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Andreas Holzinger
185.A83 Machine Learning for Health Informatics
2018S, VU, 2.0 h, 3.0 ECTS
Lecture 06 - Module 04 — Week 20 - 15.05.2018

~*= Probabilistic Graphical Models
Part 2: From Bayesian Networks to
Probabilistic Topic Models

a.holzinger@hci-kdd.org
http://hci-kdd.org/machine-learning-for-health-informatics-course
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Machine Learning Jungle Top-Level View @HCI-KDD
cognition || Visualization | | Data fusion |

[ Perception | ﬁfﬁ_ﬁ l Preprocessing J
/ Decision | Interaction H Integration \

CONCEPTS THEORIES PARADIGMS MODELS METHODS TOOLS

[ Dimensionality \ Complexity | ‘ Unsupervised ‘ | Gaussian P. | I Regularization } Python |

l Reinforcement ‘ ‘ Bayesian p{x) ‘ | Supervised ‘ ( Graphical M. I ‘ Scaling ‘ [ Church ‘

‘ Representation ‘ [ Entropy/KL ‘ Semi-Superv. \ l Neural Nets ‘ l Aggregation J | Anglican ‘

’Nc-free-lunch H Vapnik-Chernov. ‘ I iML I ‘KerneI/S\/M ‘ ‘ Evolution ‘ [ Julia |

Multi-Task Learning ‘ ‘ Transfer Learning I ‘ Multi-Agent-Hybrid-Systems ‘

[ Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) ]

‘ Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust I

Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0_1.
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] To reach a level of usable intelligence we need to ... @HCI-KDD o4

1) learn from prior data
2) extract knowledge

2) generalize,

= j.e. guessing where a probability mass
function concentrates

4) fight the curse of dimensionality

5) disentangle underlying explanatory
factors of data, i.e.

6) understand the data in the context of
an application domain

Holzinger Group, hei-kdd.org 7 Machine Learning Health 06

B8] Crazy Ideas > Science > Engineering > Business @HCI-KDD

Science is to test crazy ideas —
Engineering is to put these ideas into Business
Lucky Students ©
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ﬂ Red thread through the lecture today @HCI-KDD o5

= 00 Reflection

= 01 Probabilistic Decision Making

= 02 Probabilistic Programming Part Il

= 03 Probabilistic Topic Models

= 04 Knowledge Representation in Net Medicine

Holzinger Group, hci-kdd.org 5
Sampling from big data is an important topic @HCI-KDD o+

Compure n; == 3%, Ji;r;

Draw u from Uniform(0,1)

Ifu<1/(1+e%0)
=+l

Else
= =1

E[f] = /f(Z)p(z)dz
|

w  GZ
f= IZf(zU))
=1

Markov chains Posterfor density

- o4 7] Propp, J. G. & Wilson, D. B.
0 1996. Exact sampling with
coupled Markov chains and
P applications to statistical
mechanics. Random

. Heration 1 b o §
— structures and Algorithms,
$ 2 fE T e 9, (1-2), 223-252.
w
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ML needs a concerted effort fostering integrated research @Hcl-kooz

MAchine Learning & Knowledge Extraction MAKE
(Safety) 4 - Privacy, Data Protection, Safety & Security

Holzinger Group, hei-kdd.org 3 Machine Learning Health 06

@HCI-KDD +%

Machine Learning Health 06
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Medical Example: Breast cancer prognosis incl. Genetics @Hcl-kDD<-

Plon) 03
Pt 07

P(a1, ..., 20) = [[ Pailpa(z))
=1

Proguos

Pliod
Picon)

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B.
D. (2006) Predicting the prognosis of breast cancer by
integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.
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Inference in Bayes Nets is intractable (NP-complete!) @HCI-KDD

= For certain cases it is tractable if:
= Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)
= Otherwise: approximate solutions, NOTE:
Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem

Holzinger Group, hci-kdd.org 10 Machine Learning Health 06
German Local Hospital Abbreviations ... (example) @HCI-KDD A

s BHWI KK 78

= Hinterwandinfarkt

= Hinterwandischamie

= Hakenwurminfektion
Halswirbelimmobilisation
Hip Waist Index
Height-Width Index

= Heart-Work Index

= Hemodynamically weighted imaging
= High Water Intake

= Hot water irrigation

Hepatitic weight index

= H3ufig wechselnder Intimpartner

= | eitung = Nervenleitung, Abteilungsleitung, Stromleitung,
Wasserleitung, Harnleitung, Ableitung, Vereinsleitung ©...
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Why is the topic “decision making” so important ... @HCI-KDD o
caiCd
<Js al J 0 De O
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The medical report is the most important medium @HCI-KDD

angelegt am 06.05 20052025

. . cnc von
Radialogischer Befund Gecnek am 17.11 20030024
Ao i

Kurzanamnese: Stp. SHT
Fragestellung: -

Untersuchung:  Thorax eine Ebene liegend

" Special Words
sB
Bewegungsartefakte. Zustand nach Schadelhimtrauma. I_a ngu age M ix

Das Cor in der GroRennorm, keine zkuten Stauungszeichen

Fragliches Infiltret parehilar li. im UF, RW-Erguss Ii Ab b reviat' O n s
Zustand nach Anlage eines ET, die Sp\IZE ca. 5cm cranial der Bifurkation, lieg MS, orthetop
positieniert. ZVK uber re., die Spitze in Prej. auf die VCS. Kein Hinweis auf Pncumothorax.

Derre. Rezessus frei. r ro rs
ses

Mit kollegialen GruRen

** Ejekironisci Freigebe durch am09,08.2008 '

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in
medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.
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Final Quiz @HCI-KDD -

= Intelligence?
= Hundreds of controversial definitions — very hard to define;

= For us: ability to solve problems, to make decisions and to acquire
and apply knowledge and skills

= Learning?
= Different definitions — relatively hard to define
= basically acquisition of knowledge through prior experience
= Problem Solving?
= Process of finding solutions to complex issues
= Reasoning?
= ability of our mind to think and understand things
= Sense Making?
= Process of giving meaning to experience
= Causality?
= Relationship between cause and effect
= Decision Making?
= Process of “de-ciding

” (n

ent-scheiden”) between alternative options

Holzinger Group, hci-kdd.org 14 Machine Learning Health 06
Where can you apply artificial intelligence here? @HCI-KDD o=

External context Internal context

| » Qutcome expectancies:
"My pain will go away”

= Emotions:
“am less anxious”

= Meaning schema:
“l am being cared for”

» Explicit memories

* Pre-cognitive
associations

Verbal suggestions: l
“This is going to make |_

you feel better” e

Place cues: —
Doctor’s office [
Social cues:
* Eye gaze
* Body language
+ Voice cues

* White coat

Treatment cues:
* Syringe
¢ Needle puncture

Nature Reviews | Neuroscience

Wager, T. D. & Atlas, L. Y. 2015. The neuroscience of placebo effects: connecting context,
learning and health. Nat Rev Neurosci, 16, (7), 403-418, doi:10.1038/nrn3976
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Why is this sentence complex? What do | need? @HCI-KDD o

“| saw her duck”

\a 3

Holzinger Group, hei-kdd.org 12

Machine Learning Health 06

s @HCI-KDD -

01 Probabilistic
Decision Making

Laplace, P-S. 1781. Mémoire sur les
probabilités. Mémoires de Académie
Royale des sciences de Paris, 1778, 227-332.

Holzinger Group, hei-kdd.org 15

Machine Learning Health 06

Remember: 2 types of decisions (Diagnosis vs. Therapy) @Hcl-koo 4

= Type 1 Decisions: related to the diagnosis, i.e. computers
are used to assist in diagnosing a disease on the basis of
the individual patient data. Questions include:
= What is the probability that this patient has a myocardial
infarction on the basis of given data (patient history, ECG, ...)?
= What is the probability that this patient has acute appendices,
given the signs and symptoms concerning abdominal pain?
= Type 2 Decisions: related to therapy, i.e. computers are
used to select the best therapy on the basis of clinical
evidence, e.g.:
= What is the best therapy for patients of age x and risks y, if an
obstruction of z % is seen in the left coronary artery?
= What amount of insulin should be prescribed for a patient
during the next 5 days, given the blood sugar levels and the
amount of insulin taken during the recent weeks?
Harold C. Sox, Michael C. Higgins & Douglas K. Owens 1988. Medical decision making, Second Edition, Chichester, Wiley.

