition

g
5 1o

o

1
X
Listener/Salience: Imagine someone is c
talking to you and uses [the word “blue™/a lee;l:z?;i::‘:de'
word you don't know] to refer to one of B~
these objects. Which object are they 59 e
talking about? o i
8 E e m
8
Il
2
N Posterior: Model vs.
bl Listener Condition
1 -4 « data
&8 « listener | . == model
= ospeaker § p o
L L L} T T 1 ~ -
0 20 40 60 80 100 °

Model predictions

Frank, M. C. & Goodman, N. D. 2012. Predicting pragmatic reasoning in language
games. Science, 336, (6084), 998-998, doi:10.1126/science.1218633.
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B Recommended Books

13
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@ HCI-KDD o5

var literallListener = function(property){
Infer(function(){
refPrior(context)

var speaker = function(object) {
Infer(function(){
var property = propPrior()

var listener = function(property) {
Infer(function(){
var object =
C t

return object

1)k

Goodman, N. D. & Frank, M. C. 2016. Pragmatic language interpretation as probabilistic inference. Trends in
Cognitive Sciences, 20, (11), 818-829.
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BY Pattern Recognition and Machine Learning Chapter 8 @HCI-KDD 5%

Murphy, K. P. 2012. Machine
learning: a probabilistic
perspective, MIT press.

Holzinger Group hci-kdd.org

~ BAYESIAN
REASONING
a.n,d a|gcn'ith ms

MACHINE
LEARNING

David Barber

Barber, D. 2012.
Bayesian reasoning and
machine learning,
Cambridge University
Press.

http://web4.cs.ucl.ac.uk/s
taff/D.Barber/textbook/18
1115.pdf

15

Koller, D. & Friedman, N.
2009. Probabilistic
graphical models:
principles and
techniques, MIT press.

MAKE Health Verona 03

CAUSALITY

SECOND EDITION
:é.! ‘\

JUDEA PEARL

http://bayes.cs.ucla.edu/BOOK-2K/

https://goo.gl/6a7rOC

Chapter 8 Graphical Models is as sample

chapter fully downloadable for free
Pearl, J. 2009. Causality: Models,

Reasoning, and Inference (2nd
Edition), Cambridge, Cambridge
University Press.

Bishop, C. M. 2006. Pattern Recognition and
Machine Learning, Heidelberg, Springer.
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What are Probabilistic Graphical Models? @HCI-KDD o

Holzinger Group hci-kdd.org 17

PGM can be seen as a combination between

Graph Theory + Probability Theory +

Machine Learning

One of the most exciting advancements in A
decades — with enormous future pgte' il

Compact representation for expone
probability distributions 718

Example Question: 5
“Is there a path connecting two"

Path (X,Y) := edge (X,Y)
Path (X,Y):= edge (X,Y),path(Z,Y)" /%
This can NOT be expressed in first-order logic -~ ..
Need a Turing-complete fully-fledged language

MAKE Health Verona 03

@ HCI-KDD 2=
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02 Graphs=Networks

MAKE Health Verona 03

Key Challenges @HCI-KDD -

Holzinger Group hci-kdd.org 18

Medicine is an extremely complex application domain — dealing most of
the time with uncertainties -> probable information!

Key: Structure learning and prediction in large-scale biomedical
networks with probabilistic graphical models

Causality and Probabilistic Inference
Uncertainties are present at all levels in health related systems
Data sets from which ML learns are noisy, mislabeled, atypical, etc. etc.

Even with data of high quality, gauging and combining a multitude of
data sources and constraints in usually imperfect models of the world
requires us to represent and process uncertain knowledge in order to
make viable decisions in context and within reasonable time!

In the increasingly complicated settings of modern science, model
structure or causal relationships may not be known a-priori [1].

Approximating probabilistic inference in Bayesian belief networks is NP-
hard [2] -> here we need the “human-in-the-loop” [3]

[1] Sun, X., Janzing, D. & Schélkopf, B. Causal Inference by Choosing Graphs with Most Plausible Markov

Kernels. ISAIM, 2006.

[2] Dagum, P. & Luby, M. 1993. Approximating probabilistic inference in Bayesian belief networks is NP-hard.

Artificial intelligence, 60, (1), 141-153.

[3] Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-
the-loop? Springer Brain Informatics (BRIN), 3, 1-13, doi:10.1007/540708-016-0042-6.

MAKE Health Verona 03

Leonhard Euler 1736 ... @HCI-KDD o
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MONS REGIVS PRVSSIA.
SIVE BORVSSIA VRS

Image from https://people.kth.se/~carlofi/teaching/FEL3250-2013/courseinfo.html
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B 252 years later: Belief propagation algorithm @HCI-KDD o B 275 years later ... the “Nobel-prize in Computer Science” @HeI-KpD s

EREBA S

LT BIEEY

<) f L.L?d{-JE:J T' .Jt

ALPHABETICAL LISTNG YEAR OF THE AWARD RESEANCH SUBJECT

JUDEA PEARL

United States - 2011

For fundamental contributions to artificial intelligence through the
development of a caleulus for probabilistic and causal reasoning.

k. - a. 8 8

Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.

http://amturing.acm.org/Vp/pearl. 2658896.cfm
22
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B8 Nobel Prize in Chemistry 2013 @HCI-KDD o BY First Question: Where does graphs come from? @HCI-KDD o
* Graphs as = Graphs as
models for networks nonparametric basis
e o = given as direct input = we learn the structure
P—— R AW B (point cloud data sets) from samples and infer
—— i e = Given as properties of a = flat vector data, e.g.
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013 structure similarity graphs
= Givenasa = encoding structural
representation of properties (e.g.
information (e.g. smoothness,
Facebook data, viral independence, ...)

marketing, etc., ...)

