'!_:rg_ Science is to test crazy ideas — Engineering is to put these ideas into Business @ HCI-KDD +4-
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TU This whole lecture is a reflection course ... so please @ HCI-KDD -

Grazm
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TU . fasten your seat belts and be prepared for questions! @ HCI-KDD -

Grazm

SEAT BELTS
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TU

GGGGG

@ HCI-KDD -

Holzinger Group

Lecture 1:
Computer Science
meets Life Sciences



TU Repetition of Bayes - on the work of Laplace @ HCI-KDD £

Grazm

What is the simplest mathematical operation for us?

p(z) = 3 (p(z,y)) (1)
How do we call repeated adding? |
p(z,y) = p(ylz) * p(y) (2)
Laplace (1773) showed that we can write:
p(z,y) * p(y) = p(y|z) * p(z) (3)
Now we introduce a third, more complicated operation:
p(:v?jy) *ply) _ plylz) * p(a) )
p(y) p(y)
We can reduce this fraction by p(y) and we receive what is called Bayes rule:
p(z,y) = p(m;;)(;p(r) p(hld) = p(dl}f;;;;;(h) (5)
709.049 12
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TU Learning and Inference @ HCI-KDD £

Grazm

d .. data m

H ..{H{, H,, .. H,} Vhd..
h ... hypotheses

p(/hld)z T p(@IR) DR

Posterior Probability Evidence = marginal likelihood = Normalization

Likelihood Prior Probability

N\

__ R
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TU Example for Learning and Bayesian Inference @ HCI-KDD -

* Your MD has bad news and good news for you.

= Bad news first: You are tested positive for a serious
disease D, and this test T is 99% accurate

" Good news: It is a rare disease, striking only 1 in 10,000 (D)
* How worried would you now be — or: what is the posterior?

. likelihood * prior
posterior =

n(d % ]
. p(hld) = A4 *PLh)
evidence Y (p(d|h) % p(h))

p(T =1|D =1) =p(dlh) = 0,99 and
p(D =1) =p(h) =0,0001
and p(T =0|D =0)=0,99

_ AN (0,99)%(0,0001) B
p(D =1 ‘ r=1= (1-0,99)%(1—0,0001)+0,99%0,0001

= 0,0098 = 0,9%
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TU Where is the highest certainty in the signal below? @ HCI-KDD -

Grazm

I 1 :

p(f(z)|D) o< p(D|f(z)) * p(f(z))

Fet ) Bt b L .......

X, X9 + X3

Brochu, E., Cora, V. M. & De Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599.
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TU @ HCI-KDD 4=

GGGGG

Lecture 2:

Data, Information,
Knowledge;
Entropy and Kullback-
Leibler Divergence

Holzinger Group



TU  Warm-up Quiz @ HCI-KDD o

head

5
H(X) =) P(z;)log, P(x;)
7
Dx1,(P||Q) = /;m p(z) log % da .
8
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TU What data do we have in biomedical informatics?

Grazm

@ HCI-KDD 4=

Electronic health record data
Physiological data
Laboratory results

Imaging data
X-Ray, ultrasound, MR, CT, PET,
cams, observation (e.
laboratory), gait (walkin

Genomics

Proteomics
Protein-Protein Interactions

Metabolomics
Chemical processes
Cellular reactions
Enzymatic reactions

Transcriptomics
RNA, mRNA, rRNA, tRNA

Epigenetics

Epigenetic modifications
Foodomics, Lipidomics
Nutrition data (Nutrigenomics)

Diet data (allergenics)
Holzinger Group

Exposome
Environmental data
ir pollution

osure (toxicants)

ssisted Living data
(Non-medical) personal data
11

Collective “

Individual

Tissue

Cell

Virus

Molecule A

Atom

709.049 12



TU Question: Why is it so important to know such structures? @ HCI-KDD £

Grazm

Winterhalter, C.,
Widera, P. &
Krasnogor, N.
2014. JEPETTO: a
Cytoscape plugin
for gene set
enrichment and
topological
analysis based on
interaction
networks.
Bioinformatics, 30,
(7), 1029-1030,
doi:10.1093/bioinf
ormatics/btt732.
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TU  What is/When do we need Shannon-Entropy? @ HCI-KDD

Grazm

H(X) = —ZP(ﬂJ@:)lOgb P(x;)

= Measuring uncertainty, complexity, randomness,
surprise, ..., = information!