Holzinger Group, hei-kdd.org 18 Machine Learning Health 06



@HCI-KDD

Decision Making under Uncertainty

Holzinger Group, hci-kdd.org 19 Machine Learning Health 06

Human learning vs. Machine Learning @HCI-KDD

= Example 1: Inverse Probability

= Example 2: Diagnosis

= Example 3: Language understanding
p(hld) o< p(DI6) * p(h)

P(words|sounds) x P(sounds|words) * P(words)

.__Recognize speech

Wreck a nice beach

= Learning ensures that new observations (d)
match our previous hypotheses (h)

Holzinger Group, hci-kdd.org 2 Machine Learning Health 06

@HCI-KDD o4

¥ Human brains as probabilistic reasoning machines

H={H,,H;s,..H,
LTM: Prior knowledge H' {83, Hay ooy Hn}

STM:

Uncertain

_ p(D|0) + p(6)
world

p(OID) = =0

Holzinger Group, hci-kdd.org 25 Machine Learning Health 06

Remember: Expected Utility Theory E (U|d) @HCI-KDD %

For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = d is

eoht.info/page/O:

E(U |d)= Z Pl oion | OIS0 00 5l
i) PR

An optimal single decision is the decision D = dmax

whose expected utility is maximal:

d =arg max U |d
max ! dedom(D) ( | )

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.
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Cognition as probabilistic inference @HCI-KDD %

= Visual perception, language understanding,
motor learning, associative learning,
categorization, concept learning, reasoning,
causal inference, ...

= Learning concepts from (few!) examples

= L earning and applying intuitive theories
(balancing complexity vs. fit optimality)

Holzinger Group, hci-kdd.org 23 Machine Learning Health 06

Similar as our RL-Agent seeks to maximize rewards @HCI-KDD o=

Intelligent behavior arises from the actions of an
- | iNdividual seeking to maximize its received reward

it evolves Lo S0

The e
e agent e x| sjgnals in @ complex and changing world

Agent
{ Representation |
[ Learning algorithm I
He“;““ [ Action selection policy |
State rih Action
o) D al®
1
. Environment
; s

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press
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http://www.stat.columbia.edu/~gelman/book/

@HCI-KDD

Bayesian Data Analysis
Third Edition

Andrews Belman, John B. Carin, Hal S. Stern,

David B. Dunsan, Aki Vehtari, and Danald B. Rubin

https://github.com/avehtari/BDA_py_demos

http://www.stat.columbia.edu/~gelman/book/data/
21 Machine Learning Health 06

Holzinger Group, hci-kdd.org

Modeling basic cognitive capacities as intuitive Bayes

Andrew Gelman, John B. Carlin,
Hal S. Stern, David B. Dunson, Aki
Vehtari & Donald B. Rubin 2014.
Bayesian data analysis, Boca
Raton (FL), CRC press.

@HCI-KDD %

= Similarity

= Representativeness and evidential support

= Causal judgement

= Coincidences and causal discovery

= Diagnostic inference
= Predicting the future

Tenenbaum, J. B., Griffiths, T. L. & Kemp, C.
2006. Theory-based Bayesian models of
inductive learning and reasoning. Trends in
cognitive sciences, 10, (7), 309-318.

Holzinger Group, hci-kdd.org

Y De-cision (Ent-scheidung) between alternatives

l P(Principles | . ..)
Asstract domair principles

L PStructure | Principies)

Intuitive theory

Structursd prodabilistic model

{ F(Data | Structure)

Observahle data
22 Machine Learning Health 06

@HCI-KDD o4

a b ¢
{a,b,ct

- decision that is
best for worst case

Non-deterministic model

~ Adversarial search

Holzinger Group, hci-kdd.org

Belief Desire

Actiorfi

{a(pa),b(pb),c(pc)}

- decision that maximizes
expected utility value

Probabilistic model

27 Machine Learning Health 06



@HCI-KDD o

02 Probabilistic
Programming

Machine Learning Health 06

Holzinger Group, hci-kdd.org 28
Learning representations (6, h) from observed data @HCI-KDD A

~Trainingdata: D = 9., = {21,292,..,2,} xy AB, ..
Feature Parameter: 7] or hypothesis h heH

Prior belief ~ prior probability of hypothesis h: p(@) p(h)
Likelihood =~ p(x) of the data that h is true p(D | 9) p(d ‘ h)

Data evidence =~ marginal p(x) that h = true p(D) lé—t p(d|h) = p(h)
Posterior = p(x) of h after seen (“learn”) data d p(Q‘D) p(hld)

p(D]0) * p(8)
p(D)

likelihood * prior

posterior = evidence p(6|D) =

(d|h)+p(h)
hld)= =2
POy, vy

Machine Learning Health 06

Probabilistic Programming Languages @HCI-KDD
Image credit to Graphical Mocels Factor Grapns
Frank Wood (2016) &8
UGS STAN Factorie Inler NET
PL Al ML STATS
WebPPL L o
Figaro Vemuf:'c Risic stan-2B
2010 pansal
A, CMUCN oy NET
ProbLog Factorie JAGS
Blog
2000 IBAL
Prism KMP WinBUGS
1990 X
BUGS
+ 1940s: connecting wires to represent 0s and 1s
* 1850s: assemblers, FORTRAN, COBOL, LISP
+ 19605: ALGOL, BCPL(-> B -> C], SIMULA
= 1970s: Prolog, FP, ML, Miranda
+ 1980s: Eiffel, C++
Aleaso Frsles + 1990s; Haskell, Java, Python
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Recommended Resources for Probabilistic Programming @Hci-kpp %

= Dan ROY: Probabilistic Programming Wiki
http://www.probabilistic-programming.org/wiki/Home

= Frank WOOD, many tutorials, slides, code and papers
http://www.robots.ox.ac.uk/~fwood/teaching/index.html

= Avi PFEFFER 2016. Practical probabilistic programming, Shelter
Island (NY), Manning
https://www.manning.com/books/practical-probabilistic-
programming

Practical

Look also for work of:

Andrew GORDON
Noah GOODMAN
Josh TENENBAUM
John WINN
Rob ZINKOV
Vikash MANSINGHA
David WINGATE
Holzinger Group, hci-kdd.org 29 Machine Learning Health 06
Probabilistic Programming Concept @HCI-KDD %
Inference
/ Parameters // 9p(X|y) Y, 7/ Parameters /
X
Program P(X|&)p(®) Program
PYOP(x)
Obser-
Output X'y vations

Frank Wood, Jan-Willem Van De Meent & Vikash Mansinghka. A New Approach to
Probabilistic Programming Inference. AISTATS 2014, Reykjavik, JMLR, 1024-1032
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Some selected PPLs @HCI-KDD o

= https://github.com/pymc-devs/pymc

= http://infernet.azurewebsites.net/

= http://mc-stan.org/

= https://github.com/p2t2/figaro

= https://sites.google.com/site/bloginference/

= http://projects.csail.mit.edu/church/wiki/Church
= http://factorie.cs.umass.edu/

= http://www.openbugs.net/w/FrontPage

= http://mcmc-jags.sourceforge.net/
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Reasoning under uncertainty: Decision Making @HCI-KDD o

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be ...

plaily) =55 E = e

Machine Learning Health 06
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Comparison @HCI-KDD

Define model Define model

p— ) —
ose infi method
: L 2

: Write model as
Derive algorithm by hand |

probabilistic program

Implement algorithm ‘ [ Apply
(e.g. Matlab) inference engine

L 2
vise model/method Revise model/
o EE | engine settings

Re~implemén_t algorithm
(e.g. C++/C#)

Image credit to John WINN (2010)

Machine Learning Health 06
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Try out WebPPL (“web-people”) http://dippl.org @HCI-KDD o

var ebs = loaddata( ' data.json);
var guideNet = nn.nlp(l, [CnOUt: 3, activation: nn.signoid}, {ndut: 2)], “uidsver’);

3 var model = function()

N fe1Par an(gnane: i_x’)

5 igna_x = softolus{nodelParan({r.

6 var sigma_y = sof tolusimodelFaran({r L' 1

' var latents = mapData({data: obs}, functior{y) [ g---

s var nnlnout = Vactor(Cy1);

9 var nnOutput = nnEval{guideNlet, rnInput);

10 var x = sanple(GaussianC{mu. mux, signe: sigma x}), {

1 guide: Caussian({nu: T.get(nnOutput, 0).

