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JU Warm-up Quiz: Which tasks are based on ML? @ HCI-KDD

= 01 The HCI-KDD approach: integrative ML
= 02 Understanding Intelligence

= 03 Example for Complexity

= 04 Probabilistic information

= 05 Automatic Machine Learning (aMIL)

= 06 Interactive Machine Learning (iML)

= 07 Active Representation Learning

= 08 Multi-Task Learning

= 09 Generalization and Transfer Learning

= 10 Federated Learning
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Jxu @HCI-KDD o4

Holzinger Group, HCI-KDD.org 3 Interactive Machine Learning

01 What is the
G HCI-KDD -

approach?
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Jyu @ HCI-KDD 5%

J¥U Machine Learning and Knowledge Extraction Pipeline @ HCI-KDD -

= ML is a very practical field -
algorithm development is at the core —
however, '
successful ML needs a c
various topics ...

—
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Jxu ... successful ML needs ... @ HCI-KDD -

witho ut boundarles

http://www.bach-cantatas.com
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01
Data

Interactive pjning Knowledge Discovery
(6 (2] o

Data Learning Data Prepro- Data
Visualization = Algorithms  Mapping  cessing Fusion

GDM 9 Graph-based Data Mining
TDM e Topological Data Mining

EDM 9 Entropy-based Data Mining

Privacy, Data Protection, Safety and Security
£ a holzringer@@hci-kdd org

Holzinger, A. 2014. Trends in Interactive Knowledge Discovery for Personalized Medicine:
Cognitive Science meets Machine Learning. IEEE Intelligent Informatics Bulletin, 15, (1), 6-14.

Interactive Machine Learning
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J¥U Cognitive Science AND Computer Science @HCI-KDD -

= Cognitive Science — human intelligence
= Computer Science — computational intelligence
= Human-Computer Interaction — the bridge
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J¥U Grand Goal: Understanding Intelligence @HCI-KDD -

o3
“Solve intelligence -

then solve everything else”

° Demis Hassabis, 22 May 2015

SOCIETY The Royal Society,
Future Directions of Machine Learning Part 2

_ROYAL

Google
DeepMind

Interactive Machine Learning

https://youtu.be/XAbLn66iHcQ?t=1h28m54s
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Jyu @ HCI-KDD 5%

02 Solve
Intelligence
then solve

everything else
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J¥U To reach a level of usable intelligence we need to ... @HCI-KDD -

= 1) extract knowledge
= 2) learn from prior data

= 3) generalize, i.e. guessing where a
probability measure concentrates

= 4) fight the curse of dimensionality

= 5) disentangle underlying explanatory
factors of data, i.e.

= 6) understand the data in the context of
an application domain
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J¥VU How far are we already ? @ HCI-KDD 5 J¥U Scientists who pleaded for “humanoid Al” @ HCI-KDD -

= Alan Turing (1912 — 1954)
Herbert Simon (1916 — 2001)
John McCarthy (1927 — 2011)
Marvin Minsky (1927 —2016)
Allen Newell (1927 — 1992)

= ... pleaded for building machines that
can learn similar to humans, e.g. like children

= None of them knew what they
were talking about ... S=Hl S
(Josh Tenenbaum) |

Compare

your best ML
algorithm with
a seven year old
child ...

Mnih, V., Kavukcuoglu, K., Silver, D, Rusu, A, A,
\eness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, 5., Beattie, C., Sadik, A., Antonoglou,
1., King, H., Kumaran, D., Wierstra, D., Legg, S. &
Hassabis, D. 2015. Human-level control
through deep reinforcement learning. Nature,
518, (7540), 529-533,
doi:10.1038/nature14236
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J¥U Not our Goal: Humanoid Al @ HCI-KDD - N0 @ HCI-KDD -
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J¥U Health is a complex area @HCI-KDD -

Why is this
application area
complex ?

Holzinger Group, HCI-KDD.org 17 Interactive Machine Learning

JYU In medicine we have two different worlds ... @ HCI-KDD 5

JYU Machine Learning and Health Informatics!

@HCI-KDD o4

AYAAAS

Our central hypothesis:
Information may bridge this gap

Holzinger, A. & Simonic, K.-M. (eds.) 2011. Information Quality in e-Health. Lecture Notes in Computer
Science LNCS 7058, Heidelberg, Berlin, New York: Springer.
Holzinger Group, HCI-KDD.org 19 Interactive Machine Learning

https://royalsociety.org/events/2015/05/breakthrough-science-technologies-machine-learning
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J¥U The bridge ...

Holzinger Group, HCI-KDD.org

@HCI-KDD o4

Interactive Machine Learning



J¥U Main problems ... @HCI-KDD 4

Jxu @HCI-KDD o4

7L

Holzger, A., Dehmer, M. & Jurisica, |. 2014. Knowledge Discovery and interactive Data ining in
Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics, 15, (S6), 11.
Holzinger Group, HCI-KDD.org 21 Interactive Machine Learning

Jxu @HCI-KDD o4

04 Probabilistic
Information p(x)
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JXU Repetition of Bayes - on the work of Laplace @HCI-KDD

Probability theory
is nothing but
common sense
reduced to
calculation ...

Pierre Simon de Laplace (1749-1827), 1812

Holzinger Group, HCI-KDD.org 23 Interactive Machine Learning

What is the simplest mathematical operation for us? m
p(x) =Y (p(z.y)) )
y
How do we call repeated adding?
p(e,y) = plyle) * p(y) )
Laplace (1773) showed that we can write:
p(x,y) * p(y) = p(ylz) * p(z) 3)
Now we introduce a third, more complicated operation:

pla.y) *p(y) _ plyle) *p(z) "

p(y) p(y)

We can reduce this fraction by p(y) and we receive what is called Bayes rule:

: pyle) +p(@) 1y = PUARIP(R)
8= p(y) p(hld) p(d)
Holzinger Group, HCI-KDD.org 24 Interactive Machine Learning



J¥U The foundation for machine learning was laid in 1763 @HCI-KDD -

Bayes, T. (1763). An Essay towards
solving a Problem in the Doctrine of
Chances (Postum communicated by
Richard Price). Philosophical
Transactions, 53, 370-418.