Holzinger Group 13 709.049 12



TU  Mutual Information - Conditional Entropy @ HCI-KDD %=

o
(X;Y) =) "> plz,y)log (pp(m’ y )

I(X;
' YeY zeX (z) p(y)

H(X.Y)

I(X;Y) = H(X) — H(X]Y)

= |n ML we need often to measure the difference
between two probability distributions

Holzinger Group 14 709.049 12



TU Kullback-Leibler Divergence - discriminative information @ HCI-KDD £

Grazm

P(i)
For discrete distributions DKL P| P 'E) log
Z Q(7)
. = p(z)
For continuous distributions DKL (P”Q) — p(g‘,) log -(— dz
—00 q\x

L(pllq) = 0 KL(p|lq) # KL(q||p)

KL-divergence can also be used to measure the
distance between two distributions

Kullback, S. & Leibler, R. A. 1951. On information and sufficiency. The annals of
mathematical statistics, 22, (1), 79-86, doi:http://www.jstor.org/stable/2236703
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GGGGG

@ HCI-KDD -4~

Holzinger Group

Lecture 3:
Knowledge
Representation,
Ontologies &
Classifications




What is this, and why is it im

' -
0 e
. g .
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http:
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@ HCI-KDD £+
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(Credit: UC San Diego School of Medicine)
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TU Slide 3-7: Standardized workflow of ECG data processing @ HCI-KDD -

Grazm

Patient Aquisition Pre-processing Storage Post-processing Visualisation  Userinteractionand Interpretation and

i.e.12-ead ECG, VCG, BSPM. e and parsing data exploration diagnosis

Data mining and querying is

Bond, R. R,, far more efficient than paper  ajjows for effective electronic
Finlay, D. . . based systems. transfer of the ECG, i.e. via
Electronic format disregards email.
D., Nugent, any misplacement of paper Brings commonality when
C.D. & based ECGs. integrating the ECG into
Moore, G. _ _ hospital information systems,
Allows for effective serial

(2011) A comparisons.
review of
ECG Allows for cooperation and € ]

collaboration among experts. Rationale for a standard Retains the actual numerical
storage electronic ECG storage format data whereas a paper based
/ . Easier to extract data for
nternation post processing.
al Journal
of Medical

Improves patient care. Removes the need for

Informatics . :
) ) inter-format conversion
80, 10, Saves money. EnEa(l::lgs :ffte\jtlve (sj:fanngtof software.
S between airreren
681-697. hospitals.
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TU  What is a knowledge representation?

Grazm

@ HCI-KDD 4=

Mathematical Logic Psychology Biology Statistics Economics

Aristotle

Descartes

Boole James Laplace Bentham
Pareto

Frege Bernoullii Friedman

Peano

Hebb Lashley Bayes

Goedel Bruner Rosenblatt

Post Miller Ashby Tversky, Von Neumann

Church Newell, Lettvin Kahneman Simon

Turing Simon McCulloch, Pitts Raiffa

Davis Heubel, Weisel

Putnam

Robinson

Logic SOAR Connectionism Causal Rational

PROLOG KBS, Frames Networks Agents

Davis, R., Shrobe, H., Szolovits, P. 1993 What is a knowledge representation? Al Magazine, 14, 1, 17-33.

Holzinger Group

19

709.049 12



TU  Why is this image important? @ HCI-KDD -

Grazm

Clinical
repositories
P Genetic
knowledge bases
Other SNOMED
subdomains OMIM
Biomedical
MeSH
UMLS literature
NCBI
Taxonomy
Model GO
organisms UWDA
Genome
Anatomy annotations
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TU @ HCI-KDD 4=

GGGGG

Lecture 4.
Decision, Cognition,
Uncertainty,
Bayesian Statistics,
Probabilistic Modelling

Holzinger Group



TU  Problem Solving: Humans vs. Computers @ HCI-KDD £

Grazm

When is the human *) better? When is the computer **)
- *)human intelligence/natural | better?
intelligence/human mind/human brain/ learning #*) Computational intelligence, Artificial