We skip this interesting chapter for now ...
http://news.harvard.edu/gazette/story/2013/10/nobel_prize_awarded_2013/
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B Our World in Data (1/2) - Macroscopic Structures @HCI-KDD 5% B Two thematic mainstreams in dealing with data ... @HCI-KDD 5%

.NGC 5139 Omega Centauri'by Ednmund Halley in 1677, ESO, Atacama, Chile

Dali, S. (1931) The persistence of memory Bagula & Bourke (2012) Klein-Bottle
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B Complexity Problem: Time versus Space @HCI-KDD & B Our World in Data — Microscopic Structures @HCI-KDD &
exponential cubic quadratic
I 0(f12) ~ linear
N A1 44.842 51.034 101.284 0.01 27.20
0 c i1 45.640 50.230 100.383 0.01 26.99
L) c Ar A 46.692 49.648 101.308 0.01 26.80
e o A1 46.895 50.222 102.381 0.01 26.91
N A2 47.283 48.516 100.951 1.00 26.26
Ch SER A 2 48.277 47.866 101.761 1.00 26.17
N C SERA 2 49.212 47.031 100.845 1.00 24.21
E Q SER & 2 49.060 47.195 99.630 1.00 19.77
= O(log n) 9 CB SER & 2 47.438 47.091 102.800 1.00 26.31
logarithmic 10 06 SER 4 2 46.276 46.356 102.404 1.00 27.99
11 N HIS A 3 50.147 46.186 101.370 1.00 23.93
12 CA HIS A 3 51.129 45.389 100.609 1.00 21.44
13 ¢ HISA 3 50.953 43.905 100.849 1.00 20.32
14 0 HIS A 3 50.530 43.595 101.950 1.00 22.00
15 CB HIS A 3 52.555 45.674 100.990 1.00 19.69
16 CG HIS A 3 52.940 47.090 100.611 1.00 21.44
i 17 ND1 HIS A 3 53.371 47.470 99.422 1.00 20.87
18 CD2 HIS A 3 52.956 48.175 101.433 1.00 21.69
19 CE1 HIS A 3 53.676 48.730 99.476 1.00 20.57
Data Input (Space) g S ML
; : Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
P versus NP and the Computational Complexity Zoo, please have a look at and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech
https://www.youtube.com/watch?v=YX40hbAHx3s Technical University (CTU), 69-74

Holzinger Group hci-kdd.org 27 MAKE Health Verona 03 Holzinger Group hci-kdd.org 28 MAKE Health Verona 03



B8 Getting Insight: Knowledge Discovery from Data @ HCI-KDD 5% B8 First yeast protein-protein interaction network @ HCI-KDD 5%
-

J r .
Y t
1 Nodes = proteins
%ok 4 e o Links = physical interactions
q . 3

(bindings)

Red Nodes = lethal
Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, S.
P., Barabasi, A. L. &
Oltvai, Z. N. (2001)
Lethality and
centrality in protein
networks. Nature,
411, 6833, 41-42.

J

g

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular
Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New
York, Springer, 199-212.
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B8 First human protein-protein interaction network @ HCI-KDD 5% B8 Non-Natural Network Example: Blogosphere @ HCI-KDD 5%

Light blue = known proteins
Orange = disease proteins

1+]

L]

[+]

=]

3
Stelzl, U.etal. Geg7ie SR ome S Hurst, M. (2007), Data
(2005) A Human e oad0” 5 Mining: Text Mining,
Protein-Protein i e Visualization and Social =
Interaction Media. Online available:
Network: A http://datamining.typep
Resource for ad.com/data_mining/20
Annotating the 07/01/the_blogosphere.

Proteome. Cell,
122, 6, 957-968.

html, last access: 2011-
09-24
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B Social Behavior Contagion Network @ HCI-KDD -

B Human Disease Network -> Network Medicine @HCI-KDD &

. Aral, S. (2011)

»  Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.

Information object L 4 Marketing Science, 30,
2, 217-223.
Holzinger Group hci-kdd.org 33 MAKE Health Verona 03
B The Genetic Landscape of a cell @HCI-KDD o5

At .,... .l
9o 0

S 2 0 o.. o i *

Barabasi, A. L.,
Gulbahce, N. &
Loscalzo, J. 2011.

Autophagy . _
Cell polarity &
morphogenesis

tRNA

Amino acid bes
¢ modification

biosynthesis _
& uptake

- - <= Cell wall biosynthesis
& integrity

_ Protein folding &
glycosylation

ER-dependent

Signaling protein degradation

ER/Golgl

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., Ding, H., Koh, J. L.,
Toufighi, K. & Mostafavi, S. 2010. The genetic landscape of a cell. science, 327, (5964), 425-431.
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Network medicine: a ® o,* . ‘- y <
network-based : o ' )
approach to human ST “/s 0/, e
disease. Nature Reviews of
Genetics, 12, 56-68.
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By Example for a weakly structured data set - PPI @HCI-KDD
- -]

o Kim, P. M., Korbel, J. O.
& Gerstein, M. B. 2007.
Positive selection at the
protein network
periphery: Evaluation in
=% terms of structural
constraints and cellular
context. Proceedings of
the National Academy of
Sciences, 104, (51),
20274-20279.
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m @HCI-KDD £

Graph Model

sraphical Models

‘Decision Making

Data

VP p——.