2 sigm: softplus(T.get(noutpuz, 1)33)

3 »;

4 v (Ganss (O €, Sigmas signay)) v;

5 return £x: %3

6 m

7 return latents;

s %

1 e obs = loadDataC dats. json');

2 var ncComps = 3;

3 ver guideNet - momdo{7, [{nDul: 3, atlivation: mn.signoiu}, {nOut: nComps=131, "guideNet’);

4 var model = functionQ)

S thete_n23;

2 -

¥ ) . (L0 mn - X a0
N 3 ocelParam({nanc »ni. g4 B
‘3 - 1 . » wocle1Par aim{nanne 3331 . #;
n Ui letenls - mepdata(@data: obs), furctiongy) € '
1z var mnLmput = vector([y1): %
o var Pdutput = noFyal CzuideNet, anTrput); = 1:3
14 var x = sanple(Discrete(ips: thetaxd, { (’ .l I
15 guide: Discreie(simples(mdatputy)
16 33 N

ssian(parans_y[<1), y15
a3

}:; latents;
= % ERRRidel " Daniel Ritchie, Paul Horsfall & Noah D Goodman 2016. Deep Amortized
Inference for Probabilistic Programs. arXiv:1610.05735.
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Remember: directed graphical model @HCI-KDD o

Diederik P Kingma & Max Welling 2013. Auto-
encoding variational Bayes. arXiv:1312.6114
(1983 citations as of 13.05.2018 07:00)

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2Z.3]can be used. We use settings A/ = 100 and L = 1 in experiments.

0. ¢ + Initialize parameters
repeat

XM ¢ Random minibatch of M datapoints (drawn from full dataset)

€ ¢ Random samples from noise distribution p(e)

z V@_,bEM (8, h: XM &) (Gradients of minibatch estimator

6, ¢ «— Update parameters using gradients g (¢.g. SGD or Adagrad [DHST0])
until convergence of parameters (8. &)

return €, ¢
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What are people doing with PPL @HCI-KDD

X y

program source code program output

scene description image

policy and world rewards
cognitive process behavior
simulation constraint

Image credit to Frank Wood (2016)
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Another Example @HCI-KDD o
@ Scene ——— function EROGRAM (ML, SC, v, VERIEX_OKDIK)
Languzge Representation Layer u Scene Language: Stochas: Scene Gen
> Deep Nearal Net, cE(lashape = 1y testuzo.= (13
ot Gl ks s e st
Approximale \ % 5 2! mayasn Weutlina®, S1ipg®
oprozimate | B i fnter) _.ffff pemeeen, g

e Hello
E:cel.., [P = MUIGI [pI42C

S11e].v (soef€.nEVIS] [E])

N - o end
Rerdering Likelihood or Likelihooc-free i
Tolerance Comparior E hape*] [:1) Tex-fao uret]{:]s
FlIn In.X) & Uniform(~1,1,-,21; 1ight = Uniform(-1,1,1,2)
or
Awl(Ip) vl # Approximate Renderar
rencered_img= MeshRandera: shape, tai,ligat,careal
(o) # Representation Layer
Given rem firs = ceiPestures("CHH fonv", rendered img)
cure
5 ik — o # Comparator
(80, X7) —> (5%, X™) Fusing Pixel as Summary Statdstics
and 5 - Chige-ye (Myomal (0,307 ), rends ror_ing-obs_img)
image I, pnineig #Using CxN last conv layer ms Summary Statistics

cbsesve (MvNormal (0,10, ren_frrs-cbs_enn)

() end
¥ 1d4d A
lebal obs_img - inread"tast.pny’)
Random Cichal cbe_omn - qetFestires (SERR_Conve®, mg)
Lol Load ax om file
drawin from Q' "ﬂ‘i + 9= P o,

TR = trace (PROGRAM, args= MU, G, BV, VERTEX_GSDES])
1

Inference

exemp 4 Data-Driven TLearning
prebabilstic : ﬂ ‘ laarn_datadriven_propcsals{TR, 100000, "CNN_Conve")
programs 1oad proposals (TR)

#

Kulkarni, Kohli, & i Picture: A language for scene perception.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 4390-4399.
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Explainability gets increasingly important ... @HCI-KDD o

Deep Probabi

Guillaume Baudart Martin Hirzel Louis Mandel
IBM Research 1IBM Research IBM Research
guillaume baudart@ibm com hiszel@usib Linandel@us.ib

ABSTRACT These need not
munually ealeulate gradicnts for gradient descent), GPU support

ic Programming Languages: A Qualitative Study

T Dcop probubditc programmicg lunguses try Lo combine the ad-

Vautages of deep learning with those of probabilistic programming (19 elicieutly exscute vectorized computations), and Bython-based
lenguuges, I succeslal, this ww]d be s big slop forward inma- cmbedded domain-speciic langusges 151,
it e ek Deep PPLs, which have emerged just recently [29-32), aim to
OO mpw, this new erop of languages is hmm useand understand. This combine the benefits of PPLs and DL. Idally, prograns in decp
— per addresses this problem directly by explaining deep proba-  PPLs would overtly tepresent uncertainty, vield explainabie models.
< bilislic programming lnguages and indirectly by characterizing  #3d reguire enly s small wmounl of Irsining dats; be casy Lo wiile
IS |h+., I i sk ina well-designed progran:ming language. and match the break-
Ty (hrough: ueeuraey und fust training Lmes of DL. Reulizing all of
<% CUS CONCEPTS U&:.-n promcs would yield h:n;cd;.lgnus xAv;nln#Ls. Unfor ;unu\dv.
. is is hard to achisve. Some strengths of PPLs and DL are
+ Theory of computation — Probabilistic computation: sccmingly ul odds, such as explainubility vs. sulomated falure
~ /Computing methodologics - Neural networks: R D P S M o o
— /+Software and ity engineering —» Domain specific lnguages; oo 02 leamning from small data v, optinizing for large
data, Furthermore, the barricr 1o entry for work in deep PPLs is
y . high, since it requires non-trivial background in Helds as diverse
~=" KEYWORDS s statistics, programming languages, and decp learning, To tackle
< DLPPLDSL thic problem. this paper characterizes deep PPLs. thus lowering the
& basrier Lo calry, providing s programming languages perspeclive
© 1 INTRODUCTION eauly when it cax make o difference, and shining a light on gaps
A deep probabilistic programming language (PP1) is a language 24 the comrmunity should try to address.
—  for speciying both deep neural networks and probabilistic niodels ‘This paper uscs the Stan PPL a3 & representative of the state of
> Inother words. a deep PPL draws upon lnguages, e artinreaular (ool deep) PPLS [9]. Stan is & muin-stream, mature,
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@HCI-KDD o

Approximate Bayesian Image Interpretation using
Generative Probabilistic Graphics Programs

Vikash K. Mansinghka® "2, Tejas D. Kulkami® %, Yura N, Perov' 2, and Joshua B, Tenenbaum 2

*Computer Scieace and Artificial inlelhgem,e Labaratory, MIT
“Department of Brain and Coy iences, MIT
Stnstitute of Mathematics and Computer Supnee Siberian Federal University

Abstract

Th se Bayesian inverse problem to computer geaphics
has a long history and an appealing elegance, bat it has proved diffcul to directly
implement.  Insicad. most vision tasks arc approached via complex boltom-up
processing pipelines. Here we show that it is possible to write shot, simple prob-
ahilistie graphics p define and to automa

cally invert them fo interpret real-world images. Generative probabilistic graphics
programs (GPGP) consist of a stochastic scene generator, a renderer based on
rapiies software, 3 stwchastic likeliood mudel linking the renderer's vutput and
the data, and latent variables that adjust the fidelity of the renderer and the
ance of the likelihood. Representations and algorithms from computcr grag
are used as backbane for highly i stochastic gen-
erative models. This ilist computer
graphics, and spproximate Bayemn cmmuuon, and depends only on general-
purpose. automatic inference techniques. We describe two applications: read-
ing sequences of degraded and adversarially obscured characters, and inferring
3D road models from vehicle-mounted camera images. Each of the probabilistic
graphics programs we present relies on under 20 lines of probabilistic code. and

). Appr

h

Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov &
programs. In: Burges, Christopher J. C., Bottou, Leon,

P ="i]
@ £
2
Y 0
o 8
€0
S a
g:
& S
=}
£
8¢
o8
SIS
=
g3
£Z
£ £
©
< 8
8
ey
£
23
@
c 34
=70
9 >
=d

o
~
n
y
<)
I
n
-
v
=
=

o

o
=
©
£

©
3
™
=
o
3]

“

£

3]
2

2
@

interpretation using generative probabi

Josh Ter

Holzinger Group, hci-kdd.org

Probabilistic Program for Inference @HCI-KDD o
x y
Inferred model Inferred model
Qussived | Inferred re-rendered with re-rendered with

Image | (reconstruction) novel poses novel lighting

DAOR
SEAT

AEEE
AEE

Qe
VRG™

Kulkarni, Kohli, & i Picture: A language for scene perception.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 4390-4399.
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Explainable Al via Bayes : r (2|©) o< Pp(B]x) QHCI-KDD s