= Natural Language Translation/Curation Intelligence/soft computing/ML

Computers cannot understand the High-dimensional data processing
context of sentences [3] Humans are very good at dimensions

= Unstructured problem solving less or equal than 3, but computers can
: , process data in arbitrarily high

Without a pre-sgt of rules, a machine dimensions

has trouble solving the problem, Rule-Based environments

because it lacks the creativity required Difficulties for humans in rule-based

for it [1] environments often come from not

= NP-hard Problems recognizing the correct goal in order
to select the correct procedure or

Processing times are often exponential t of rules 2
and makes it almost impossible to use €L 0 ru- es. [ ]_
machines for it, but human make " Image optimization

heuristic decisions which are often not Machine can look at each pixel and

perfect but sufficiently good [4] apply changes without human personal

biases, and with more speed [1]
[1] Kipp, M. 2006. Creativity Meets Automation: Combining Nonverbal Action Authoring with Rules and Machine Learning. In: LNCS 4133,

pp. 230-242, doi:10.1007/11821830_19.

[2] Cummings, M. M. 2014. Man versus Machine or Man + Machine? IEEE Intelligent Systems, 29, (5), 62-69, doi:10.1109/MI1S5.2014.87.

[3 Pizlo, Z., Joshi, A. & Graham, S. M. 1994. Problem Solving in Human Beings and Computers. Purdue TR 94-075.

[4] Griffiths, T. L. Connecting human and machine learning via probabilistic models of cognition. Interspeech, 2009, ISCA, 9-12

See also: Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2016. Towards interactive Machine Learning (iML):
Applying Ant Colony Algorithms to solve the Traveling Salesman Problem with the Human-in-the-Loop approach. Springer Lecture Notes in

HoIzian%rP&%%rpSCIence LNCS 9817. Heidelberg, Berlin, New York: Sprmstir, pp. 81-95, doi:10.1007/978-3-319-45507-56. 709.049 12



Grazm

TU Slide 7-16 Human Decision Making @ HCI-KDD £

UNCERTAINTY
Cues
—
» DIAGNOSIS CHOICE
Working A
—_—’ . “"_’ . H1 1 »
Selectolve >Percept|on >+ H, Memory 4 Action » Outcome >
= Attention > A e » A,
_______
— y =
\
Cz-; A i®Possible |
H Long-Term | outcomes !
> H Memory \AJA '?4 | ® Likelihood and:
H A ! consequences
Hy"™ (H) Hypothesis /Q_Dq  ofoutcomes ,
(A) Action
Feedback

Wickens, C. D. (1984) Engineering psychology and human performance. Columbus (OH), Charles Merrill.
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TU What does the Signal Detection Theory describe? @ HCI-KDD -

Grazm

hit -tumor preser | miss ~tUmor.present
e Sl i v
doctor saysyes and doctor says no

£

“I
J 1y
Health : \ Dizeaze
|

......'i__./'\.".‘_.,..

o TRt B | —

Two doctors, with equally good training, looking at the same CT scan, will have the
same information ... but they may have a different bias/criteria!

Holzinger Group 24 709.049 12



TU Expected Utility Theory E (U|d) Neumann-Morgenstern @ HCI-KDD -

Grazm

For a single decision variable an agent can select = i
D = dforanyd € dom(D).
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax — al"g Imax E(U | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.
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TU @ HCI-KDD fe

Lecture 5:
Probabilistic
Graphical Models I:
From Knowledge
Representation to
Graph Learning
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TU This protein graph model was worth the Nobel Prize 2013 ... @HCI-KDD +

Grazm

http://sbcb.bioch.ox.ac.uk/users/oliver/software/
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TU Remember: Decision trees are coming from Clinical Practice =~ @HCI-KDD -

Grazm

Death from cancer
o Probability 2%
W Decision node Utility 5%

@ Chance node

“q Qutcome Fertile survival
Probability 98%
No further Utility 100%
surgery

Surgical death
Probability 0-5%
Utility 0%

Microinvasive
cancer of the

cervix . .
Infertile survival

Probability 98%

Radical Utility 95%

hysterectomy

Infertile survival

Survives (p=99-5%) Probability 5% Physician treating a patient
Utility 95% approx. 480 B.C.
Spread (p=2%) Beazley (1963), Attic Red-figured
Death from cancer Vase-Painters, 813, 96.