D={X{", Xy, .. Xo YLy

Holzinger Group hci-kdd.org 37 MAKE Health Verona 03

B Naive Bayes classifier as DGM (single/nested plates) @HCI-KDD -

7t ... multinomial parameter vector, Stationary distribution of Markov chain

Holzinger Group hci-kdd.org 39 MAKE Health Verona 03

B Classes of Graphical Models @ HCI-KDD &

Probabilistic models

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press.
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B Regulatory>Metabolic>Signaling>Protein>Co-expression @Hci-kon

(TF)

Protein

complex Q ¢

Genec Metabolihesj

Ll
P OQ 8T8
G © QU
Directed, Signed, Undirected, o
weighted weighted Directed Undirected Undirected

Image credit to Anna Goldenberg, Toronto
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B8 Decision Making: Learn good policy for selecting actions @Hc1-kpn -

Goal: Learn an optimal policy for selecting best actions
within a given context

Fort= 1,1

1) The world produces a
“context” x; € X

Bench

2) The learner selects an action

History | Decision |Check a; €{1L,.., K}
predict | €
3) The world reacts with
Bedside areward r:(a;) € [0,1]
B8 Remember @HCI-KDD o5

B8 GM are amongst the most important ML developments @Hc1-kpD

= Medicine is an extremely complex application
domain — dealing most of the time with
uncertainties -> probable information!

= When we have big data but little knowledge
automatic ML can help to gain insight:

= Structure learning and prediction
in large-scale biomedical networks
with probabilistic graphical models

= |f we have little data and deal with NP-hard
problems we still need the human-in-the-loop

Holzinger Group hci-kdd.org 43 MAKE Health Verona 03

= Key Idea: Conditional independence assumptions are
very useful — however: Naive Bayes is extreme!

= X is conditionally independent of Y, given Z, if the P(X)
governing X is independent of value Y, given value of Z:

Vi, j, k) P(X = z;|Y = y;,Z = z,) = P(X = j|Z = 2,)
can be abbr. with P(X|Y,Z) = P(X|Z2)

= Graphical models express sets of conditional
independence assumptions via graph structure

* The graph structure plus associated parameters define
joint probability distribution over the set of variables

Holzinger Group hci-kdd.org 42 MAKE Health Verona 03
B8 Three types of Probabilistic Graphical Models @HCI-KDD o
@. ‘@ Undirected: Markov random fields, useful

e.g. for computer vision (Details: Murphy 19)

@‘ ‘ @ P(X) = %exp (Z Wij xix; + Z xi'bf) @? @@

@ @ Directed: Bayes Nets, useful for designing
@' @ @ models (Details: Murphy 10)

o © p(x) = || p(axlpay,)
k=1

Factored: useful for inference/learning
W p(x) = H fs(xs)
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B8 Factor Graphs - learning at scale @HCI-KDD o

= What is the advantage of factor graphs?

_---
Inference

Bayesian Networks Somewhat Ancestral
Generative
Process

Markov Networks Yes No Local Couplings
and Potentials

Factor Graphs No Yes Efficient,
distributed
inference

Table credit to Ralf Herbrich, Amazon
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Protein Network Inference @HCI-KDD o
Ty

B8 From structure to function prediction @HCI-KDD o

» Hypothesis: most biological functions involve the
interactions between many proteins, and the
complexity of living systems arises as a result of
such interactions.

= |n this context, the problem of inferring a global
protein network for a given organism,

= - using all (genomic) data of the organism,

= is one of the main challenges in computational
biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple
genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.

Holzinger Group hci-kdd.org a7 MAKE Health Verona 03

Topology

3D Structure

~ " Solvent Accessibility
Prediction

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.
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Borgwardt, K. M., Ong, C. S., Schonauer, S.,

B8 Problem: Is Graph Isomorphism NP-complete ? @HCI-KDD o
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. *,
2005. Protein function prediction via graph

kernels. Bioinformatics, 21, (suppl 1), i47-i56. . :

protein secondary  sequence structure
structure

= |mportant for health informatics: Discovering
relationships between biological components

= Unsolved problem in computer science:

* Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |t is also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete
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m Example: Protein Network Inference @ HCI-KDD %= m Example: Data fusion and Protein Annotation @ HCI-KDD %=

Vol 20 Suppl. 1 2004, pages 363-G70
DOE: 10 1093/ bioinformatics/bihd 10

Vol 20na. 16 2004, pages 2626-2635
dod 10, 109 bionformatice/Bhiod

Protein network inference from multiple

o1 genomic data: a supervised approach B A statistical framework for genomic data fusion
Y. Yamanishi'-*, J.-P. Vert? and M. Kanehisa' Gert R. G. Lanckriet', Tjl De Bie®, Neflo Cristianini®,
1 Michael I. Jordan® and William Stafford Noble™*
' Biginformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, :
LU, Kyoto 611-0011, Japan and 2 Computational Biology group, Ecole des Mines de . ] ' Dx of X gineering and Cx Science, 2Division of Computer
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Science, D of Stattics, Universty of Cabforia, Berkaiey 94720, USA,
(¥ of Blactrical Engi i ESAI' SCO, K b it Leuven 3001,
= Bdwm"Depwhmfufosnncs medﬂ'.ﬁa'm Davis 95618, USA and
5D ity of g, Saattle 95195, USA
1 IJ
Eh goo ——
/ Tos
I'4 07 r—l i ’_‘ [E55] |—-—| F—I l_'_l
. 2 SW Plam FFT al
2 ) g0 —
3 d ’ Kemel Duta Similarity measure E 2 —.—I ’—.—I
. N1/~ [~ o] el | 1 | T T T
chp (Expression) 1/ 7 :I :c'. profein sequences uHquHM ! SW Plam FFT LI al
Kppi (Protein interaction) e r/ !c:: ::rnu;nh, pm:l‘; l-l-:'n !
Kioc (Localization) - e e R
Kphy (Phylogenetic profile) 2 ;:m e o 0
K'“P + K]‘pl + Kl[l’.' + KPh}' 0'0 Dlz D" Blj 0" !'0 (B} Membrane proteins
(Integration) i o Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. |. & Noble, W. 5. 2004. A statistical
framework for genomic data fusion. Bioinformatics, 20, (16), 2626-2635.
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TV @HCI-KDD & i8] Bayesian Network (BN) - Definition @HCI-KDD &