Tramung data Full corpus Selected TREIChiﬂg
examples y examples
Bayesian L '
teaching ‘
e Train model Teach model R
Learring madel Wi Copus  Winexamplos lode! struclure
@ ) 4 v
O Tﬂfgél maoagel Learner
o Match with )
o o high prob ® »
~ Q
Supervised learning g o
¥ exzmples and labels 2 o
© parameters, boundaries
Unsupervised learning User selecls subslructure of inlerss!
x examplas
© latant structures
Reinf thearni . . .
¢ acins Sbsenalion A Scott Cheng-Hsin Yang & Patrick Shafto 2017. Explainable
© leamed policy & world model Artificial Intelligence via Bayesian Teaching. NIPS 2017
Deep learning Workshop Machine Teaching. Long Beach (CA).
X fraining examples
@ network weights g 39 Machine Learning Health 06
Scene Description -> Image @HCI-KDD

P(§1In) = f PSYP(X)0esx) Ur)PUnl R, X )dX

Approximate
Renderer

T

PIn|Ir,X)

Data I se—

Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov & Josh Tenenbaum. Approximate Bayesian image
interpretation using generative probabilistic graphics programs. In: Burges, Christopher J. C., Bottou, Leon, Welling,
Max, Ghahramani, Zhoubin & Weinberger, Kilian Q., eds. Advances in Neural Information Processing Systems, 2013
Lake Tahoe. NIPS, 1520-1528.
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@HCI-KDD o4

Machine Learning Health 06
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Topic modelling — small topic but hot topic in ML @HCI-KDD o

a
TOPIC ——

MODELING

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING
DATA SCIENCE
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@HCI-KDD %

-

Biomedical R&D data
(e.g. clinical trial data)

The combining link is text

Health business data r
(e.g. costs, utilization, etc.]

Clinical patient data
(e-g. EPR, lab, reports etc.)

Private patient data
(e.g. AAL, monitoring, etc.)

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next
frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.

Holzinger Group, hei-kdd.org 29 Machine Learning Health 06

@HCI-KDD o4

Table I. Effect of Performance Change on Space Density

() Effect of performance improvement on  (b) Effect of performance deterioration on
. pace density space density
Cluster A Cluster B Cluster ion A Cluster ion B
(155 clusters; ®3 clusters; (155 clusters; {83 clusters;
2.1 overlap) 1.3 overlap) 2.1 overlap) 1.3 overlap)
Term Term Term Term
Standard  frequency Standard  freguency Standard frequency Standard frequency
term with erm with term with tevm with
frequency inverse  frequency inverse  frequency document frequency document
weights  doc. freq. weights  doc. freq. weights  [requency weights  Irequency
Type of indexing [20] (= 1DF) us *-IDF) o] (f*-DE,) L) +DED
Recall-precision output* - +14% - +14%, — —10.1% - 10.1%
Average similaity between
documents and correspond- 712 650 389 m 781 650 3
ing cluster centeroids (x) {=.06L) (+.029) (+.046)
Average similarity between
clustet centroids and 500 454 537 492 500 555 537 57
main centr (~.046) (~.045) (+.055) (+.037)
Average similarity between
pairs of cluster am 200 15 27 329 315 362
centroids (y) (~.046) (+.056) (+.047)
Ratio v/x 73712 .209/.668  315/.630 2520589 21372 329/741 315465  .362/.696
= 383 2318 = .485 - .383 - = 485 - .520
(—19%) + +7%)
* From [2].

Gerard M. Salton, Andrew Wong & Chungshu S. Yang 1975. Vector-Space Model for automatic
indexing. Communications of the ACM, 18, (11), 613-620, doi:10.1145/361219.361220.
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Salton, Wong, Yang, Cornell University 1975
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@HCI-KDD o

Information Retrieval C.A. Montgomery
and Language Processing Editor

AVector Space Model
for Automatic Indexing
C: Salton, A. Wong

and C. S. Yang
Cornell University

In a document retrieval, or other pattern matching

compared with each other or with incoming patterns
{search requests), it appears that the best indexing
(property) space s one where each entity lies as far avay
from the others as possible; in these circumstances the
value of an indexing system may be expressible as a
function of the density of the ebject space; in particular,
reirieval performance may correlate inversely with space
density. An approach based on space density computa tions
is used o choose an optimum indexing vocabulary for a
colfection of documents. Typical evaluation results arc
shown, demonstating the usefulness of the model.

Key Words and Phrases: automatic information
val, automatic indexing, content analysis, document

ret
space.
CR Categories: 3.71,3.73, 3.74, 3.75

Holzinger Group, hci-kdd.org

Example (1)

L. Document Space Configurations

Consider a documel space consisting of dueusnents,
D, cech idens ¥ one or more index terms T,
the terms be weighted according to their im-
portance, or unweighted with weights restricted to 0
and 1. A typical (hree-dimensional index space is
shown in Figure 1, where each item s identified by up to
three distinct terms. The three-dimensional exampls
may he extanded 1o ¢ dimencions when s different
index Levms are present, In that case, each document
D, is represented by 4 f-dimensional vector

Di= ida,duy.. ., didy

o, vepresenting the weight of the jih term.

Given the index veetors for two documents, it is
possible 10 compute @ similarity coefficient between
them, s(D; , D;), which reflects the degree of similarity
in the correspending terms and term weights. Such a
similarity measure might be the inner produet of the
two vectors, or altermutively an inverse function of the
angle between the corresponding vector pairs; when the
term assignment for two vectors is identical, the angle
will be zero, producing 2 maximum similarity measure,

Instead of identifying each document by a complete
veetor originating at the U-point in the coordinate sys-
tem, the relative distance between the vectars is pre-
served by normalizing all veetor lengths 10 one, and
considering the projection of the vectors onto the en-
velope of the space represented by the unit sphere. In
that case, each document may be depictad by a single

50 Machine Learning Health 06

@HCI-KDD o

* D=(dy, dy, ... dp)
= di =t1, tz, ™ tk

1, ti € d]
0, t; & d;

0

Holzinger Group, hci-kdd.org

>d; = (0,1,1,0,1,.., )7

(1+1ogfi)) *log%, iff;; >0

otherwise
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@ bissencn_|Fltaber | 2ru | cises_|
3 | Kurzbez. | yma | Statws | Kiass, |erg, Bez. Cokum.

Fal

& 3010018088 ambiarier Fai 13.01 2010 WIKIARDIO MK Kar oAb,
© 1 Leistungen (KAL, RAD, Thersp
EKG (12Abieitunger) 13012010 080D MKIARDIO MKKardioAmb DUSLTMO 0K 201 00v806s
(B RR-Intervall- Untersuchung 13.01.2010 08:00 MKKARDIO MK KardioAmb  DUSLTIMO oK 2010018065
B Sciwitmacherkontrolie  13.01.2010 06.00 MKKARCIO MK KardioAmb - DUSLTIMO oK 2010018065
< 2010002197 ambuianter Fall04 01 2010 CKTRANSF GK Transpl.
D (1 Diagnos en Gesamt 3)
© 2008404995 stationarer Fall 20.12.2009 MEDANGIO Med Angio

© (1 Diagnosen Gesamt (1)
< Lefshungen (AL, RAD, Therss

Becksn-u Beinarteriograie 22,12 2009 1636 RKVIRADB RKVIRaumB  STANMELI oK PTA k- 2009494995
[ Laumandergometer 21122009 0830 MKANGIO MKAngioAmb SPARANDR  OK 2009434295
[ ErsuntersuchungsStatis 21122009 0830 MKANGIO MKAngioAmb  SPARANDR  OK 2003494995
@ 2009453621 sistionarr Fall 17112009 CKTONC  CRTXIMC

© (3 Diagnosen Gasamt (12)
< L Leistungen MELY( 2

B Prysioth, (R stak Aufenin 20.112008 0805 CKPHYSIO CKPiysio  BEMWALT 0K 2000453021
[ Organbiop. Blidwandiergei17.112009 0812 CKTXOP  GKTXOP SCHWMICH  OK Organbiopse - Bildwandiel 2003453621
© (23 Leistungen (KAL, RAD, Therap
% J00831138  ambulanier Fal20 102000 MKKARDIO MK Kardiohmts
= L1 Loistungen (<AL, RAD, Therap
[ Schvitmacherkonrolla 20102003 0015 MKKARDIO MICKardioAmb DUSLTBMO O 2009431138
B RR-inorvall Uniersushung 20.10.2003 00:15 MKKARDIO MKKardioAmb DUSLTMO 0K 200043413
B EKG (12Auieiungen)  29.10.2009 0915 MKKARDIO MK KardioAmb  DUSLTIMO oK 2009431138
[® Fotodokumentation, Videoc29.10.2009 0915 MKIARDIO MK KardioAmb  DUSLTMO 0K 2003431135
< an0esraTss 16002000