Department of Greek, Etruscan
and Roman Antiquities, Sully, 1st
floor, Campana Gallery, room 43
Louvre, Paris

Probability 5%
Utility 5%

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281), 571-574.
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TU What are Probabilistic Graphical Models? @ HCI-KDD £

Grazm

= PGM can be seen as a combination between

" Graph Theory + Probability Theory +
Machine Learning

" One of the most exciting Al advances in the Ias1;
= Compact representation for exponentially- Iarg‘e* |. Bility)
distributions “—-«?,

: - .-.":L-" ST - =

= Example Question: 2
“Is there a path connecting two proteins?” :- =

= Path (X,Y):= edge (X,Y) 1 AN
= Path (X,Y):= edge (X,Y),path (Z,Y) .. AR
= This can NOT be expressed in first-order logic

= Need a Turing-complete fully-fledged language

Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.
Science, 303, (5659), 799-805.

Koller, D. & Friedman, N. 2009. Probabilistic graphical models: principles and

techniques, MIT press.
Holzinger Group 29 709.049 12



TU Reasoning under uncertainty @ HCI-KDD -

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned

" Prior = belief before making a particular observation

= Posterio elief after making the observation and is
the\prior for t ext observation — intrinsically
increxgental

p(y;|z:)p(x;)

p(:l??;‘yj) — Zp(xgjyj)p(mi)

Holzinger Group 30 709.049 12



TU |dentifying Networks in Disease Research @ HCI-KDD -

Grazm

-
Z
L
=
KIDNEY é:l
=
<
L

metabolite network

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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TU

Network Basics on the Example of Bioinformatics

@ HCI-KDD -

Grazm

Hol

G(V,E) Graph
V..vertex
E ..edge{a,b}
abevV,a#b

Hodgman, C. T,,
French, A. &
Westhead, D. R.

(2010) Bioinformatics.

Second Edition. New

York, Taylor & Francis.

zinger Group

----- Links comprising an
interaction cycle

— (ritical link

* Second order hub

: Clique/module

32
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Holzinger Group

Lecture 6:
Probabilistic
Graphical Models II:
From Bayesian
Networks to
Graph Bandits



TU  Problem: Is Graph Isomorphism NP-complete ? @ HCI-KDD £

Grazm

Borgwardt, K. M., Ong, C. S., Schénauer, S., T e s
Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. ¢ a' o 6T 2
2005. Protein function prediction via graph (L& LA
kernels. Bioinformatics, 21, (suppl 1), i47-i56.

protein secondary sequence structure
structure

" Important for health informatics: Discovering
relationships between biological components

= Unsolved problem in computer science:

= Can the graph isomorphism problem be solved in
polynomial time?
= So far, no polynomial time algorithm is known.
" |tis also not known if it is NP-complete
= We know that subgraph-isomorphism is NP-complete

Holzinger Group 34 709.049 12



TU Bayesian Network (BN) - Definition @ HCI-KDD

Grazm

" is a probabilistic model, consisting of two parts:
" 1) a dependency structure and
= 2) local probability models.

pCes, ) = | | p0xi | Pa(x)
=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability
distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San
Francisco, Morgan Kaufmann.
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TU Example: Bayes Net with four binary variables @ HCI-KDD £

Grazm

Gene 1
P(on) 0.8
P (off) 0.2

Gene 2 Gene 1 Gene 1 Gene 1 Gene 1

on off on off
P(on) 0.3 0.6 0.3 0.6
P(off) 0.7 0.4 0.7 0.4

Prognosis Gene2on Gene2on Gene2o0ff Gene 2 off
Gene3on Gene3o0off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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Three types of Probabilistic Graphical Models @ HCI-KDD -

Grazl

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

@
P(X)z%exp(z XX +be) @l@..
g DI d

[ N //Q Directed: Bayes Nets, useful for designing

" \( i models (Details: Murphy 10)
X 4

/( % K

‘ p(x) = | | p(zk|pay,)

k=1

Factored: useful for inference/learning

p(x) = HfS(XS)