= is a probabilistic model, consisting of two parts:
= 1) a dependency structure and

- = 2) local probability models.
05 Bayesian EETIE
PRy ees X)) = np(xi | Pa(x))
Networks
Where Pa(x;) are the parents of x;
l‘ B aye S’ N et s” BN inhe'-r‘ent]y model the uncertainty in the data. They are § §ucces§ful marriagg 'between

probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.
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B8 Clinical Case Example @ HCI-KDD &

m Example: Directed Bayesian Network with 7 nodes @ HCI-KDD %=
p(X1._ s X?) =
p(X1)p(X2)p(X3)p(X4| X1, X2, X3)-

2)]
p(X5|X1, X3)p(Xe|Xa)p(X7| X4, Xs5)
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B8 Important in Clinical practice -> prognosis ! @ HCI-KDD 5%

Overmoyer, B. A.,
Lee, J. M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New
England Journal of
Medicine, 364, 23,
2246-2254.
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B8 Predicting the future on past data and present status @HCI-KDD o

= =the prediction of the future
course of a disease conditional
on the patient’s history and a
projected treatment strategy

= Danger: probable Information !

= Therefore valid prognostic
models can be of great benefit [
for clinical decision making and
of great value to the patient ’

of—llfe decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.
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current patient state next patient state

Risk factors E Risk factors
Pathogenesis Pathogenesis
Disorders """:": Disorders
Pathophysiology Pathophysiology
Findings Y Findings
physician TeStS J
model Treatments
physician
past future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.
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B8 Example: Breast cancer - Probability Table @ HCI-KDD o2

Category Node description State description
Diagnosis Breast cancer Present, absent.
Clinical his- Habit of drinking alcoholic beverages and  Yes. no.
tory smoking
Taking female hormones Yes. no.
Have gone through menopause Yes, no.
Have ever been pregnant Yes. no.
Family member has breast cancer Yes, no.
Physical find-  Nipple discharge Yes. no.
mngs
Skin thickening Yes. no.
Breast pain Yes. no.
Have a lumpi(s) Yes. no.
Mammo- Architectural distortion Present, absent.
graphic
findings
Mass Score from one to three. score from four to five,
absent
Microcalcification cluster Score from one to three, score from four to five,
absent
Asymmetry Present. absent.

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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B 10 years later: Integration of microarray data @HCI-KDD 5%

B Breast cancer - big picture — state of 1999 @HCI-KDD 5%

= |ntegrating microarray data from multiple studies to increase
sample size;

= = approach to the development of more robust prognostic tests

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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Alcoholic & Skin Nipple Breast
Smoking Thickening| Discharge Pain
[y
Hormones Have a
/ - i
Menopause Breast Cancer
Pregnant Mass
\ 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.
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B Example: BN with four binary variables @HCI-KDD &
Gene 1
P(on) 0.8
P(off) 0.2
Gene 2 Gene 1 Gene 1 Gene2 Genel Gene 1
on off on off
P(on) 0.3 0.6 @ @ P(on) 0.3 0.6
P(off)y 0.7 0.4 P(off) 0.7 0.4

Prognosis Gene2on Gene2on Gene2off Gene 2 off

Gene3on Gene3off Gene2on Gene 3 off
P(good) 0.6 0.1 0.9 0.5

P(poor) 0.4 0.9 0.1 0.5
Gevaert, 0., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the

prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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B8 Concept Markov-Blanket @ HCI-KDD &

8 Dependency Structure -> first step (1/2) @ HCI-KDD -

Gevaert, O., Smet, F. D.,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
(2006) Predicting the
prognosis of breast
cancer by integrating
clinical and microarray
data with Bayesian

networks.

Bioinformatics, 22, 14,

184-190.
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8 Dependency Structure - first step (2/2) @HCI-KDD &

= First the structure is learned using a search strategy.

= Since the number of possible structures increases super
exponentially with the number of variables,

= the well-known greedy search algorithm K2 can be used in
combination with the Bayesian Dirichlet (BD) scoring metric:

n_ q Ti ]
I'(N'y) T'(N'yjk + Niji)
pES\D) “p(s)l_[ﬂ I‘(N'---I—[]N--)l—[ I‘IE'N’-- 3
i=1 j=1 g+ e L

Njij ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.
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B8 Parameter learning -> second step @HCI-KDD o

= Next, N;j is calculated by summing over all states of a variable:

* N = Z;‘zl Nijk  N'ijx and N';; have similar meanings but refer to prior
knowledge for the parameters.

* When no knowledge is available they are estimated using N;jx = N/(1:q;)

= with N the equivalent sample size,

= 7; the number of states of variable i and

= g; the number of instantiations of the parents of variable i.

= ['(.) corresponds to the gamma distribution.

= Finally p(S) is the prior probability of the structure.

= p(S)is calculated by:

= p(S) =, [, p — %) [Ty =y P(MiX)

= with p; the number of parents of variable x; and o; all the variables that are
not a parent of x;.