© 1 Diagnasen Gesamt &)
< (1 Leistungen (KAL, RAD, Thersp

[8b Blutdnuck Langzsil (24 Stur17.09.2000 1059 MKNEPHR(MK NephroAmb RUDRHELK 0K ab 2009376733
[B Blutdruck Langzen (24 81 16.08.2009 1202 MKNEPHR(MK NeprioAmn RUDRHELM 0K an 2009378733
@ 009187568 stationarer Fall 2104 2009 CKOMIU K OM 10

© L1 Diagnosen Gesam 5)
¥ (3 Leletungen (<AL, RAD, Thersp

b Fotodokumentation, Videoc 20.04 2000 00.43 MKIKARDIO WK KardioAmb  FITTHEID oK 2009107545
EWG (12ADisilungery  20.04.2008 08.49 MKKARDIO MKKardioAmi  PITTHEID. ok 2009187546
b RR-Intervall- Unlersuchung 2.04 2003 0843 MKKARDIO MKKardioAmb  FITTHEID oK 2009187545

20042009 0849 MKKARDIO MK KardinAmb  FITTHEID oK 2009187545
EKG (12Abieitunger) 23042000 10:43 MKKARDIO MKKardioAmi KOBEINGR K 2009187545
b RR-Intewvall Untersuchung 29.04 2000 10:43 MKKARDIO MKKardioAmb KOBEINGR 0K 2009187545
Korsi FA 20042000 1022 NKKONS NKFAKonsl LANNMICH 0K 2009187545

Vector representation of document space @HCI-KDD %

5o
S z; L:S(Di;Di)
=i

Bsd

M. T3 Ty)

e ———— Ty

Doe (T To' T3}

) Groups of Reowent s

X indwidual Documents

Gerard M. Salton, Andrew Wong & Chungshu S.
Yang 1975. Vector-Space Model for automatic

indexing. Communications of the ACM, 18, (11), ® Cluster Contma
613-620, doi:10.1145/361219.361220. .
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Example (2) @HCI-KDD

Wi Wi, = Wi Win
Wa Woia Wa a1 Wan
ma 4 o
M”m—l,[ Wm—l,Z M’.m—l.n wm—],n
me 5l Wi]] 2 AR wm a1 Wm.n
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Example (3) @HCI-KDD %

leber

Qd,

/ verdacht

hepatitis
Holzinger Group, hci-kdd.org 55 Machine Learning Health 06
Generative statistical model for natural language @HCI-KDD

Seeking Life’s Bare (Gene!ic) Necessities
I HAROL, NEW Yoni—

Given the parameters a and (3, the joint distribution of a
topic mixture 8, a set of N topics z, and a set of N words w
is given by: N

p(8,2,w|a,B) = p(8|) [ p(z|8)p(wn |20, B)

n=1

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation.
The Journal of machine Learning research, 3, 993-1022.
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Eval. scheme for inferred potential functional modules  @Hci-koD -

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring
functional modules of protein families with probabilistic

topic models. BMcsliioinforma(ics, 12,(1), 1.

Holzinger Group, hei-kdd.org Machine Learning Health 06

Vector Space Model @HCI-KDD o
leber
cos —_—
@®= g II I d Il
verdacht
o >
v
//'
’hepatitis Salton, G., Wong, A. & Yang, C. S. 1975.
Vector-Space Model for automatic
indexing. Communications of the ACM, 18,
(11), 613-620.
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Motivation: to get insight into unknown document sets  @HCI-KDD %

AP Clo - mmi+ ¢ B 32 A BE D S

et s shouta iz Resstzsom

http://agoldst.github.io/dfr-browser/demo/#/model/scaled
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Generative Probabilistic Model @HCI-KDD o=

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-browser/demo/#/model/grid

Topic proportions and
assignments

Seeking Life's Bare (Genetic) Necessities e
& -

Documents

Each doc is a random mix of corpus-wide topics
and each word is drawn from one of these topics

Holzinger Group, hei-kdd.org 62 Machine Learning Health 06

H Geometry of Topic Models @HCI-KDD o

= Documents =
1 | Paword!) categorical

8= Sa distributions over a
/ o= ﬁ'éiiili‘ﬁt large space of
/ predefined vocabulary
/ ®= generated . .
/ document = Topics = categorical
/ " distributions
0| o .
/.,,-0 i N . = Generative model =
e each document can be
7(/‘]3) seen as a convex
i Wor

combination of the
topic distributions

Teh, Y. W.,, Jordan, M. 1., Beal, M. J. & Blei, D. M. 2006. Hierarchical dirichlet
processes. Journal of the american statistical association, 101, (476), 1566-1581.
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Example from Bioinformatics @HCI-KDD
Functional module 1 Functional module 2
iz FDA  P(FD)
O YD) Enzyme1 Enzyme2 Enzyme3  Enzymed Lo
FD-E— Q A FD-A o FD-X o FD-W o F-P el
_UR ] Educt Product
ok TPl & Topic 2
Protein compiex Metabolic pathway P(wldy) = Z P(w|t) - P(uld)
i=1
B stongenenthepmem MmN c v Statstcal inarance
Funchonal e 1 FOZFD) POk | Gmamn S a1 | FOZFO DK ‘\\
FDA FDE FD-B /
-
—— R SRS )
Sutan s : 1
vt es o pop o | Seme ) i Fou 0P K | W .
% FD-W FD-A FDA| FOMFDA FO \
Toa d
FD-A FOW FD-) X T
’ e
Fa . e s

o
rox FoW
L \\ FO-A FOW FDX
h Genome
Topi 1 FON FO Fop | ammolaiond

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional modules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.
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@HCI-KDD o4

Topic proportions and
assfgnments

Life's Bare ic) N iti \v\

Topics Documents

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)
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Output Example: 4 learned topics (credit to Blei, 2008)  @Hcl-koD %

human evolution disease computer
genome  evolutionary host models
dna species hacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin hacterial system Gk sqﬁe
i y probability
gene biology new network word given tc
molecular groups strains systems
sequencing  phylogenetic control model
majp living infectious parallel
information  diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis  simulations D. Blei
Holzinger Group, hei-kdd.org 64 Machine Learning Health 06
For “big data” stochastic variational inference @HCI-KDD -

GLOBAL HIDDEN STRUCTURE

. N

MASSIVE

o Rk

! 4 v,

Infer local
structure

Update global
structure

Subsample
data

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Approximate inference can be difficult to achieve @HCI-KDD
KNOWLEDGE DATA

Make assumptions

Discover patterns Predict & Explore

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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B8 LDA is an example for a probabilistic graphical model @HCI-KDD o

Proportions _Per-word i
parameter topic assignmen! -
parameter
Per-document Ohserved
topic proportions word Topics

l |

ND K

= Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)
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B Stochastic variational inference @HCI-KDD

1: Initialize A randomly.

2: Set the step-size schedule g appropriately.

3: repeat

4;  Sample a document w, uniformly from the data set.

S Initialize v = L fork € {1,..., K}
6 repeat
7 Forne {1,..., N} set
& x exp (Eflogf] + Eflog B, I} R € {l.... K}
Fl Setyg=a+ %, dgn-

9 until local parameters ¢, and vz converge.
10:  Forke {l...., K} sct intermediate topics

~
Me=n+DY .
n=1

1 SetA® = (1— p)AD 4 ol
12: until forever

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Black Box Approach @HCI-KDD o

REUSABLE MASSIVE
VARIATIONAL e
FAMILIES
g

[ ANY MODEL \

| BLACK BOX p(.z|x)

[ -

' E VARIATIONAL
A INFERENCE

\

L o?\i

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Posterior inference @HCI-KDD

o O+O—@ O—e
o 6,4 Zdn Wdn Bk i
N D K

p(B.0.z,w)
S Jo 2, P(B. 0.2, W)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;

However, this do not scale well ...

pB.0,z|w) =

Holzinger Group, hei-kdd.org 66 Machine Learning Health 06
Stochastic variational inference in LDA @HCI-KDD A
Yd | Pdn Ak

{_I |
= /l\ N b S
| ( J—t
—-Or-O—@— O
o 04 Zdn  Wdn Br n
¥ o K

1. Sample a document

2. Estimate the local variational parameters using the current topics

3. Form intermediate topics from those local parameters

4. Update topics as a weighted average of intermediate and current topics

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Conclusion: What is needed ... @HCI-KDD A

= Flexible and expressive components for building
models

Scalable and generic inference algorithms

= Easy to use software to stretch probabilistic
modeling into the health domain

= Topic models are only one approach towards
detection of topics in text collections

= More general: Identify re-occurring patterns in
data collections generally ...