Tutorial on Factor Graphs http://deepdive.stanford.edu/inference
Holzinger Group 37 709.049 12



TU @ HCI-KDD fe

Lecture 7:
Dimensionality
Reduction and

Subspace Clustering
with the
Doctor-in-the-Loop
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TU

Grazm

Discovery vs. Prediction

@ HCI-KDD ==

Known
Classes
Class A® Training Set
Class Be
l | Train Model |
o -
2\

Independent
Test Set
Apply Model C (“Unknowns”)

Class A Class B
Class Prediction

SUPERVISED LEARNING UNSUPERVISED LEARNING

Dataset

Unknown
Classes

Cluster Samples

ASS|gn Class Labels

Class A Class B

Class Discovery

Ramaswamy, S. & Golub, T. R. (2002) DNA Microarrays in Clinical Oncology. Journal of Clinical Oncology, 20, 7, 1932-1941.

Holzinger Group
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TU  Why do we need Classification? @ HCI-KDD -

Grazm

V. ol | | A | x: data points

i i C,: Cancer present

\- C,: Cancer absent

x -- set of pixel intensities
= Typical questions include:
" |s this protein functioning as an enzyme?
" Does this gene sequence contain a splice site?
" |s this melanoma malign?

" Given object x — predict the class label y
= If y € {0,1} — binary classification problem
= Ify € {l,..,n}andisn € N — multiclass problem
" If y € R — regression problem

y: labels

features

decision
boundary
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TU  Why do we need Clustering? @ HCI-KDD

Grazm

= Group similar objects into | wgg g |
clusters together, e.g. B SN E -

" For image segmentation I

= Grouping genes similarly affected by a disease

= Clustering patients with similar diseases

= Cluster biological samples for category discovery
" Finding subtypes of diseases

= Visualizing protein families

" |[nference: given x;, predict y; by learning f
" No training data set — learn model and apply it

Holzinger Group 41 709.049 12



TU  Why do we need Subspace Clustering in medical data? @ HCI-KDD £

Grazm

r/FSubspaa:.:e NN Search - facetted result vieu?\‘ Geanlre Selection - single result view A
) A
High-Dimensional Se S *il% .:. 'y AAAAAA
Feature Space mey Al EEEEEN
& [ ¥ | L ®
] A Pa Py o 00 s os e -
A
L A - \ @ \ @
t ®n n
Ae o B, 4 Subspace Clustering - faceited clusters ) /rSubspace Outlier Detection — find arpiamiian;\
° ¢ 'L e .e N
F 3 AR A A A AA
Lo “ee g * 28 955558
Al = oo / T T T
&
=:.' cre LI =:.: x e 00
A
N © o AN D)

Hund, M., Sturm, W., Schreck, T., Ullrich, T., Keim, D., Majnaric, L. & Holzinger, A. 2015. Analysis of
Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston, K., Aldo, F,,
Hill, S. & Peng, H. (eds.) Brain Informatics and Health, Lecture Notes in Artificial Intelligence LNAI 9250.
Cham: Springer International Publishing, pp. 358-368, d0i:10.1007/978-3-319-23344-4_35.
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G HCI-KDD

Holzinger Group

Lecture 8:
Decision Making

under Uncertainty:

Decision Support
Systems



TU  Two types of decisions (Diagnosis vs. Therapy) @ HCI-KDD -2~

Grazm

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:

= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks y, if an
obstruction of more than z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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TU Helps to make rational decisions (risks vs. success) @ HCI-KDD -

Grazm

Expected Value of Surgery

Death /

0.05 Death 0
Death Surgery Il
g ry Death 0
Surgery Infection ® 0.05
0.05 _
‘ Survival SUBV;'SEI I Wheelchair 3
. 0.95 .
: Full mobility Full mobility | 10
No infec. 0.6
0.95 .
Poor mobility w8
0.4
No Surgery

Poor mobility B
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TU  Original Example from MYCIN @ HCI-KDD +£-

Grazm

h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 is febrile
h, = The name of PATIENT-1 is John Jones

CF[h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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TU State-of-the-art architecture of DSS G HCI-KDD £

Grazm

Knowlede Base
<4—p External Interfaces

(facts, heuristics)