* Next, p(a — b) is the probability that there is an edge from a to b while
p(ab) is the inverse, i.e. the probability that there is no edge froma to b
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e Estimating the parameters of the local probability models corresponding
with the dependency structure.

= CPTs are used to model these local probability models.

* For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

= Each set of parameters was given a uniform Dirichlet prior:

p(gljls) = Dir(BUIN’Ul, ...,N’Uk, o N,ijri)

Note: With 8;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 8;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N'm, ...,N',-;-,.l.) as parameters of this Dirichlet distribution. Parameter learning then consists of
updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(ﬁ,-le, S} = DI'T(QU'|N’U1 = N”l, - Nr('jk + Nl'fkr ek N'If‘r,- + Nl'jl‘,-)
with N, defined as before.
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B8 Predicting the prognosis of breast cancer (integrated a.) @Hc1-kpD

B8 Inference in Bayes Nets is intractable (NP-complete!) @ HCI-KDD 5%

{
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Gevaert, 0., Smet, F. D,
Timmerman, D., Moreau, Y. &
Moaor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and e oy
microarray data with Bayesian 4 -
networks. Bioinformatics, 22, % 2 A\ @ &
14, 184-190.

@ &

®
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B8 My name is Andreas Holzinger ... @HCI-KDD o

= For certain cases it is tractable if:
= Just one variable is unobserved
= \We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

= Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem
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B8 Finally a practical example @HCI-KDD o

Often it is better to
have a good solution
within time — than an

perfect solution
(much) later ...
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06 Graphical
Model Learning
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m Learning Graphical Models from data @HCI-KDD o

= Remember: GM are a marriage between
probability theory and graph theory and provide
a tool for dealing with our two grand challenges
in the biomedical domain:

Uncertainty and complexity

= The learning task is two-fold:
1) Learning unknown probabilities
2) Learning unknown structures

Jordan, M. I. 1998. Learning in graphical models, Springer
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B A Question @HCI-KDD %
Who of you is Who of you is
NON-Smoker ? Smoker ?

Air trappet
— inalvecli

-
Tightened
e e

/ muscles

Wall inflamed
and thickened

Asthmatic airway

Asthmatic airway p Y
uring attac

Normal airway

Beasley, R. 1998. Worldwide variation in prevalence of symptoms of asthma, allergic
rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet, 351, (9111), 1225-1232,
doi:http://dx.doi.org/10.1016/50140-6736(97)07302-9.
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B Learning the Structure of GM from data @HCI-KDD -

1) Test if a distribution is decomposable with regard to a given graph.
= This is the most direct approach. It is not bound to a graphical
representation,
= |t can be carried out w.r.t. other representations of the set of subspaces to
be used to compute the (candidate) decomposition of a given distribution.
2) Find a suitable graph by measuring the strength of dependences.
= This is a heuristic, but often highly successful approach, which is based on
the frequently valid assumption that in a conditional independence graph
an attribute is more strongly dependent on adjacent attributes than on
attributes that are not directly connected to them.
3) Find an independence map by conditional independence tests.
= This approach exploits the theorems that connect conditional
independence graphs and graphs that represent decompositions.
= |t has the advantage that a single conditional independence test, if it fails,
can exclude several candidate graphs. Beware, because wrong test results
can thus have severe consequences.

Borgelt, C., Steinbrecher, M. & Kruse, R. R. 2009. Graphical models: representations for
learning, reasoning and data mining, John Wiley & Sons.
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m Example for Graphical Model Learning @HCI-KDD o

S »  Bayesian Network
[ patent | a5 | Tusss | smoker
1

Florian

Asthma Smokes

Tamas 0
Matthias
Benjamin
Dimitrios
Rows are independent
: n = during learning and
Florian 0 ! ! inference!
Florian 0 0.3 0.2
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m Relational Representation Learning and Prediction @HCI-KDD o

m Knowledge Representation > Reasoning > Learning @HCI-KDD o

= Asthma can be hereditary
= Friends may have similar smoking habits

= Augmenting graphical model with relations between
the entities — Markov Logic
2.1 Asthma = Cough

3.5 Smokes = Cough

2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)
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m @HCI-KDD £

=1 Probabilistic £ g Program
— Programming Be Induction
- o E 2 o
g a g 2 £
o Statistical g Statistical E
(U] Relational Models = Relabional g
= o ° Learning B
Probabilistic B o E .E
Databases 22 =
o P
(=] -
Graphical £ ‘{_:E G:pz'cfl
Models Bayesian 8 Lea‘r’n;
Networks €
Knowledge Reasoning Machine
Representation Learning

Example for probabilistic rule learning, in which probabilistic rules are learned from probabilistic examples: The ProbFOIL+
Algorithm solves this problem by combining the principles of the rule learner FOIL with the probabilistic Prolog called
Problog, see: De Raedt, L., Dries, A., Thon, L., Van Den Broeck, G. & Verbeke, M. 2015. Inducing probabilistic relational rules
from probabilistic examples, International Joint Conference on Artificial Intelligence (lJCAI).
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m Probabilistic-programming.org @HCI-KDD o

07 Probabilistic
Programming
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= C — Probabilistic-C
Scala — Figaro

Scheme — Church

Excel — Tabular

Prolog — Problog

Javascript —> webPP
. — Venture
Python —» PyMC

PYMCPyrhonic Markov chain Monte Carlo
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m Probabilistic programs vs. graphical models

@ HCI-KDD o2

Probabilistic
Program
Variables
Functions/operators
Fixed size loops/arrays
If statements

Variable sized loops,
Complex indexing,
jagged arrays, mutation,
recursion, objects/
properties...
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B Finally a practical example