= Much open work for you in the future ©
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Please look at some toolkits @HCI-KDD 5%

e Particular topic models

Stanford topic model toolbox
http://nlp.stanford.edu /software/tmt
Topic modeling at Princeton
http: / /www.cs.princeton.edu/ "blei/topicmodeling. html
MALLET (Java) http://mallet.cs.umass.edu
» Network topic models: Bayes-stack
https: / /github.com/bgamari /bayes-stack
» Gensim (Python) http://radimrehurek.com/gensim/
» R package for Topic models. http://epub.wu.ac.at/3987/

v

e Frameworks for generative models
» Variational inference: Infer.net
http://research.microsoft com /infernet/
» Gibbs sampling: OpenBUGS http://openbugs.net/
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Genome-Phenome association in complex diseases @HCI-KDD A

Tuo suonetiarks
for lung physiology

Image credit to Eric Xing, Carnegie Mellon University, Pittsburgh
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Example for a Medical Knowledge Space @HCI-KDD

# Nodes: 641
# Edges: 1250

Agent
Condition
Pharmacological Group
Other Documents

Average Degree: 3.888
Average Path Length: 4.683
Network Diameter: 9

Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices:
State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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@ HCI-KDD %

Dehmer, M., Emmert-Streib, F., Pickl, S. &

Holzinger, A. (eds.) 2016. Big Data of Complex
Networks, Boca Raton, London, New York: CRC or COMPLEX
NETWORKS

Press Taylor & Francis Group.

04 Knowledge
Representation in
Network Medicine
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From data sets to networks @HCI-KDD
/’-ml propere ol vy PR \
insicn of ion of

Sﬁ:ﬂiﬂ ol :S|mur:l analysis m
Gene annotations Protei iati * Influence of mponanis on

- annotat cing stes ‘ :r Wmagmm ‘ .@"“"‘”Ef“‘“”mas

o «
Data that identify the components. Data that characterize the interactions | |  Data that describe the natwork
and endpmms nf a nmwuk of network compaonents

include
# Yeast two-hybrid analysis

Existing biological knowledge

Nature Reviews | Molecular Cell Biology

Image description find here:

http://www.nature. com/nrm/journal/vG/nZ/flg tab/nrm1570 F1.html
Holzinger Group, hci-kdd.org

Machine Learning Health 06

Medical Details of the Graph @HCI-KDD o
v
Nod .
n -
odes ¢ o, w by
= drugs s\ .

. cllnlcalgwdehﬁe' .
= patient condltlons (indication, cont@mdlcat‘om)
= pharmacological grotu* ‘.‘ o. . &
* tables and calculations o? m@llcal qu ol
= algorithms and other medlc'a?doeurn s‘. .

= Edges: 3 crucial types of relatlonsnnqﬁcmg medicals
relevance between two active substances ...l

.
. . A
= pharmacological groups A
. . . -
* indications ¢ 0"
. T s %
contra-indications 8 "
_e
Holzinger Group, hci-kdd.org 80 Machine Learning Health 06

Network of Networks in Biology @HCI-KDD o

Signaling
networks

Activate TFs

Form TF
complexes

Regulatory
networks

Transcribe y
Transeribe
enzymes :
roteins

Metabalic
networks

Image credit to Anna Goldenberg, Toronto
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Regulatory>Metabolic>Signaling>Protein>Co-expression @HcI-KDD

Iranscription factor. . Enzymas

Q(tj;—» Q_’/@.

B ccabilites JF
$ro
A ONOSORSIC]
~ : %@
®

Directed, Signed, Undirected,
weighted weighted Directed Undirected Undirected

Protein

complex Q ¢
oo
;)

Image credit to Anna Goldenberg, Toronto
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Example for the shortest path @HCI-KDD A
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BExample for finding related structures @HCI-KDD 5%

o0

Relationship between
Adrenaline (center black node) and
Dobutamine (top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light):

1. Application (one ore more indications +
corresponding dosages)

2. Single indication with additional details

(e. g. “VF after 3 Shock”) o
3. Condition (e.g. VF, Ventricular o)
Fibrillation) 00
Holzinger Group, hci-kdd.org 82 Machine Learning Health 06
Example: Graph Entropy Measures @ HCI-KDD oA

® Engineering .
B Computer Science 52‘,{»

8| Physics “ o
B Humanities

Holzinger et al.
2013, 0On Graph
Entropy Measures
for Knowledge
Discavery from
Publication Network
Data. In: LNCS 8127,
354-362.
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Representative Examples of disease complexes @HCI-KDD

Atrial tal defect
Examples of AL

4 functional
networks
driving the
development of
different
anatomical
structures in S
the human
heart of a
37-day old

Abnomal atrioventricular valve morphology

Abnormal outflow tract development

Gv.......
Lage, K. et. al (2010) Dissecting spatio-temporal protein networks driving human heart development and
related disorders. Molecular systems biology, 6, 1, 1-9.
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Interactive Visual Data Mining @HCI-KDD %

LS .

Otasek, D., Pastrello, C., Holzinger, A. & Jurisica, 1. 2018. Vi Eﬁéctiye Exploration of the Biological
Universe. In: Holzinger, A. & Jurisica, |. (eds.) Interacfive Knowredge Digcovery and'Data Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Nofes in Computer Sgience LNCS 8401. Heidelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2. ®
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Some selected open problems @HCI-KDD %

= Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known.

= Problem: What is the structural interpretation of graph measures ? They are
mappings which maps graphs to the reals. Thus, they can be understood as
graph complexity measures and investigating their structural interpretation
relates to understand what kind of structural complexity they detect.

= Problem: It is important to visualize large networks meaningfully. So far, there
has been a lack of interest to develop efficient software beyond the available
commercial software.

= Problem: Are multi-touch interaction graphs structurally similar to other
graphs (from known graph classes)? This calls for a comparison of graph
classes and their structural characteristics.

= Problem: Which graph measures are suitable to determine the complexity of
multi-touch interaction graphs? Does this lead to any meaningful classification
based on their topology?

= Problem: What is interesting? Where to start the interaction?

Holzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on

Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 (pp. 241-254). Berlin, Heidelberg: Springer.
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Example: Cell-based therapy @HCI-KDD o=
A Early phenotypes
E1. Aonarmal heart E2. Abnormal locping E3. Abnormal E4 Abnommal atrio- Function of clusters
tube morphology morphogenesis SinUS venosus ventricuiar canal
‘morphology
A .

Intermediale phenolypes

- - ¢ i "Colloyclo rogulation

Other function

Late phenotypes
No. of proteins in clusters

0000
10 20 30 40 S0
—— Oectnoracton

Irelirest imtaracton

L4
Lage et. al (2010)
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Node Types
LapatinibDitosylate e

mong

(S Breast Cancer Drugs . .

PamidronateDisodiumm vy
Evercimusm 3 s

—mmmmm]
Physical Protein-Protein Interaction
Wetabolic Pathway.

Benzaapyrene
GSH Metabolism
N-Nitrasamine

Omitine Spermine Blosynthesis

TCA Cycle

Gabazitaxe
Prednisarn
Ablraterone Acetate

Prostate Cancer Drugs

Ovarian and Breast Cancer Drugs
@ Cyclophosphamide

= Doxorubicintydrochioride

' GemcitabineHydrochioride

S —
wcapecabine

B Epiublcinkydrochloride
mExemestane

X Breast Cancer Drugs
‘wAnastrozale

TopotecanHydrochloride ¥
Caraoplatin i Letrozole

Oharian Cancer Nrne

Example: The brain is a complex network @HCI-KDD

s

—
scans

| BOLD

o (o)

correlation = wii,)

b

scans

| BOLD

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010)
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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Identifying Networks in Disease Research @HCI-KDD %

ENVIRONMENT
Non-coding RNA network

transcriptional network
ENVI MENT

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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Three main types of biomedical networks @HCI-KDD o

. Protein1

Protein A w
Protein B\ Protein F
| L
Prntei%mcin G /

Protein C ‘J Protein E ﬁ

Protein F

Transcriptional regulatory Protein-Protein Metabolic network

network with two interaction network (constructed considering the
components: reactants, chemical reactions
TF = transcription factor and enzymes)

TG = target genes

(TF regulates the Costa, L. F., Rodrigues, F. A. & Cristino, A. S. (2008)

transcription of TG) Complex networks: the key to systems biology.