Inference Engine

(reasoning mechanism) <
User Interface
. _ <
(consultation, conclusions)

Metaxiotis, K. & Psarras, J. (2003) Expert systems in business: applications and future directions
for the operations researcher. Industrial Management & Data Systems, 103, 5, 361-368.
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TU  Why is this model so interesting for us? @ HCI-KDD £

Grazm

D ={d....d) o
d,eR’,s<n

new

Individuals (t)

Ind iviluals

={4d)....d;}

d. R"_PWEA Probes (s)
g E Preprocessed / Filtered
: !
T

Probes (n)

G=1{g.-.8,}r<s
= (fis"-v f;)

. =(z, min, max)

Corchado et al. (2009)
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GGGGG

@ HCI-KDD -

Holzinger Group

Lecture 9:
Interactive
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TU slide 9-22 Visualizations for multivariate data Overview 1/2 @HCI-KDD £

Grazm

i isaase
= fiiedigeasn
[l Ly
.

Scatterplot = oldest, point-based
: technique, projects data from n-dim space
PRS- to an arbitrary k-dim display space;

Parallel coordinates = (PCP), originally for the
study of high-dimensional geometry, data
point plotted as polyline;

RadViz = Radial Coordinate visualization, is
-» a “force-driven” point layout technique,
based on Hooke’s law for equilibrium;
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THlide 9-23 Visualizations for multivariate data Overview 2/2 @ HCI-KDD £

Lateral Bend Left 1 tation

Radar chart (star plot, spider web, polar
— graph, polygon plot) = radial axis technique;

uuuuuu

Lateral Bend Right —_,

Ratation Left <

i
Rotation Rluhl:r Flexian

Heatmap = a tabular display technique using
color instead of figures for the entries;

7

Glyph = a visual representation of
— _ the entity, where its attributes are
controlled by data attributes;

Chernoff face = a face glyph which
Nose it displays multivariate data in the
T t shape of a human face
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TU slide 9-36 Star plots/Radar chart/Spider-web/Polygon plot =~ @HCI-KDD -

Grazm

1
34 7

— Male ) 1 - Control
---- Female 2-0.25 mg
’ 3-0.50 mg

4 -0.75mg

5-1.00 mg

4 3

Saary, M. J. (2008) Radar plots: a useful way for presenting multivariate health care data. Journal
Of Clinical Epidemiology, 61, 4, 311-317.
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TU Sslide 9-40 Design of Interactive Information Visualization

Grazm

@ HCI-KDD 4=

1) What facets of the
target information
should be visualized?

2) What data source
should each facet be
linked to and what
relationships these
facets have?

3) What layout
algorithm should be
used to visualize each
facet?

4) What interactive
techniques should be
used for each facet and
for which infovis tasks?

Holzinger Group

Data Model

InfoFacetSet

DataltemSet

(NI R
120R.JOJu]

DataltemRelationSet

Visualization Model

ViewContainerSet —

VisualStructure

LayoutAlgorithm

SpacialSubstrate

1Pguoney
12U UOJMITA

Control Model

GraphicalMark
Mapping

DirectManipulationTaskControlSet

DirectManipulationTask

DirectManipulationEvent

InDirectManipulationTaskControlSet

DynamicQueryControl

KeywordSearchControl

FilterbyLegendsControl

53

Ren, L., Tian, F.,, Zhang, X. &
Zhang, L. (2010) DaisyViz: A
model-based user interface
toolkit for interactive
information visualization
systems. Journal of Visual
Languages & Computing, 21,
4, 209-229.

709.049 12




TU @ HCI-KDD +£-

GGGGG

Lecture 10:
Biomedical
Information Systems
and Knowledge
Management

Holzinger Group



TU Translational Health Informatics Continuum @ HCI-KDD =%

Grazm

Translational Medicine Continuum

Innovation Validation Adoption
Bench "_'El—’ Bedside «— 12 |—» Community "_E]_’ Policy
Translational Clinical Research
Bioinformatics Informatics
Bio- Imaging Clinical Public Health
informatics Informatics Informatics Informatics
Molecul Ti .
:CB":S & gf;:l'fE Individuals Pﬂpu|a||ﬂn5