Thomas Bayes Richard Price
1701 -1761 1723-1791

pz:) = Y P(xi,y;) p(i, y;) = p(y;|zi) P(x:)

Bayes’ Rule is a corollary of the Sum Rule and Product Rule:

ol — _PWilTi)p(Ei)
i > p(xi, y;)p(x:)

Barnard, G. A., & Bayes, T. (1958). Studies in the history of probability and statistics: IX. Thomas Bayes's
essay towards solving a problem in the doctrine of chances. Biometrika, 45(3/4), 293-315.
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JXU Analogies @HCI-KDD

J¥U Cedalion standing on the shoulders of Orion @HCI-KDD -

Nicolas Poussin; 1658, Qil on canvas, Metropalitan Museum of Art, New York
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J¥U Learning and Inference @HCI-KDD 4

= Newton, Leibniz, ... developed calculus —
mathematical language for describing and
dealing with rates of change

= Bayes, Laplace, ... developed probability
theory - the mathematical language for
describing and dealing with uncertainty

= Gauss generalized those ideas

Holzinger Group, HCI-KDD.org 27 Interactive Machine Learning
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Jxu Bayesian Learning from data — Generalize @HCI-KDD A

09
D::rl;n — {mlp:EQE""}mﬂ} p(D‘g)

p(D|0) * p(0)
p(D)

likelihood * prior

p(0|D) =

posterior = .
evidence

The inverse probability allows to learn from
data, infer unknowns, and make predictions

Holzinger Group, HCI-KDD.org 29 : hino 1 ing

JYUGP = distribution, observations occur in a cont. domain, e.g. t or space @HCI-KDD 5

GP posterior Likelihood  GP prior :
& e PIh) s

PF@ID) « P ) 7))

n(xs) +5(’és)

flx™)

H

X Xy xt X5

Brochu, E., Cora, V. M. & De Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599,
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Jxu Scaling to high-dimensions is the holy grail in ML @HCI-KDD o5

n=2

abjective fn (1{})

" observation (x)

¥ acquisition max

=+ B0 ==

w— REMBO (d =)

= REMBO (d=2), k=1 interleaved runs

— WD BO ;
100 00 300 00 w0

No. of Iterations (t)

Q. 10 [ RANDOM

— REMBO (=4

10' | wa REMBO (4-2), ke | interieaved runs
posterior mean {uf ) 1wt ) FL %90 00
No. of Iterations (¢)

posterior uncertainty v

it h . .

Wang, Z., Hutter, F.,, Zoghi, M., Matheson, D. & De Feitas, N. 2016. Bayesian optimization in a billion dimensions via
random embeddings. Journal of Artificial Intelligence Research, 55, 361-387, doi:10.1613/jair.4806.
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Jxu @ HCI-KDD 4

||:ipred\rar e pred mean = = = truth [ avaluatloml ’

f(x)

El(x)

Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms.

Advances in neural information processing systems, 2012. 2951-2959.
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J¥U Bayesian Optimization 1 @HCI-KDD -

f(x)

%
4 4. .

Interactive Machine Learning

El(x)
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J¥U Bayesian Optimization 3 @HCI-KDD -

f(x)

El(x)
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J¥U Bayesian Optimization 2 @HCI-KDD -

(%)

El(x)
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J¥U Bayesian Optimization 4 @HCI-KDD -

f(x)

El(x)
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J¥U Bayesian Optimization 5 @HCI-KDD -

‘ ]
#

f(x)

El(x)

| A 0
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JxU Fully automatic — Goal: Taking the human out of the loop @Hci-kpD

Algorithm 1 Bayesian optimization
I: forn=1,2,... do
2. select new x,; by optimizing acquisition function o

Xp41 = argmax a(x;D,)
x

3:  query objective function to obtain ¥, 4,
4 augment data Dyiq = {Dn, (Xns1:Uns1)}
5:  update statistical model
6: end for

— P| Probability of Improvement

—_— EI Expected Improvement

—— UCB Upper confidence Bound

N— TS Thompson Sampling

—— PES rredictive Entropy Search

Shahriari, B., Swersky, K, Wang, Z., Adams, R. P. & De Freitas, N. 2016.
Taking the human out of the loop: A review of Bayesian optimization.
Proceedings of the IEEE, 104, (1), 148-175, doi:10.1109/JPROC.2015.2494218.
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J¥U Bayesian Optimization 6 @HCI-KDD -

f(x)

El(x)

A

Interactive Machine Learning
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05 aML
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JxU Everything is machine learning ... @HCI-KDD -

Jxu @HCI-KDD o4

= Today most ML-applications are using
automatic Machine Learning (aML) approaches

= aML := algorithms which interact
with agents and can optimize their
learning behaviour trough this
interaction

Holzinger Group, HCI-KDD.org 41 Interactive Machine Learning

Jxu Fully automatic autonomous vehlcles (“Google car”) @HCI-KDD

Best practice
examples of
aML ...

Holzinger Group, HCI-KDD.org 42 Interactive Machine Learning

J¥U Good example for Learning from big data @HCI-KDD -

B e

Guizzo, E. 2011. How google’s self-driving car works. IEEE Spectrum Online, 10, 18.

Holzinger Group, HCI-KDD.org 43 Interactive Machine Learning

pan-tilt-zoom
camera

photonic
mixer device

ultrasonic
sensors (left

short range :
radar (nht

long range radar S

Mukhtar, A., Xia, L. & Tang, T. B. 2015, Vehicle Detection Techniques for Collision Avoidance Systems: A Review, |EEE
Transactions on Intelligent Transportation Systems, 16, (5), 2318-2338, doi:10.1109/TIT5.2015.2409109.
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J¥U ... an old dream to make it automatic @ HCI-KDD 5

1960s Citroén DS driverless car test

Sunday Times Driving
8 s | 8,605 views
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J¥U Big Data is necessary for aML ! @ HCI-KDD 7

Classification Performance (in percent)

—&— Area under the PRC |

' 1 1
1000 10000 100000 1000000 10000000
Number of training examples

Sonnenburg, S., Ratsch, G., Schafer, C. & Scholkopf, B. 2006. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7, (7), 1531-1565.
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J¥U ... and thousands of industrial aML applications ... @HCI-KDD -

Cyber-Physical Systems (CPS):
Tight integration of networked computation
with physical systems

Building Sys!ems'_'

Transportation
(Air traffic
control at
SFO)

Avionics
Telecommunications

—_— !
Military syslems:

Courtesy of
General Electric

Verification by, for, and of Humans: Formal Methods for Cyber-Physical Systems and Beyond. lllinois ECE Colloquium.

Holzinger Group, HCI-KDD.org 46 Interactive Machine Learning

J¥U When does aML fail ... @ HCI-KDD 5

= Sometimes we do not have “big data”,
where aML-algorithms benefit.

= Sometimes we have
= Small amount of data sets
= Rare Events — no training samples
* NP-hard problems, e.g.
= Subspace Clustering,
= k-Anonymization,
= Protein-Folding, ...