Graphical
Model

Variable nodes
Factor nodes/edges
Plates
Gates (Minka & Winn)

No common equivalent

MAKE Health Verona 03

@ HCI-KDD 2=

08 Markov Chain
Monte Carlo
(MCMC)

Holzinger Group hci-kdd.org 79
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B Medical Example @ HCI-KDD &
Sequence Cutcom 1
= * Simple example: Nucleotide “A” may follow nucleotide “T™ in the
* sequences more frequently for outcome X than for outcome Y,
. P(AIT,X)>P(AIT,Y) 2
« Specdy the priar distributan: i
" I'.'Y . AR .
P(D) P(D)
6 * Spocily the value 1o maximizo using numarical simulation, = Specify the experimental data: E__I._. _Dwa
a5 well a3 of the postarior exp_data = rparay(]1,1,2,2,2,1,0, )
p(o1 p)= PL116)-P(6)
PAID)= - i
s R =)

Image Source: Dan Williams, Life Technologies, Austin TX
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m @HCI-KDD £

Monte Carlo Method (MC)
Monte Carlo Sampling
Markov Chains (MC)
MCMC
Metropolis-Hastings

"
Pl
= T % ds W
ITERATION
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B8 In real-world systems you have observable data D @HCI-KDD o

= often we want to calculate characteristics of a
high-dimensional probability distribution ...  p(D|#)

p(h|d) o< p(D|0) = p(h)
Posterior integration problem: (almost) all statistical
inference can be deduced from the posterior

distribution by calculating the appropriate sums,
which involves an integration:

J = / £(0) * p(6|D)do
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B8 Simulation of samples ... @ HCI-KDD &

B8 Origin @ HCI-KDD -
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= Statistical physics: computing the partition
function — this is evaluating the posterior
probability of a hypothesis and this requires
summing over all hypotheses ... remember:

H={Hi, H, 0, Ha} Wh,d)

P(d|h) = P(h)

P(hld) =
>pen PAR)P(R)
B8 named after @HCI-KDD o5
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B8 Summary: What are Monte Carlo methods? @ HCI-KDD 5%

B8 MC connects Computer Science with Cognitive Science  @Hc1-kpp -

Class of algorithms that rely on repeated
random sampling

Basic idea: using randomness to solve problems
with high uncertainty (Laplace, 1781)

For solving multidimensional integrals which
would otherwise intractable

For simulation of systems with many dof

e.g. fluids, gases, particle collectives, cellular
structures - see our last tutorial on Tumor
growth simulation!
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B8 Mathematical simulation via MC @ HCI-KDD 5%

= for solving problems of probabilistic inference

involved in developing computational models

= as a source of hypotheses about how the human

mind might solve problems of inference

= For a function f(x) and distribution P(x), the

expectation of f with respect to P is generally
the average of f, when x is drawn from the
probability distribution P(x)

Ep(m) Z fx
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= Solving intractable integrals

= Bayesian statistics: normalizing

constants, expectations, .
marginalization

= Stochastic Optimization Sate

= Generalization of simulated annealing

= Monte Carlo expectation maximization

(EM)
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B8 Physical simulation via MC @HCI-KDD o

Physical simulation

estimating neutron diffusion time

Computing expected utilities and best res.ponses
toward Nash equilibria

Computing volumes in high- dlmenswns,,/ ﬁ

Computing eigen-functions and value&of 34.3
operators (e.g. Schrodinger)

Statistical physics _
Counting many things as fast as p055|ble
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B8 5,223 citations as of 26.03.2017

@ HCI-KDD 2=

JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 247 SEFTEMBER 1949 Volume 44

THE MONTE CARLO METHOD

Nicmoras Merrorouts ano 8, Uram
Los Alamos Laboratory

‘We shall present here the motivation and a general deserip-
tion of a method dealing with a class of problems in mathe-
matical physies. The method is, essentially, a statistical
lppmul: to t.ho study of d:ﬂen:ntn.l equations, or more

of i i that occur in
various bmhu nl the natural sciences.,

LREADY in the nineteenth century a sharp distinction began to ap-
pear between two different mathematical methods of treating

Image Source:

physical pllenomenn Problems involving only a few particles were http://www.manhattanprojectvoices.org/or

atndind 1 1 h

in
differential equations. For the description of systems with very many
particles, an entirely different technique was used, namely, the method
of statistical mechanics. In this latter approach, one does not concen-
trate on the individual particles but studies the propertics of sets of
particles. In pure mathematics an intensive study of the properties of
sets of points was the subject of a new field. This is the so-called theory
of sets, the basic theory of integration, and the twentieth century de-
velopment of the theory of probabilities prepared the formal apparatus
for the use of such models in theoretical physics, i.e., description of

through the study of systems of ordinary al-histories/nicholas-metropolis-interview

B8 34,140 citations (as of 26.03.2017)

@ HCI-KDD 2=

THE JOURNAL OF CHEMICAL PHYSICS

Equation of State Calculati

VOLUME 21, NUMBER & JUXE, 1952

Nicwoias Memeopos, Axuasya W. Rosexsiors,

by Fast C PP S

Maxsuars N. Rostwmomw, axp Avcrsta H. Trizs,

Los Alawos Scientific Laboratory, Los Alames, New Mezico

axp

Eowarp TeLLER,® Department of Physics, Universily of Chicago, Chicago, Iinois
(Received March 6, 1953)

A genveral method, suitable for fast computing machines, for investigating such properties s equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Caslo integration over configuration space. Results for the two-dimensional rigid-sphere
system bave boen obtained on the Los Alsmos MANTAC and are presented bere. These results are compared
0 the free volume equation of state and to a four-term virial coefficient expansion.