Biomedical Informatics Continuum

Sarkar, I. 2010. Biomedical informatics and translational medicine. Journal of Translational
Medicine, 8, (1), 2-12.
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TU Slide 10-6 Example: Formal workflow modeling 1/2 @ HCI-KDD £

= A workflow is defined as a process that contains tasks T,
and the respective rules on how those tasks are
executed:

= Workflow W:= (T, P, C, A, S,) where
= T={T, T,, ... T} Asetof tasks, m>1
" P =(p;)myxm Precedence matrix of the task set
" C=(Cj)mxm Conflict matrix of the task set

= A= (A(T,), A(T,), ...,A(T,)) Pre-Condition set for each
task

" S, € {0, 1, 2, 3} is the initial state

J. Wang, D. Rosca, W. Tepfenhart & A. Milewski (2006) Dynamic Workflow Modeling and Analysis,
Monmouth University
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TU Slide 10-7 Example: Formal workflow modeling 2/2 @ HCI-KDD -

Grazm

T={T, T,, .., Tg}

A(T,) =@, A(T,) = {{T,}, {T}, A(T,) = {{T, 1),
A(T,) = {{T,}}, A(Ts) = {{T,}},

A(Te) = A(T;) = {{Ts}, A(Tg) = {{T5, T53
5,=(1,0,0,0,0,0,0,0).

O B O O O+ O O
O
Il
O O O O O o o o
O O O O O o o o
O O O O O O O o
O O O O O o o o
O O O O O O O o
O B O O O O O o
O O r O O O O O
O O O O O o o o

o
Il

O O O O O O o o

O O O r O O O O

O O O r O O O O

O O r O O O O B+
O O O O O © O =
O O O O O O +— O
O O O O r»r O O O

J. Wang, D. Rosca, W. Tepfenhart & A. Milewski (2006) Dynamic Workflow Modeling and Analysis,
Monmouth University
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TU  What are the Requirements of an electronic patient record  @HCI-KDD :A-

Grazm

[ Anonymlzatlon Pseudonymization

Confidential

-----------------

Accessible m : - o Up to date

Anonymization: Personal data cannot be re-identified (e.g. k-Anonymization)
Pseudonymization: The personal data is replaced by a "pseudonym®, which allows later tracking back to
the source data (re-identification)
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TU  Which Definitions do we need to know? G HCI-KDD £

Grazm

Privacy [ Data Protection J

NN

)

= Safety = any protection from harm, injury,
damage;

Security Confidentiality

= Data Protection = all measures to ensure availability
and integrity of data

" Privacy = (US pron. “prai...”; UK pron. “pri...”; from
Latin: privatus "separated from the rest”, are the
individual rights of people to protect their personal
life and matters Confidentiality = secrecy (“arztliche
Schweigepflicht”)

Mills, K. S., Yao, R. S. & Chan, Y. E. (2003) Privacy in Canadian Health Networks: challenges and
opportunities. Leadership in Health Services, 16, 1, 1-10.
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TU safety, Security -> Technical Dependability

Grazm

@ HCI-KDD ==

DEPENDABILITY —

FAULTS
- THREATS—E ERRORS
FAILURES

— ATTRIBUTES—

— AVAILABILITY

— RELIABILITY

— SAFETY

— CONFIDENTIALITY
— INTEGRITY

— MEANS ———

— MAINTAINABILITY

— FAULT PREVENTION
— FAULT TOLERANCE
— FAULT REMOVAL

— FAULT FORECASTING

Avizienis, A., Laprie, J. C. & Randell, B. (2001) Fundamental concepts of dependability. Technical
Report Computing Science University of Newcastle, 1145, CS-TR-739, 7-12.

Holzinger Group
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TU This poses a big privacy problem @ HCI-KDD

Grazm

87 % of the population in the USA can be uniquely re-identified
by Zip-Code, Gender and date of birth

Hospital Patient Data

Birthdate | Sex | Zipcode | Disease
=1 1/21/76 Male 53715 » Flu
TS b == Hepatitis

2/28/76 | Male | 53703 Brochitis Disease
1/21/76 Male 53703 Broken Arm

1_ 1.3/ 86 Female | 53706 .“1|||'.IIH"|| Ankle B“‘th Date
2/25/T6 Female | 53706 Hang Nail

Voter Registration Data

Name Bir e C O Cl
Andre &QU21/76 MZle —L:#Q“.___.b
Beth 1,10/5]1 Temate | oo-ld
(Carol 10/1,/44 Female | 90210

Dan 2/21,/%4 Male 02171

Fller 1,19/72 Female | 02237

Samarati, P. 2001. Protecting respondents identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering, 13, (6), 1010-1027, doi:10.1109/69.971193.