Holzinger Group, HCI-KDD.org 48 Interactive Machine Learning



Jxu @HCI-KDD JxU Definition of iML (Holzinger — 2016) @ HCI-KDD -

" iML := algorithms which interact
with agents*) and can optimize
their learning behaviour through
this interaction

06 iM I. *) where the agents can be human

Holzinger, A. 2016. Interactive Machine Learning (iML). Informatik Spektrum,
39, (1), 64-68, doi:10.1007/500287-015-0941-6.
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J¥U Sometimes we need a doctor-in-the-loop @ HCI-KDD J¥U A group of experts-in-the-loop @ HCI-KDD
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J¥U A crowd of people-in-the-loop @HCI-KDD -

J¥U aML: taking the human-out-of-the-loop @ HCI-KDD

Holzinger Group, HCI-KDD.org 53 Interactive Machine Learning

J¥U iML: bringing the human-in-the-loop @HCI-KDD -

D) Interactive Machine Learning: Human is seen as an
agent involved in the actual learning phase, step-by-step
influencing measures such as distance, cost functions ...

@« o .l'eg@ai(—ﬁ!i’
o

4. Check

3.iML

Constraints of humans: Robustness, subjectivity, transfer?
Open Questions: Evaluation, replicability, ...

Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the
human-in-the-loop? Brain Informatics (BRIN), 3, (2), 119-131, doi:10.1007/540708-016-0042-6.
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Holzinger Group, HCI-KDD.org 54

A) Unsupervised ML: Algorithm is applied on the raw data and learns fully
automatic — Human can check results at the end of the ML-pipeline

L = e

B) Supervised ML: Humans are providing the labels for the training data
and/or select features to feed the algorithm to learn — the more samples the
better — Human can check results at the end of the ML-pipeline

@ @ @(_mm_ 5 rl®r ”eg@ﬁ(_ 37% >

=a'Vy

C) Semi-Supervised Machine Learning: A mixture of A and B — mixing labeled and
unlabeled data so that the algorithm can find labels according to a similarity
measure to one of the given groups

Q@ W € il I@r«—;@m(— 3’2

=a'V,

Interactive Machine Learning

JU Three examples for the usefulness of the iML approach  @Hci-koo

= Example 1: Subspace Clustering i
= Example 2: k-Anonymization
= Example 3: Protein Design

Hund, M., B6hm, D., Sturm, W., Sedimair, M., Schreck, T., Ullrich, T., Keim, D. A., Majnaric, L. &
Holzinger, A. 2016. Visual analytics for concept exploration in subspaces of patient groups: Making
sense of complex datasets with the Doctor-in-the-loop. Brain Informatics, 1-15,
doi:10.1007/s40708-016-0043-5.

Kieseberg, P., Malle, B., Fruehwirt, P., Weippl, E. & Holzinger, A. 2016. A tamper-proof audit and
control system for the doctor in the loop. Brain Informatics, 3, (4), 269-279, doi:10.1007/s40708-
016-0046-2.

Lee, S. & Holzinger, A. 2016. Knowledge Discovery from Complex High Dimensional Data. In:
Michaelis, S., Piatkowski, N. & Stolpe, M. (eds.) Solving Large Scale Learning Tasks. Challenges and
Algorithms, Lecture Notes in Artificial Intelligence LNAI 9580. Springer, pp. 148-167,
d0i:10.1007/978-3-319-41706-6_7.
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J¥u Pl'OjeCt: iML @ HCI-KDD -

* From black-box to glass-box ML

= Exploit human intelligence for solving hard problems (e.g.
Subspace Clustering, k-Anonymization, Protein-Design)

* Towards multi-agent systems with humans-in-the-loop

Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2016. Towards interactive
Machine Learning (iML): Applying Ant Colony Algorithms to solve the Traveling Salesman Problem with
the Human-in-the-Loop approach. Springer Lecture Notes in Computer Science LNCS 9817.
Heidelberg, Berlin, New York: Springer, pp. 81-95, doi:10.1007/978-3-319-45507-56.
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JxV http://hci-kdd.org/projects/iml-experiment @ HCI-KDD -

19
Input : ProblemSize, m, 3, p, o, ¢ -

Output: Phest
Pbest «— CreateHeuristicSolution(ProblemSize);
Pbestpst +— Cost( Pbest);

0
Pheromoneinie — !

Pheromone — InitializePheromone( Pheromone;,i );
while - StopCondition() do
for i =1 to m do
8; « ConstructSolution( Pheromone, ProblemSize, 3, qu);
Sicost — Cost(S:);
if Si st < Pbest.., then
Pbesteost +— Sicost;
Phest — S;;
end
LocalUpdateAndDecayPheromone(Pheromone, S, Sicos, p);
end
GlobalUpdateAndDecayPheromone(Pheromone, Pbest, Pbestoos:, p);
while isUserlnteraction() do
| GlobalAdd AndRemovePheromone( Pheromone, Pbest, Pbesteos, p);
end

end
return Puest;

Holzinger, A., Plass, M., Holzinger, K., Crisan, G., Pintea, C. & Palade, V. 2016. Towards interactive Machine Learning (iML):
Applying Ant Colony Algorithms to solve the Traveling Salesman Problem with the Human-in-the-Loop approach. Springer
Lecture Notes in Computer Science LNCS 9817, 81-95, doi:10.1007,/978-3-319-45507-56.
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J¥U Natural Multi-Agent Systems

@ HCI-KDD o5

Holzinger Group, HCI-KDD.org

58 Interactive Machine Learning

J¥U Example: Discovery of causal relationships from data... @Hcl-kop

Hans Holbein d.J., 1533,
The Ambassadors,
London: National Gallery

Lopez-Paz, D., Muandet,
K., Scholkopf, B. &
Tolstikhin, 1. 2015.
Towards a learning theory
of cause-effect inference.
Proceedings of the 32nd
International Conference
on Machine Learning,
JMLR, Lille, France.

Holzinger Group, HCI-KDD.org

https://www.youtube.com/watch?v=9KiVNIUMmCc
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JU The grand question of cognitive science @ HCI-KDD

15a

= How get our mind so much out of so little?
= Qur minds build rich models of the world
= make strong generalizations

= from input data that is sparse, noisy, and
ambiguous — in many ways far too limited
to support the inferences we make

= How do we do it?
= ... we do not know yet ...

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics,
structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.

Holzinger Group, HCI-KDD.org 61 Interactive Machine Learning

J¥U The grand question of cognitive science @HCI-KDD -

= “How do humans generalize from very few
examples?”

= They transfer knowledge from previous learning:
= Representation learning (features!)
= Explanatory factors
= Previous learning from unlabeled data and
labels for other tasks

* Prior: shared underlying explanatory factors,
in particular between P(x) and P(Y|X),
with a causal link betweenY — X

Bengio, Y., Courville, A, & Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35, (8), 1798-1828, doi:10.1109/TPAMI.2013.50.
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Jxu

@HCI-KDD o4

07 Active

Representation

Holzinger Group, HCI-KDD.org

J¥U What is this ...