Genetics and Molecular Biology, 31, 3, 591-601.
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Correlated Motif Mining (CMM) @HCI-KDD

Boyen, P,, Van Dyck, D., Neven, F., van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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Metabolic networks are usually big ... big data © @HCI-KDD
Schmid, A. K., . ;.

Reiss, D. J.,
Pan, M., Koide, |
T. & Baliga,N.| { '
S.(2009)A iy
single P
transcription |
factor ‘
regulates
evolutionarily
diverse but
functionally
linked
metabolic
pathways in
response to
nutrient
availability.
Molecular
Systems
Biology, 5, 1-9.

http://www.nature.com/msb/journal/v5/n1/fig_tab/msb200940_F6.html
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Example Transcriptional Regulatory Network @HCI-KDD o

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, S., Peralta-Gil,
M., Pefialoza-Spinola,
M. 1., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7,(1), 5.
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Steepest Ascent Algorithm applied to CMM @HCI-KDD %

Input: PPI-network G = (V,E,A), {,d €N, d < ¢
Output: {X*,Y*} best correlated motif pair found in G
. {X*,Y*} « randomMotifPair()
mazsup — fH{X*, Y*},G)
Sup «— —o0
while mazsup > sup do
{X,Y} — {X*Y*}
sup — maxsup
for all {X'Y'} € N{X,Y}) do
if f({X',Y'},G) > mazsup then
[X*Y*} — {X".Y"}
maxsup — f({X,Y'},G)

Lo of9 e

e b 3y On o

—
o

Boyen et al. (2011)
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Using EPRs to Discover Disease Correlations @HCI-KDD -

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. S., Jensen, P.
B., Schmock, H.,
Dalgaard, M., ®
Andreatta, M., Hansen,
T., Seeby, K., Bredkjeer,
S.,Juul, A, Werge, T.,
Jensen, L. J. & Brunak,
S.(2011) Using
Electronic Patient
Records to Discover
Disease Correlations
and Stratify Patient
Cohorts. PLoS
Computational Biology,
7, 8,e1002141.
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Network Representations of Protein Complexes @HCI-KDD o
A B &
i @’ SE
@&~ \ ./ \
(X e

) ) (o B)
D 5 ) T g
= Spoke-Model
Matrix-Model (:C / QC> ’

Wang, Z. & Zhang, J. Z. (2067) In search of the biological significance of modular structures in
protein networks. PLoS Computational Biology, 3, 6, 1011-1021.

Holzinger Group, hci-kdd.org 93 Machine Learning Health 06
Metabolic Network @HCI-KDD
E1

2 M5<7> M1 <\EZ
M1 M2
M4 47- M2 M1 M4
E3 M1 M5
M3

M2 M1
[ [ va [ w2 [ w3 | va | vs IR
0 1 0 1 1 M2 M4
1 0 1 1 0 M4 M1
0 0 0 0 0 M5 M1
1 0 0 0 0

1 0 0 0 0

Hodgman, C. T., French, A. &
Westhead, D. R. (2010)
Bioinformatics. Second
Edition. New York, Taylor &

Matrix contains many sparse elements - In
this case it is computationally more efficient
to represent the graph as an adjacency list

Francis.
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Heatmap of disease-disease correlations (ICD) @HCI-KDD

Drug sbuse
Liver diosas

° Roque, F.'S. et al (2011) Using
Electronic Patient Records to B
Discover Disease Correlations and f
Stratify Patient Cohorts. PLoS
Comput Biol, 7, 8, €1002141.
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Example: opoloyéw (homologeo) GHCI-KDD o

T0499

He, Y., Chen, Y.,
Alexander, P.,
Bryan, P.N. &
Orban, J. (2008)
NMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.

DAGTAEKYFIKL | ANAKTVEGVWTYKDE | KTFTVTE
IR ERRE frrrrrrrrrrrrgpreerrernnn
DAGTAEKW I/KL | ANAKTVEG DE |KTFTVTE

T0499 TTYKL ILNLKQAKEEAIKE
terrrrrerrrrrernn
To498 TTYKL ILNLKQAKEEAIKE
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Example: Lymphoma is the most common blood cancer @Hcl-KoD %

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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Workflow for modeling relationship disease-symptom  @Hcl-koo 4

Model the data Suggest edges Create a Knowledge Graph
Disease | Symptom | Weight

Sz | @varian Cancer | Bowel dhsroction | 2402
| i o e e | 346 =

of e Gy
‘Dowelohetracion 0,028

p—
Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng & David Sontag 2017. Learning a Health Knowledge
Graph from Electronic Medical Records. Scientific Reports, 7, 5994, doi:10.1038/s41598-017-05778-z.
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Conclusion @HCI-KDD %

= Homology modeling is a knowledge-based
prediction of protein structures.

= |[n homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

= The method is based on the principle that
homologue proteins have similar structures.

= Homology modeling will be extremely
important to personalized and molecular
medicine in the future.
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ML tasks on graphs @ HCI-KDD

= Discover unexplored
interactions in PPI-
networks and gene
regulatory networks

= |earn the structure

= Reconstruct the
structure N g

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, 0 0 -8
T. & Miiller, T. 2008. Identifying functional modules in A -0 @
protein—protein interaction networks: an integrated - '

exact approach. Bioinformatics, 24, (13), i223-i231.
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From structure to function @HCI-KDD o+

[ 2
iuve ot tr

© A Protocol for Computer-Based Protein Structure and Function Prediction

A B D D

http://www.jove.com/video/3259/a-protocol-for-computer-based-protein-structure-function
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G HCI-KDD 5%

05 Machine Learning
on Graphs
Relevant for Health
Informatics
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B @HCI-KDD

SCIENTIFIC REPg}RTS

OFEN  Learning a Health Knowledge
Graph from Electronic Medical

Herelecs SMwh 011 Maya Rotmensch?, Yoni Halpern?, Abdulhakim Tlimat®, Steven Homg™* & David Sentag (¢
Acecpied: 1 Junc 2007
Published anfine: 20 July 2017 Demand for dinical decision in medicine and sef-diagriostic symptom checkars
Existi bases manually
pil igh 3 labor-intansi i iwed using simple pairwise statistice.
| Thisstudy process to leam hi linking i
o i medh ds. Medical concep 273,174 de-
identified pati i ikelil i st was
to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian
ing noi . Ageaph of di i
it with
igh quality
2 jon i Feasible. i produces ahigh
quality knowledge graph reaching precision of 0.85 fora recall of 0.6 in the clinical avaluation. Noisy OR
igni P all 1 (p<0.01).
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Interesting: Hubs tend to link to small degree nodes @HCI-KDD

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:

Hubs tend to link to small
degree nodes.

Why is this puzzling?

In a random network, the probability

that a node with degree k links to a
node with degree K’is:
kk'

Pu = EYa
k=50, k'=13, N=1,458, L=1746
Psois =015 p,, =0.0004

Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in
protein networks. Nature, 411, (6833), 41-42.
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Example: Subgraph Discovery @HCI-KDD o

de Sitter Vacua in String Th:
a2 s

HIGH ENERGY PHYS)

THEORY
L ASTROPHYSICS

rst Year Wilkinson
Quasinormal Modes of Microwave Anisotropy

Black Holes and Black Branes
! ! .‘ P n Aitematlve To Cnmpact cahun

GENFRAL RELATIMITY - N

AND QUANTUM COSMOLOGY

Gopalan, P. K. & Blei, D. M. 2013.
Efficient discovery of overlapping - 358 :
communities in massive A Large Mass Hierarchy o

networks. Proceedings of the from a Small Extra Dimension .~ HIGH ENERGY PHYSICS:

National Academy of Sciences, - = . 'PHENOMENOLOGY

110, (36), 14534-14539. s
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Graph Comparison @HCI-KDD

= Similar Property Principle: Molecules having
similar structures should have similar activities.

= Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

= Sets as sets: Measure similarity by the Jaccard
distance

= Sets as points: Measure similarity by Euclidean
distance

= Problems: Dimensionality, Non-Euclidean cases
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Sample Questions (1/3) @HCI-KDD

= Describe the clinical decision making process!

= Which type of graph is particularly useful for
inference and learning?

= What is the key challenge in the application of
graphical models for health informatics?

= What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

= What main difficulties arise during breast cancer
prognosis?

= What can be done to increase the robustness of
prognostic cancer tests?