Sweeney, L. 2002. Achieving k-anonymity privacy protection using generalization and suppression.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10, (05), 571-588.
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TU  Anonymization of Patient Data @ HCI-KDD £

= K-Anonymity ... a release of data is said to have the
k-anonymity property if the information for each
person contained in the release cannot be
distinguished from at least k — 1 individuals whose
information also appear in the release.

= L-Diversity ... extension requiring that the values of
all confidential attributes within a group of k sets
contain at least L clearly distinct values

= t-Closeness ... extension requiring that the
distribution of the confidential attribute within a
group of k records is similar to the confidential
attribute’s distribution in the whole data set (local
distribution must resemble the global distribution)
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TU Example Privacy Aware Machine Learning (PAML)

Grazm

@ HCI-KDD 4=

The Right to Be Forgotten: Towards Machine

Learning on Perturbed Knowledge Bases

Bernd Malle!?, Peter Kieseberg!?, Edgar Weippl?, and Andreas Holzingerl{E}

! Holzinger Group HCI-KDD, Institute for Medical Informatics,
Statistics and Documentation, Medical University Graz, Graz, Austria
{b.malle,a.holzinger}@hci-kdd.org
? SBA Research gGmbH, Favoritenstrae 16, 1040 Vienna, Austria
PEieseberglsba-research.org

Abstract. Today’s increasingly complex information infrastructures
represent the basis of any data-driven industries which are rapidly
becoming the 21st century’s economic backbone. The sensitivity of those
infrastructures to disturbances in their knowledge bases is therefore of
crucial interest for companies, organizations, customers and regulating
bodies. This holds true with respect to the direct provisioning of such
information in crucial applications like clinical settings or the energy
industry, but also when considering additional insights, predictions and
personalized services that are enabled by the automatic processing of
those data. In the light of new EU Data Protection regulations applying
from 2018 onwards which give customers the right to have their data
deleted on request, information processing bodies will have to react to
these changing jurisdictional (and therefore economic) conditions. Their
choices include a re-design of their data infrastructure as well as pre-
ventive actions like anonymization of databases per default. Therefore,
insights into the effects of perturbed/anonymized knowledge bases on

Malle, B., Kieseberg, P., Weippl, E. & Holzinger, A. 2016. The right to be forgotten: Towards Machine
Learning on perturbed knowledge bases. Springer Lecture Notes in Computer Science LNCS 9817.

Heidelberg, Berlin, New York: Springer, pp. 251-256, doi:10.1007/978-3-319-45507-5_17.

Holzinger Group

Keywords: Machine learning + Knowledge bases - Right to be
forgotten + Perturbation - Anonymization - k-anonymity + SaNGreeA -
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TU Very recent: News from 28.01.2017 @ HCI-KDD £

Grazm

Europaischer Datenschutz in der Big-Data-Welt

Aﬁ 28012017 12:30 Uhr - Monika Ermert, dpa o{)) vorlesen

e, ol

(Bild: Hékan Dahlstrom CC BY 2.0<br=)

Datensparsamkeit ist schwierig in Big Data-Zeiten. Der Beirat der
Datenschutzkonvention des Europarats hat eine Reihe von Richtlinien fiir Dataminer
vorgelegt. Derweil warnt der SAP-Finanzchef vor Risiken von EU-Datenschutzregeln.

Der Beirat der Datenschutzkonvention des Europarat legte zum Internationalen
Datenschutztag ,Richtlinien zum Schutz personlicher Daten in einer Big Data-Welt* vor.

https://www.heise.de/newsticker/meldung/Europaeischer-Datenschutz-in-der-Big-Data-Welt-3609737.html
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TU  Good luck for the Exam G HCI-KDD %
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GOOD LUCK
WITH THE EXAM!
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