Learning

62

Interactive Machine Learning

@HCI-KDD o4
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J¥U Active Learning — study of ML that improve by asking ... @Hci-kpD %

= := ML algorithm can perform better with less
training if it is allowed to choose the data from
which it learns.

= “Active learner” may pose queries, usually in the
form of unlabeled data instances to be labeled
by an “oracle” (e.g., a human annotator) that
understands the context of the problem.

= |t is useful, where unlabeled data is abundant or
easy to obtain, but training labels are difficult,

time-consuming, or expensive to obtain ...

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool,
doi:10.2200/S00429ED1V01Y201207AIMO018.
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JXU Scenarios for active learning @HCI-KDD -

JYU Goal: Automating Inquiries (Settles: alien fruits) @HCI-KDD -

select the best
Instance
in the pool

f—— )

Z— Cl —
. Instance
S dvenwu

label & add to ||ane|aaddm

(. 1) .= s ¢/} | 16bel & add o
Vs 81| training set training set k. ree )\t 0| training set
.7 L= | . @D
“'_——o‘ decide o query g Q
or discard
oracle query oracle oracle query
membership query synihesis
ey g rovo
stream-based selective sampling }
s =
ratance query of decard b 4
pook-based active learning J qusry o isbeled
== oy the cracie
sampie 4 bge T o Nt
o of rstanc u the St ey

Settles, B. 2012. Active Learning, 5an Rafael (CA), Morgan & Claypool, doi:10.2200/500429ED1V01Y201207AIMO18.
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= A classifier to determine objects as a function mapping
h: X — Y, parameterized by a threshold 6:

@ safe ifx <@, and
& noxious otherwise.

OOOOGQ.

(1) —EB-

h(x;8) = {

© S) =

-
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(2)

@
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Interactive Machine Learning

JU Uncertainty Sampling @ HCI-KDD -
oM ?

(1) (451 , oy —»
' 219

(2) e 0 ’ -
PO 4

(3) @ ) =

) = @ @ e o

1: U = a pool of unlabeled instances {t""}"__l

2: L = set of initial labeled instances {{x, \)”’}‘,_l

3 forr=1,2,... do

4 0 = train(L)

5. select x* € U, the most uncertain instance according to model #
6:  query the oracle to obtain label y*

7. add (x*, y*) to £
8

9

Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool

doi:10.2200/S00429ED1V01Y201

remove x* from U

- end for
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J¥U From Active learning to Multi-Task Active learning @HCI-KDD - J¥U Example for the Human-in-the-Loop @HCI-KDD -

= The typical active learning setting assumes a | -
single machine learner trying to solve a single - vl -

| Long-term inositol phosphate release, but not tyrosine kinase activity, correlates with IL-2 secretion and NF-AT
task.

= |n real-world problems, however, the same data — - -
mi ght be I L beled in multlpl e ways for seve ral 1| Long-term inositol phosphate release, but not tyrosine kinase activity, correlates with IL-2 secretion and NF-AT
different subtasks.
Mode Annotator type Recall Precsion F-score
= |n such cases, it is more economical to label a Rk
. . . Entity 61.94 4931 5491
single instance for all subtasks simultaneously, or protcin 3 s097 53
” 3 . Expent
to choose instance-task query pairs that provide Eniy o 2w 256
Protein 71.94 59.28 65.00

as much information as possible to all tasks.

Yimam, S. M., Biemann, C., Majnaric, L., S5abanovi¢, 5. & Holzinger, A. 2016. An adaptive annotation approach

for biomedical entity and relation recognition. Brain Informatics, 1-12, doi:10.1007/540708-016-0036-4.
Settles, B. 2012. Active Learning, San Rafael (CA), Morgan & Claypool doi:10.2200/S00429ED1V01Y201207AIMO18.
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J¥U Example for the Human-in-the-Loop @ HCI-KDD JYu @ HCI-KDD -
DISOR (CONDITION]
5| Over the past decade , chronic infl ion in vi i tissue ( VAT ) has gained accej

coNITIoN]
as a lead promoter of insulin resistance in obesity .

MOLECULE [CELL)
: _A great deal of evidence has pointed to the role of adipokines and innate immune cells , in parti

[CELL) ISORDER [CONDITION) ®
| adipose tissue macrophages , in the regulation of fat i ion and gl iS .
[conpiTioN '. INDITIOR

Over the past decade , chronic inflam
as a lead promoter of insulin resistance in obesity .

o =
5| A great deal of evidence has pointed to the role of adipokines and innate immune cells , in parti e a r n l n
[conpiTIoN]

adipose tissue macrophages , in the ion of fat i ion and alucose homeostasis .

i u.u\-.lmu s after 5 abstract

[CELL]
| A great deal of evid has poi to the role of adipokines and innate immune cells , in parti

Ladipose tissue macrophages , in the requlation of fat inflammation and alucose homeostasis .

Yimam, S. M., Biemann, C., Majnaric, L., Sabanovi¢, 5. & Holzinger, A. 2016. An

adaptive annotation approach for biomedical entity and relation recognition.

Brain Informatics, 1-12, doi:10.1007/s40708-016-0036-4.
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Jxu Catastrophic Forgetting @ HCI-KDD

= When trained on one task, then trained on a 2nd
task, many machine learning models (“deep
learning”!) forget how to perform the first task.

Overcoming catastrophic forgetting in neural
networks

James Kirkpatrick®, Razvan Pascanu®, Neil Rabinowitz", Joel Veness®, Guillaume Desjarding®,
ei A, Rusu®, Kieran Milan®, John Quan®, Tiago Ramalho®, Agniesrka Grabsks-Barwinska *,
Demis Hassabis*, Clandia Clopath®, Dharshan Kumaran®, and Raia Hadsell*

“DecpMind. London, N1C 4AG. United Kingdom
ioengineering department, Imperial College London, SW7 2AZ. London. United Kingdom

Abstract

The ability to leam tasks in a sequential fashion is crucial 1o the development of

artificial intelligence. Neural networks are not. in general, capable of this and it

has been widely thought that catastrophic forgetring is an inevitable feature of

connectionist models. We show that it is possible to overcome this limitation and

train networks that can maintain expertise o tasks which they have not experienced

for a long time. Our approach remembers old tasks by selectively slowing down

& learning on the weights important for those tasks. We demonstrate our approach is
el scalable and effective by solving a set of classification tasks based on the MNIST

Holzinger Group, HCI-KDD.org e~ hand written digit dataset and by leaming several Atani 2600 games sequentially ing

J¥U Overcoming Catastrophic Forgetting: Deep Learning Bayes @HCI-KDD

) Low error for task B == EWC
Parameter Space task A = Low error for task A = L2

== no penalty
Q

Parameter Space task B

log p(0|D) = log p(D|0) + log p(0) — log p(D)

log p(0|D) = log p(Dgll) + logp(0|D4) — logp(Dp)