L INTRODUCTION

'HE purpose of this paper is to describe a 5mera]

method, suitable for fast electronic computing
machines, of calculating tlu: [;mmmol'any su'lulancr
which may be il as 1 of i
individual molecules. Classical statistics is assumed,
only two-bedy forces are considered, and the potential
field of a molecule is assumed spherically symmetric,
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
i not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
be'mg inuuligated

‘4mr at the Radiation Lahoratory of the University of Cali-
fornia, Livesmore, California.

IL THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number .V may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d.yp, the minimum distance between particles A
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance d.4p.

I\M will use the two-dimensional momenclature here since it
s casier 1o vissalin:. The extension to three dimensions is obvious.

properties of aggrogates of points rather than of individual points and Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller. A. H. & Teller, E. 1953. Equation of State Calculations

by Fast Computing Machines. The Journal of Chemical Physics, 21, (6), 1087-1092, doi:10.1063/1.1699114.
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B8 10,624 citations as of 26.03.2017 @HCI-KDD & B8 Remember @HCI-KDD &

Biomatrika (1970), 57, 1, p. 97 97

P = Expectation of a function f(x, y) with respect to
a random variable x is denoted by E, [f(x,y)]

Monte Carlo sampling methods using Markov

chains and their applications X i . - )
B W. K. HASTINGS = |n situations where there is no ambiguity as to
”"’:“:xf""’“” which variable is being averaged over, this will be
A rercion of he sl methrntrodcd by Metrocis . (155 simplified by omitting the suffix, for instance [Ex.

methods and difficulties of ummg the error in Monte Carlo estimates. Examples of the

methods, including he grnerstionof rndom orthogonal matcions wd ot aplc- = |f the distribution of x is conditioned on another
variable z, then the corresponding conditional

more efficient than mnvenilond nnmenml methoda However, implementation of the eXpECtatlon WIII be wrltten Ex[f(x) |Z]

Monte Carlo hod fmmh.lgh I probability distributions

and hi may bo very diful andoxponivoin analyvi and compute e, General mothod = Similarly, the variance is denoted var[f (x)], and

for pling from, or with respect to, such distributions are as

follows. o N for vector variables the covariance is written

(i) If possible, factorize the distribution into the product of one-dimensional conditional
cov|[x,y]

1. IsTRODUCTION
For numerical problems in a large number of di i Monte Carlo methods are often

Hastings, W. K. 1970. Monte Carlo sampling

methods using Markov chains and their
applications. Biometrika, 57, (1), 97-109.

distributions from which samples may be obtained.
(i) Use importance sampling, which may also be used for variance reduction. That is, in
order to evaluate the integral
7 = [ferpterie = By,

where p(z) is a probability density function, instead of
. from plx) and using the estimate J, = Ef(z,)/N, we instead obtain the sample from

MAKE Health Verona 03
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B8 Global optimization: What is the main problem? @ HCI-KDD 5%

argmax f(x)

o __ p(ylz) * p(z)
Normalization: p(z|y) = fx p(y|z) * p(x)dx

Marginalization:

p(z) = /Z plz, 2)dz

Expectation: Ep(x)(f(x))zfxf(x)p(:c)da:
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B8 Metropolis, Rosenbluth et al. (1953), Hastings (1970) @ HCI-KDD -

B8 Finally a practical example

@ HCI-KDD 2=

2
PSI1
Image Source: Peter Mueller,
Anderson Cancer Center
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B8 Random Sampling

09 Metropolis-
Hastings Algorithm

MAKE Health Verona 03

@ HCI-KDD 2=

1 Initialize 2V ;

2 fors=0,1,2,... do

3

4
5

Holzinger Group hci-kdd.org

p(hld) o< p(DI|6) * p(h)

Define = = z%;
Sample 2’ ~ g(z'|x);
Compute acceptance probability

J:/f((?)*p(@\l))d@

Compute r = min(1. a);
Sample U ~ U(D. 1) = Markov chains Posterior density
Set new sample to

. i ™y
2+ = o ifu<r L - o | |'I.
z* fuzr & °2 [
: |
|
o g" 10
. . 8
_ Iteration 1 k&
— 77— 13
¢« 5 6 7 8 8 0
my
9% MAKE Health Verona 03



B8 Metropolis Hastings MCMC sampling

@ HCI-KDD 2=

Barber, D. 2012. Bayesian reasoning and
machine learning, Cambridge, Cambridge

Holzinger Group hci-kdd.org

B8 Gibbs Sampling

University Press, p. 500

1: Choose a starting point z!.
2: for i =2 to L do

3. Draw a candidate sample z°"¢ from the proposal ¢(z'|z!~1).

= (j(:rj'J'I:l:m""}p(:l.‘“""‘)
Leta = “G(eand g1 )p(g=1)

4
5: if a > 1 then 2! = zond

6: else

7 draw a random value u uniformly from the unit interval [0, 1].
8 if u < a then z! = geond

9: else

10: z! = xi-1
11: end if

12: end if

13: end for

Importance sampling @HCI-KDD o
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@ HCI-KDD 2=

= The Gibbs Sampler is an
interesting special case of MH:

Holzinger Group hci-kdd.org

1l

0 1 2 3 4 5

PSI1
Image Source: Peter Mueller,
Anderson Cancer Center
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Importance sampling is a technique to
approximate averages with respect to an
intractable distribution p(x).

The term ‘sampling’ is arguably a misnomer
since the method does not attempt to draw
samples from p(x).