L(0) = Lp(0) + Z %Fa(ﬁ’z‘. —0%,)°

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A, A, Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D. & Hadsell, R. 2016. Overcoming
catastrophic forgetting in neural networks. arXiv preprint arXiv:1612.00796.
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Ju “Old” Phenomenon @ HCI-KDD -

Review L ——

Catastrophic forgetting
In connectionist
networks

Robert M. French

All | cognitive sy and, in particular, our own, gradually forget previously

1 A inf tion. Pl e dels of | - P bt ool 20 £ ikt

similar patterns of gradual forgetting of old information as new lnfurmatlun is
acquired. Only rarely does new learning in natural cogniti ¥ P ly disrup
or erase previously learned information; that is, natural cognitive systems do not, in
general, forget ‘catastrophically’. Unfortunately, though, catastmphlc forgetting does
occur under certain circumstances in distributed connec i ks. The very
features that give these networks their remarkable abilities to generalize, to function

in the presence of degraded input, and so on, are found to be the root cause of

Holzinger Group, HCI-KDD.org 74 Interactive Machine Learning

YU This experiment (2016) was done with Atari games ... @ HCI-KDD -

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, 1., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. 2015. Human-
level control through deep reinforcement learning. Nature, 518, (7540), 529-533,
doi:10.1038/nature14236
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JU Example for Multi-Task Learning @ HCI-KDD -

Task 4
C0000COoO0O0 00000000 00000000 Q0000000

INPUTS INPUTS INPUTS INPUTS

V. Mnih et al., “Playing Atari with Deep
Reinforcement Learning”, Nature (2015)
Rich Caruana, “Multi-task Learning”, MU {1998)

Holzinger Group, HCI-KDD.org 77 Interactive Machine Learning

JXU Maps between shared representations @ HCI-KDD 5

= xandy
represent different
modalities, e.g. text,
sound, images, ...

= Generalization to
new categories

= Larochelle et al.
(2008) AAAI

= = = (&, y) pairs in the training set

= T-representation (encoder) function f.r

== o Y -representation (encoder) function fy

=----=o relationship between embedded points
within one of the domains

- IIADS between l'('iflr('\‘i{‘]lti'lt ion spaces

Goodfellow, I., Bengio, Y. & Courville, A. 2016.
Deep Learning, Cambridge: MIT Press, p.542
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J¥U Representation Learning discovering explanatory factors @Hci-kop

Task A Task B Task C

output

shared
subsets of

factors

input ( )

Bengio, Y., Courville, A. & Vincent, P. 2013. Representation

learning: A review and new perspectives. IEEE transactions
on pattern analysis and machine intelligence, 35, (8), 1798-

1828, doi:10.1109/TPAMI.2013.50.
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J¥U Big Problem: Real-world data is on Curved Manifolds !  @Hci-kop

- fshrinking

“transformation

4

£
raw input vector space

Bengio, Y., Monperrus, M. & Larochelle, H. 2006. Nonlocal estimation of manifold
structure. Neural Computation, 18, (10), 2509-2528, doi:10.1162/neco0.2006.18.10.2509.
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JeU SCL Blitzer et al. (2006) of the Weinberger Group @ HCI-KDD -

Input: labeled source data {(x;. y; ) F a) Heuristically choose m pivot
unlabeled data from both domains {x; } features, which is task specific.

Output:  predictor f : X — Y 1 b) Transform each vector of the
G . . . B pivot feature to a vector of binary
1 1. Choose m pivot features. Create m binary u—,’

values and then create the

| prediction problems, pe(x), f=1...m | . T

e e e T e S e e corresponding prediction
;‘I. Forf{=1ltom \ problem.

" o . ] -
W = argmin | 3 L(w - x;, pe(x;))+

: w ( 4 L 'r<______ | Learn the parameters of
| \||w|]'~’) | each prediction problem
I\ end "
:3- W=[wi|...[wm]. [UDV]= S\-"D{“'].L Do Eigen Decomposition
| 0=Uhhq 1" || on the matrix of
‘3. Retum . a predictor tramed 1 it g
| b T | linear mapping function.
I on {(‘ fj: “<y() } "(\,u
T % el TR

Use the learnt mapping function to
P construct new features and train
classifiers onto the new
representations.

Holzinger Group, HCI-KDD.org 81 Interactive Machine Learning

YU Transfer Learning is studied for more than 100 years @HCI-KDD -

Jxu @HCI-KDD o4

= Thorndike & Woodworth (1901) explored how
individuals would transfer in one context to another
context that share similar characteristics:

= or how "improvement in one mental function" could
influence a related one

= Their theory implied that transfer of learning depends
on how similar the learning task and transfer tasks are

* or where "identical elements are concerned in the
influencing and influenced function”, now known as the
identical element theory.

* Programming: C++ -> Java; Python -> Julia
= Mathematics -> Computer Science
* Physics -> Economics

Holzinger Group, HCI-KDD.org a3 Interactive Machine Learning

09 Generalization
&
Transfer Learning

Holzinger Group, HCI-KDD.org 82 Interactive Machine Learning

J¥U Grand Challenge: Transfer Learning @HCI-KDD -

Generalization Improvement

Parlormance

learning
Knowledge transfer

"~ . |

Experience Otfsot Impeovement

Spoed Improvemant

Leaming Curve

Parformance

Parlormance

= To design algorithms able to learn from
experience and to transfer knowledge
across different tasks and domains to
improve their learning performance

Holzinger Group, HCI-KDD.org a4 Interactive Machine Learning



J¥U Overview @HCI-KDD &

Jvu Transfer Learning for Deep Learning on Graphs @HCI-KDD -
Domain Input Hidden layers

Low-dimensional grid
structure space

High-dimensional graph
pe...,, SITUCIUrE SPACE

Lee, J., Kim, H., Lee, J. & Yoon, S. 2016. Intrinsic Geometric Information Transfer Learning on
Multiple Graph-Structured Datasets. arXiv:1611.04687.
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J¥U Domain and Task @ HCI-KDD 5

“——> Self-taught
j Cm ’ Learning

E No labeled data in a source domain E

Inductive Transfer /

_ Leaming |

Labeled dutn e availabie z Labeled data are available in a source domain i
in a target domain ; Source and Multi-task
| Case 2 |— target tasks are

Fany > Learning
sinmultancously
| Transfer k Labeled data are =
l_eamm | available only in a : 2y E
12 e S Transductwe_ — d:;}l‘:’:::n‘:“ : > Domm_n
Transfer Leamning <— — Adaptation
single task
No labeled data in
both source and Assumption: single
target domain domnin and single task
| rised = E
\“‘: Unsupery 2 Sample Selection Bias
L Tmnit'cilfarmrlg Covariance Shift

Pan, S. J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.

Holzinger Group, HCI-KDD.org B6 Interactive Machine Learning

Jvu Transfer Learning Settings @ HCI-KDD

e Feature space A" e Given A" and label space ):

e P(x). where xr € X. e Tolearn f : x — y. or estimate P(y|x).

where z € X and y € ).

Two domains are different = Two tasks are different =

Xs # A, or Ps(z) # Pr(z). Ys # Yr. or fs # fr (Ps(y|x) # Pr(y|x)).

Pan, S. J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.
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Heterogeneous

Transfer Learning

. i i
L Heterogeneous -

Feature
space

Transfer
Learning

Single-Task Transfer Learning

lDumaln difference is caused |
by feature representations

R pe——_—
| Domain difference is
:aused by sample blas

l.Tasks are learned sumultaneuusly I

Sample Selection Bias

/ Covariate Shift Multi-Task Learning

Domain Adaption

Pan, S.J. & Yang, Q. A. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22, (10), 1345-1359, doi:10.1109/tkde.2009.191.
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Jyu @ HCI-KDD 5%

10 Federated
Machine Learning

J¥U More mobile devices on this planet than humans ... @ HCI-KDD -

Holzinger Group, HCI-KDD.org 89 Interactive Machine Learning
JU Federated Collaborative Optimization and Learning @ HCI-KDD
@

https://research.googleblog.com/2017/04/federated-learning-collaborative.html
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.iaial@Q >
: /Billion

fraze,

o
@
=2
[=]
©
@
-
o
=

e

_0 estimates that the number of connected devi would reach to
50 billion by the year 2020

https://iotblogg.wordpress.com/

http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-
more-mobile-devices-than-people-in-the-world-9780518.html
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U Collaborative interactive Machine Learning (ciML) @ HCI-KDD

=]
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D'I sutomatic

[e2]
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g Data Algorithm Madel

& a—

%{: - B -

—

%{: #%_

Robert, S., Buttner, S., Récker, C. & Holzinger, A. 2016. Reasoning Under Uncertainty: Towards
Collaborative Interactive Machine Learning. In: Machine Learning for Health Informatics:
Lecture Notes in Artifical Intelligence LNAI 9605. Springer, pp. 357-376
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https://rd.springer.com/chapter/10.1007/978
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J¥U On-Device Intelligence @ HCI-KDD

Jeu Federated Machine Learning @HCI-KDD

Federated Optimization:
Distributed Machine Learning for On-Device Intelligence

Jakub Konetny H. Brendan McMahan Daniel Ramage
University of Edinburgh Google Google
kubo.kenecny@gmail.com mcmahan@google. com dramage@google.com
Peter Richtdrik
University of Edinburgh
peter.richtarik@ed.ac.uk

October 11, 2016

Abstract
We i duce o new and increasingly relovant setting for distributed u|:li|nizntim in machine
learning., where the data defining the imization are unevenly distril 1 over an extremely

large mumber of nodes. The goal is to train a high-gquality centralized model. \v\‘ refer to this
setting as Federuted Optimization. In this setting, comumnication efficiency is of the utmost
importance and minkmizing the pumber of rounds of communication i the prin

A motivating example arises when we keep the training data locally on users” mobile deviees
instead of logging it to a data center for training. In federated optimization, the devices are
used as compute nodes performing computation on their local data in order to update a global
model. We suppose that we have extremely large number of deviees in the network — as
many as the number of users of a given service, each of which has only a tiny fraction of the
total data available. In particular, we expeet the mmber of data points available locally to be
wnich smaller than the number of devices. Additionally, since different users generate data with
different patterns, it is reasonable to assume that no device has a representative sample of the
overall distribution.

We show that existing algorithms are not suitable for this setting, and propose a new al-
gorithm which shows encouraging experimental results for sparse convex problems. This work
also sets a path for future research needed in the comtext of federated optimization.

arXiv:1610.02527v1 [cs.LG] 8 Oct 2016

Holzinger Group, HC ming

Input
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Holzinger, A., Nischelwitzer, A., Friedl, S. & Hu, B. 2010. Towards life long
learning: three models for ubiquitous applications. Wireless Communications
and Mobile Computing, 10, (10), 1350-1365, doi:10.1002/wcm.715. Sman Otyect

Holzinger Group, HCI-KDD.org 95 Interactive Machine Learning

Practical Secure Aggregation for
Federated Learning on User-Held Data

Keith Bonawitz', Viadimir Ivanov’, Ben Kreuter®, Antonio Marcedone'*,

H. Brendan McMahan®, Sarvar Patel”, Daniel Ramage”, Aaron Segal’, and Karn Seth”
.fbcmuitz.vli van,benkreuter ,mcmahan, sarvar ,dramage ,asegal ,karn}@google.com
Google, Mountain View, California 94043
'marcedone@cs.cornell.edu
Comell University, Ithaca, New York 14853

1 Introduction

Secure Aggregation is a class of Secure Multi-Party Computation algorithms wherein a group of
mutually distrustful parties u € I cach hold a private value r,, and collaborate (o compute an
aggregate value, such as the sum Y_ /.. without revealing to one another any information about
their private value except what is learmable from the aggregate value itself. In this work, we consider
training a deep neural network in the Federated Learning model, using distributed gradient descent
across user-held training data on mobile devices, using Secure Aggregation to protect the privacy of
each user's model gradient. We identify a combination of efficiency and robustness requirements
which, to the best of our knowledge, are unmet by existing aigumhms in the Intmmm We proceed to
design a novel, communication-efficient Secure Aggreg 1 for hig! ional data that
tolerates up to '3 of users failing to mmPIm the promool For 16-bit i input valm.-s. our protocol offers
1.73% communication expansion for 27 users and 2°°-dimensional vectors, and 1.98x expansion
for 2" users and 2% -dimensional vectors.

82v1 [cs.CR] 14 Nov 2016
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Jxu @ HCI-KDD o

Conclusion and
Future Outlook
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J¥U Three Main future challenges @HCI-KDD -
Multi-Task Learning (MUTL)

for improving prediction performance, help to reduce
catastrophic forgetting
Transfer learning (TRAL)

is not easy: learning to perform a task by exploiting
knowledge acquired when solving previous tasks:

a solution to this problem would have major impact

to Al research generally and ML specifically.
Multi-Agent-Hybrid Systems (MAHS)

To include collective intelligence and crowdsourcing

and making use of discrete models — avoiding to seek
perfect solutions — better have a good solution < 5 min.