Rather the method draws samples from a
simpler importance distribution g(x) and then
reweights them

such that averages with respect to p(x) can be
approximated using the samples from q(x).
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B Ssample @HCI-KDD &
Node Variable Data (X)
» Madel for
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Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014.
Learning Modular Structures from Network Data
and Node Variables. Proceedings of the 31st
International Conference on Machine Learning
(ICML). Beijing: JMLR. 1440-1448.
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TV @HCI-KDD o

Algorithm 1 RIMCMC for sampling parameters £ 4
Inputs: E N
Node Variables Data X £ %]
Network Data B My 2000 | B0 10000
for iterations j = 1 to .J do ad
Sample AUFY given AU using Alg 2 in (Azizi et al., = OJ:W_W;
2014) SU+Y) ) T 15.000 !
Sample SUTY) given SU) using Alg 3 in (Azizi et al., 8 ar
2014) 5 ».ﬁ’—“—J ""L.q|., b
for modules k = 1to KV do ¥ g 05 @
Propose w¥* ~ A(wd, 1) . ‘Ll—v—'J H’“i"'mﬂm’“
Accept w:th probability P, update U+
for parents r = 1 to K. do 20000
Propose z, ) .-\."{:;m. I); accept with Py, ~
Propose 7 —rUH] ~ N(@Y.1); accept with : e
Prnn
end for .
end for -4
for condition ¢ = 1 to C' d 2e
Propose pro Y '\e"(unm I); accept with Py, -
Propose TR(”” N mi“”. I); accept with P, 2 et e
end for ——— Variables model
end for .
A 02 04 06 08 1
False Positive Rate
Azlzl, E., Alroldl, E. M. & Galagan, J. E. 2014, Learning Modular Structures from Network Data and Node Varlables.
Proceedings m‘the Slstlntnmltlunal Conference on Muchlnl Learning (ICML). Bel]ing: JMLR. 1440-1448,
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B8 Electronic Health Record Analysis via Deep Poisson @HCI-KDD &

B8 Myobacterium tuberculosis Gene Regulatory Network  @Hei-kpo -

O 2 D O O
R I ¢ il gl
@ .1 (Pracv) (PraeD) (PFRAGD)
] | !

:_] ¥n O Xn O XS.I] o xif’ O xE;i}

3 3)
— (? 2\ (P P
Tk Tkn

Henao, R., Lu, J. T, Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep
poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.
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Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014, Learning Modular Structures from Network Data and Node Variables.
Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.
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B MCMC based DPFM outperforms other approaches @HCI-KDD &
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Henao, R., Lu, J. T, Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep
poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.
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Still ... there are a lot of
open problems and
challenges to solve ...

no chance to retire!
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m @HCI-KDD £

Questions
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@ HCI-KDD 2=

&

Thank you!
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B8 Sample Questions @ HCI-KDD &

What is the main difference between the ideas of Pierre
Simon de Laplace and Lady Lovelace?

What is medical action consiting most of the time?
How does a human make a decision - as far as we know?

What is the main idea of a probabilistic programming
language?

Why did Judea Pearl receive the Turing Award (Noble Prize
in Computer Science)?

What fields are coming together in PGM?

What are the challenges in network structures?

Give a classification of Graphical Models!

What are plates and nested plates?

Provide corresponding examples of metabolic networks!
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m @HCI-KDD £

= What is a factored graph?

= Describe the protein structure prediction problem! Why is
it hard?

= Why are protein-protein interactions so important?

= Describe the problem of graph-isomorphism!

= How does a Bayes Net work?

= Why is predicting important in clincial medicine?

= What is a Markov-Blankett?

= Which two tasks do we have in Graphical Model Learning?

= Why would we need probabilistic programming
lanugages?

= Describe the main idea of MCMC!

= What is the main problem in marginalization?

= What is the benefit of the MH Algorithm?
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m Basics and Background reading @HCI-KDD o

Appendix
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B Reading hints @ HCI-KDD &

Machine Learning

Kevin P, Murphy

Murphy, K. P. 2012.

Bishop, C. M. 2007.
Pattern Recognition and Machine learning: a
probabilistic perspective, Deep Learning,

Goodfellow, ., Bengio,
Y. & Courville, A. 2016.

Machine Learning,

Heidelberg, Springer. MIT press. Chapter 26 Cambridge (MA), MIT

(pp. 907) — Graphical Press.
model structure learning
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= Goodfellow et al., Chapter 17: Monte Carlo
Methods 592-601

= Murphy, Chapter 2.7: MC approximation 52-54;
Chapter 23 MC inference 815-834, and Chapter
24 MCMC inference 837-873

= Bishop, Chapter 11: Sampling Methods 523-556
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B Some more specialist literature @HCI-KDD &

m @HCI-KDD -

Simulation and

| M tiifed Apprsh 1o Cmbstonal
the Mo

Optimiation, ety Culo Smden

Rubinstein, R. Y. &
Kroese, D. P. 2013. The
cross-entropy method: a

Rubinstein, R. Y. &
Kroese, D. P. 2013.

unified approach to Simulation and the
combinatorial Monte-Carlo Method,
optimization, Monte- Wiley

Carlo simulation and
machine learning,
Springer
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B Where do the data come from? @HCI-KDD &

. ]
DIRECT SUBMISSIONS o B %

y

.

DATA SETS FROM HIGH-THROUGHPUT
PROTEIN-PROTEIN INTERACTION PROJECTS

MOLECULAR-INTERACTION
DATA FROM PUBLICATIONS

CURATION

http://www.ebi.ac.uk/intact/
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Stiller, A., Goodman, N. & Frank, M. C. Ad-hoc scalar implicature in
adults and children. CogSci, 2011.
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