Holzinger Group, HCI-KDD.org 97 Interactive Machine Learning

Jxu @HCI-KDD o4

@HCI-KDD o4

S
i
Thank you!
Holzinger Group, HCI-KDD.org 98 Interactive Machine Learning
JYU Questions (1/4) @ HCI-KDD o

Questions

Holzinger Group, HCI-KDD.org 99 Interactive Machine Learning

= What is the HCI-KDD approach?
= What is meant by “integrative ML"?

= Why is a direct integration of Al-solutions into the
workflow important?

= What are features?
= Why is understanding intelligence important?

= What are currently (state-of-the-art) the best
algorithms?

= What is the difference between Humanoid Al and
Human-Level Al?

= Why is the health domain probably the most
complex application domain for machine learning?
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JYU Questions (2/4) @ HCI-KDD o

Holzinger Group, HCI-KDD.org 101

Why are we speaking about “two different worlds”
in the medical domain?

Where is the problem in building the bridge
between those two worlds?

Why is the work of Bayes so important for machine
learning?

Why are Newton/Leibniz, Bayes/Laplace and Gauss
so important for machine learning?

What is learning and inference?
What is the inverse probability?
How does Bayesian optimization in principle work?

Interactive Machine Learning

JYU Questions (4/4) @ HCI-KDD o

JYU Questions (3/4) @ HCI-KDD -

Holzinger Group, HCI-KDD.org 102

Holzinger Group, HCI-KDD.org 103

What is causal relationship from purely
observational data and why is it important?

What is generalization?

Why is understanding the context so important?
What does the oracle in Active learning do?
Explain catastrophic forgetting!

Give an example for multi-task learning!

What is the goal of transfer learning and why is this
important for machine learning?

Why would a contribution to a solution to transfer
learning be a major breakthrough for artificial
intelligence in general —and machine learning
specifically?

Interactive Machine Learning

What is the definition of aML?

What is the best practice of aML?
Why is “big data” necessary for aML?
Provide examples for rare events!

Give examples for NP-hard problems relevant for
health informatics!

Give the definition of iML?
What is the benefit of a “human-in-the-loop”?

Explain the differences of iML in contrast to
supervised and semi-supervised learning!

Interactive Machine Learning

@HCI-KDD o4

Holzinger Group, HCI-KDD.org 104

Appendix
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J¥U Open Questions, future outlook, hot topics, challenges

@HCI-KDD o4

Holzinger Group, HCI-KDD.org 105

U Keywords

1) Challenges include —omics data analysis, where
KL divergence and related concepts could provide
important measures for discovering biomarkers.

2) Hot topics are new entropy measures suitable for
computations in the context of complex/uncertain
data for ML algorithms.

Inspiring is the abstract geometrical setting
underlying ML main problems, e.g. Kernel functions
can be completely understood in this perspective.
Future work may include entropic concepts and
geometrical settings

Interactive Machine Learning

@HCI-KDD o4

Jxu

Conclusion @HCI-KDD o=

Holzinger Group, HCI-KDD.org 107

Active Learning

Bayesian inference, Bayesian Learning
Gaussian Processes

Graphical Models

Multi-Task Learning

Reinforcement Learning

Statistical Learning

Transfer Learning

Multi-Agent Hybrid Systems

Interactive Machine Learning

= Big data with many training sets (this is good for ML!)

= Small number of data sets, rare events

= Very-high-dimensional problems

= Complex data — NP-hard problems

= Missing, dirty, wrong, noisy, ..., data

" GENERALISATION
= TRANSFER

Holzinger Group, HCI-KDD.org 106

Jxu

Interactive Machine Learning

Henri Poincare in Sciences et Methods (1908) @ HCI-KDD

Holzinger Group, HCI-KDD.org 108

“The most interesting facts are

those which can be used several
times, those which have a chance
of recurring ...

which, then, are the facts that
have a chance of recurring?

In the first place, simple facts.”

Jules Henri Poincaré (1854-1912)

Henri Poincare, Sciences et Methods (1908)

Interactive Machine Learning



Jyu @ HCI-KDD 5%
Humanoid Al
Human-level Al
Holzinger Group, HCI-KDD.org 109 Interactive Machine Learning
Jyu @ HCI-KDD 5%

JYU Scientists recognizing this ... (totally incomplete list!)

@ HCI-KDD 5%

April 24-26, 2014
SIAM SDM14

" Alexander von Humbolkdt
MLCB ., Stiftung IFoundation

Multi-Task Feature Selection
on Multiple Networks
via Maximum Flows

Mahito Sugiyama' ‘2, Chloé-Agathe Azencott®, Dominik

Grimm?#, Yoshinobu Kawahara', Karsten Borgwardt**

10saka University, 2Max Planck Institutes Tubingen, 3Mines ParisTech,
Institut Curie, INSERM, “Eberhard Karls Universitat Tiibingen

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task
Feature Selection on Multiple Networks via Maximum Flows. SDM, 2014. 199-207.

Holzinger Group, HCI-KDD.org 111

Interactive Machine Learning
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Bernhard Schélkopf (MPI Tlibingen)
https://is.tuebingen.mpg.de/person/bs

Leslie Valiant (Harvard)
https://people.seas.harvard.edu/~valiant

Joshua Tenenbaum (MIT)
http://web.mit.edu/cocosci/josh.html

Andrew G. Wilson Cornell (Eric P. Xing, CMU)
https://people.orie.cornell.edu/andrew

Nando de Freitas (Oxford)
https://www.cs.ox.ac.uk/people/nando.defreitas
Yoshua Bengio (Montreal)
http://www.iro.umontreal.ca/~bengioy/yoshua en
David Blei (Columbia)
http://www.cs.columbia.edu/~blei

Zoubin Ghahramani (Cambridge)
http://mlg.eng.cam.ac.uk/zoubin

Noah Goodman (Stanford)
http://cocolab.stanford.edu/ndg.html

J¥U Goal

Interactive Machine Learning

@ HCI-KDD 5%

= Given multiple graphs
» Find features (=vertices), which are associated

Holzinger Group, HCI-KDD.org 112

with the target response and tend to be
connected to each other

Interactive Machine Learning



J¥U Result: New formulation of MTF-Selection @ HCI-KDD 5

JXU Remember: Graphs are everywhere! @HCI-KDD -

' N

argmaxZ( fiSD) —9:5D) = ) h(Su5),

51, ,SKCV

i=1 assocnanon £<j
K tasks S

penalty

-

[iS) =) ai®), giS) =2 ) wi(e)+ IS,

VES; €EB; sparsity
e ——
connectivity

h(Si,S;) == ulSiaS;| =pl(SUSHI\N (S NS)|

= efficiently solved by max-flow algorithms
= performance is superior to Lasso-based methods

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y. & Borgwardt, K. M. Multi-Task Feature
Selection on Multlple Networks via Maximum Flaws SDM, 2014. 199-207.

Holzinger Group, HCI Interactive Machine Learning

J¥U Selecting Connected Explanatory SNPs SConES @HCI-KDD -

= Networks (graphs) are everywhere in health
informatics

= Biological pathways (KEGG), chemical compounds,
(PubChem), social networks, ...

= Question often: Which part of the network is
responsible for performing a particular function?

= > Feature selection on networks

= — Features = vertices (nodes)

= — Network topology = a priori knowledge of
relationships between features

Multi-task feature selection should be
considered for more effectiveness
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J¥U Formulation of SConES @ HCI-KDD 5

= Single task feature selection on a network
= Given a weighted graph G = (V, E)

*= —Each v € V has a relevance score q(v)
= —If you have a design matrix X € RV*IVI
= and a response vectory € RV, g(v) is the

association of y and each feature of X
Goal: Find a subset S © V which maximizes

£5)1= qw)

ves while S is small and vertices are connected

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013. Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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T T VY £ 7 CH ; o« €
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F(S)= ) q@), 9(S) = ATepw(e) + nlS|
vEs connectivity SE;EE):

- B={{v,u}€E|veV\S, ue€S}(boundary)

- w: E - R" is a weighting function

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013. Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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Jxu Solution of SConES via Maximum Flow @ HCI-KDD 5

« The s/t-network M(G) = (V U {s,t},E US UT) with
={{s,v} 1veV,qw) > n}, T = {{t,v} | veV, q(v) < n}
and set the capacity c : E' - R* to

= ifu€{stjandv eV,
clunap) = {Lf"(ggﬂ;u?)l IOtLPLIervEf?se} ey

« The minimum s/t cut of M(G) = the solution of SConES

Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013, Efficient network-
guided multi-locus association mapping with graph cuts. Bioinformatics, 29, (13), i171-i179.
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J¥U Example: Disease-Disease Relationship @HCI-KDD -

JxUu Better performance is always convincing! @HCI-KDD -

Let two words, w; and w;, have probabilities P(w,) and P(w,).
Then their mutual information PMI (w,w)) is defined as:

P(wi,w;)
P(w) P(w ))

For w, denoting rheumatoid arthritis and w;representing diffuse scleritis the following
simple calculation yields:

PM!(W,-, w,.-) = log (

Gout
i
94,834 74 300 N om
Pw) = —mm— P(wj) = ——— 1500 4
(w) 20,033,079’ ( -‘] 20,033,079 1599 1+
800 1
21 EEEF
13 4 1 - - - - '.'
Y= 200 1 %
P(w,w;) = v PMI(wi,w;) = 7.7. 2 ¥ . == & = S = Freuency

‘s,éfa’ e”*’@“
Qf’
w“’*""v‘ J‘f‘,

Holzinger, A., Simonic, K. M. & Yildirim, P. Disease-Disease Relationships for Rheumatic Diseases: Web-Based Biomedical
Textmining an Knowledge Discovery to Assist Medical Decision Making. 36th Annual IEEE Computer Software and
Applications Conference (COMPSAC), 16-20 July 2012 2012 Izmir. |EEE, 573-580, doi:10.1109/COMPSAC.2012.77.
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Azencott, C.-A., Grimm, D., Sugiyama, M., Kawahara, Y. & Borgwardt, K. M. 2013.
Efficient network-guided multi-locus association mapping with graph cuts.
Bioinformatics, 29, (13), i171-i179.
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Jxu @HCI-KDD o4
156 A. Holzinger et al.

Table 4 Comparison of FACTAs ranking of related concepts from the ulcgory Symptom

for the query “rheumatoid arthritis™ created by the methods o q v, PMI,
and SCP
Frequency 0 SCP
SCP(x, )’] £ p(.‘t’ |yJ b P(}’ |x) = pain 5667 | impaired body balance 78 | swollen joints 0.002
p(x‘ },) p(x’ },) p(x‘ y)z Anhralgia ﬁf:l a?ﬁP[RIN INTOLERANCE | 78 | pain 0001
o) p®  p@ P |77 il |z ol i .
diarrhea o swollen joints 74 fatigue 0.000
swollen joints 299 Joint tenderness 7 erythema 0,000
erythens 355 | Dcopital headache 6.2 | splenomegaly 0,000
Back Pain 254 Newromuscilar excitation 62 | Back Pain 0.000
heacdache 230 | Restless seep 58 | polymyalgia 0,000
sphenomegaly 28 joint crepitus 57 | joim stiffoess 0,000
Anesthesia fred] Joint symplom 55 | loint tenderness 0,000
dysprea 208 | Painbul feel 55 | tap pam 0,000
weakness 210 feeling of malaise 335 | metatarsalgia 0,000
nausea 199 Homan's sign 54 Skin Manifestations 0,000
Recovery of Function 193 Diffuse pain 32 | meck pain (LD00
low back pain 167 | Palmar erythema 52 | Eye Manifestations 0,000
abdominal pain 141 Abpormal sensation 52 | low back pain 0,000

Holzinger, A., Yildirim, P., Gefer, M. & Simonic, K.-M, 2013. Quality-Based Knowledge Discovery from Medical Text on the
Web. In: Pasi, G., Bordogna, G. & Jain, L. C. (eds.) Quality Issues in the Management of Web Information, Intelligent
Systerns Reference Library, ISRL 50. Berlin Heidelberg: Springer, pp. 145-158, doi:10.1007/978-3-642-37688-7_7.
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Jxu

Domain Adaptation: Structural Correspondence Learning @HCI-KDD

J¥u Identical Tasks @ HCI-KDD -
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Motivation: If two domains are related to each other, then
there may exist some “pivot” features across both domain.

Pivot features are features that behave in the same way for
discriminative learning in both domains.

Main Idea: To identify correspondences among features from
different domains by modeling their correlations with pivot
features.

Non-pivot features form different domains that are correlated
with many of the same pivot features are assumed to
correspond, and they are treated similarly in a discriminative
learner.

Blitzer, J., Mcdonald, R. & Pereira, F. Domain adaptation with
structural correspondence learning. Proceedings of the 2006
conference on empirical methods in natural language
processing, 2006. Association for Computational Linguistics,
120-128.

Blitzer, J., Mcdonald, R. & Pereira, F. Domain adaptation with structural correspondence learning. Proceedings of
the 2006 conference on empirical methods in natural language processing, 2006. Association for Computational
Linguistics, 120-128.

Interactive Machine Learning

_____________ - |® Vs =DYr,

| Domain difference is caused |

ih\r feature representations -

e Ps(y|x) = Pr(y|x).

e But. X5 # Aror Ps(x) # Pr(z).

Sample Selection Bias
/ Covariate Shift

Domain Adaption
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Jxu @ HCI-KDD o

Open Problem:
How to avoid
negative transfer?
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