= Inference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?
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Why do we want to apply ML to graphs @HCI-KDD o

= A) Discovery of unexplored interactions

= B) Learning and Predicting the structure

= C) Reconstructing the structure

= Which joint probability distributions does a
graphical model represent?

= How can we learn the parameters and structure
of a graphical model?

52 months 30 manths The chemical space

# 10" possible small or-
ganic molecules

® 10% stars in the observ-
able universe

Holzinger Group, hei-kdd.org 110 Machine Learning Health 06

@HCI-KDD o

‘Thank you!
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Sample Questions (2/3) @HCI-KDD o=

= Why do we want to apply ML to graphs?

= Describe typical ML tasks on the example of
blood cancer cells!

= |f you have a set of points — which similarity
measures are useful?

= Why is graph comparison in the medical domain
useful?

= Why is the Gromov-Hausdorff distance useful?

= What is the central goal of a generative
probabilistic model?

= Describe the LDA-model and its application for
topic modelling!
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Example Question: Predicting Function from Structure  @Hcl-koD %

et sk u.m!mt

VURVIGNLNANEWN - LEADLAWIKENTLNIP-
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How similar are two graphs? How similar is their
structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.
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@HCI-KDD

Questions
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Sample Questions (2/3) @HCI-KDD

= Briefly describe the stochastic variational inference
algorithms!

= What is the principle of a bandit?

= How does a multi-armed bandit (MAB) work?

= |n which ways can a MAB represent knowledge?

= What is the main problem of a clinical trail —and
maybe the main problem in clinical medicine?

= Why are rare diseases both important and relevant?
Describe an example disease!

= What is the big problem in clinical trials for rare
diseases?

= What did Richard Bellman (1956) describe with
dynamic programming?

= Why are graph bandits a hot topic for ML research?
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Solutions of the Quiz @HCI-KDD

= 1=this is a factor graph of an undirected graph — we have seen this in protein networks (refer to slide
Nr. 70 in lecture 5). Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For example, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A,B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
information please consult: http://deepdive.stanford.edu/i

= 2=thisis the decomposition of a tree, rooted at nodes into subtrees

= 3=an example for machine translation, Image credit to Kevin Gimpel, Carnegie Mellon University

= 4= the famous expectation-utility theory according to von Neumann and Morgenstern (1954): a
decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he is
maximizing the expected value of some function defined over the potential outcomes at some
specified point in the future.

= 5= MYCIN —expert system that used early Al (rule-based) to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for
patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have
the suffix "-mycin".

= 6= metabolic and physical processes that determine the physiological and biochemical properties of a
cell. These networks comprise the chemical reactions of ism, the ic path as well
as the regulatory interactions that guide these reactions.

= 7= With the sequencing of complete genomes, it is now possible to reconstruct the network of
biochemical reactions in many organisms, from bacteria to human. Several of these networks are
available online, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG), EcoCyc, BioCyc etc.
Metabolic networks are powerful tools for studying and modelling metabolism.
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Remember: Taxonomy of Decision Support Models @HCI-KDD %

De del

Quantitative (statistical) Quialitative (heuristic)
. cisi Reasoning
ised F q Boolean
unsupervise uzzy sets Logic Non-
parametric
Neural istic
network g

Expert
systems

Partitioning Critiquing
systems

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer.
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Original Example from MYCIN @HCI-KDD
hy = The identity o ORGANISM-1 is streptococcus

h, = PATIENT-1 is febrile
hy = The name of PATIENT-1 is John Jones

CFh,,E] = .8 Therg is strongly suggestive evidence (.8) that

the identity of ORGANISM-1 is streptococcus

CF[h,,E] = =.3 There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile
CFlh,E] = +1 : Itis definite (1) that the name of PATIENT-1 is

John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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@HCI-KDD o

Appendix
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Dealing with uncertainty in the real world @HCI-KDD %

@HCI-KDD

= The information available to humans is often
imperfect — imprecise - uncertain.

= This is especially in the medical domain the case.
= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Ais true THEN A is non-false and
IF B is false THEN B is non-true

= Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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MYCIN was no success in the clinical practice @HCI-KDD o

1) Reasoning under
Uncertainty

Holzinger Group, hci-kdd.org 120

MYCIN - rule based system - certainty factors

Machine Learning Health 06

https://www.youtube.com/watch?v=IVGWMOCKNWA (“real nurse triage”)
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MYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

Goal oriented strategy (“Ruckwartsverkettung”)

To every rule and every entry a certainty factor (CF) is
assigned, which is between O und 1

Two measures are derived:
MB: measure of belief

MD: measure of disbelief

Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] —MDI[h]
CF is positive, if more evidence is given for a hypothesis,

otherwise CF is negative
CF[h] =+1->his 100 % true
CF[h] =—1->h is 100% false
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Correlation of radiographic findings
and Gamut with patients' clinical
and lab findings to arrive at the
most likely diagnosis

Reeder, M. M. & Felson, B. 2003.
Reeder and Felson's gamuts in
radiology: comprehensive lists of

r differential di is, New
York, Springer Verlag.

Holzinger Group, hci-kdd.org 126

Gamuts: Triangulation to find diagnoses @HCI-KDD
- Gamut F-137
> %
F¢ % 5% PHRENIC NERVE PARALYSIS OR
& & %,;’@0’%, DYSFUNCTION
s %%%
s F %%

S8 %%, COMMON

& %%, 1. Tatrogenic (eg, surgival injury; chest tube; therapeu-
& %, tic avulsion or injection: subelavian vein puncture)

é;’" & %, ‘%2 2. Infection (e, tuberculosis; fungus disease; abscess)
S Ze® 3. Neoplastic invasion or compression (esp, carcinoria

{Pc? of lung}

UNCOMMON
) ' Aneu.rysms, aortic of other
2. Birth trauma (Erb’s palsy)
3. Herpes zoster
4. Neuritis, peripheral (eg, diabetic neuropathy)
5. Neurologic disease, cmiplegin encephalitis;
polio; Guillain-Barré S.
6. Pneumonia
7. Trauma

Reference
1. Prasad $, Albreys BH: Transient paralysis of the phrenic
nerve associated with head injury. JAMA 1976,236:2532—

Machine Learning Health 06

@HCI-KDD %



Example - Gamuts in Radiology @HCI-KDD
REEDER AND FELSON'S
GAMUTS IN RADIOLOGY
GANUT 6.25
EROSIVE GASTRITIS®
CONNON Reeder, M. M. & Felson, B. (2003) Reeder
; 2::;:3 Z‘::;:;. el and Felson's gamuts in radiology:
3 Mrugs (g, aspirn B Bl N3AIN B steids) comprehensive lists of roentgen
; :ﬂ"mf*’ pyon mctin B differential diagnosis. New York, Springer

6. [Normal arzze gastricae | Verlag.
7. Meptic ulcer, kyperzcidity

UNCOMMON

1. Corrcsive qastrits

2. Crypiesporidfum antrits

3. [Lymphomal

4. Opperturitic nfcetion (sg, cardidiasic [moniiasis) K herpes simples; eytome galoviruz)
5. Postoperative gastritis

6 Radiation therapy

¢ zalinger-Hliiscn S mutiple endocnne neaplasia (VEN) S

* Superfcial erosions or aphthoid ulcerations seen especially with couble contrast technicuz
[ 1This condition does not actuzlly cause the gamutsc imagirg finding, but can praduce imagirg c1enges tha: simulste i-
http://rfs.acr.org/gamuts/data/G-25.htm
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Future Outlook @HCI-KDD A

The future is in integrative ML, i.e. combining relational databases,
ontologies and logic with probabilistic reasoning models and
statistical learning — and algorithms that have good scalability

w Smokes(x) A Friends(x,y) = Smokes(y) '

Run Time [s]

o 5000 10000 15000 20000 250004 30000
Domain Size (Number of People)
m Learns a model over
900,030,000 random variables
Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J. & De Raedt, L.
Big models " b is, ). & "

Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2011. AAAI Press, 2178-
2185.
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Probabilistic programs vs. graphical models @HCI-KDD
Probabilistic Graphical
Progr: Model
Variables Variable nodes
Functions/operators Factor nodes/edges
Fixed size loops/arrays Plates

If statements Gates (Minka & Winn)

Variable sized loops,
Complex indexing,
jagged arrays, mutation,
recursion, objects/
properties...

No common equivalent
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Reasoning under uncertainty

@ HCI-KDD 5

= Take patient information, e.g., observations,
symptomes, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned

= Prior = belief before making a particular observation

increlgental

plxily;) =
Holzinger Group, hci-kdd.org 128

Quiz
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@HCI-KDD o

BU |d)= % Ploy...ts

n, = Tha identity of ORGANISM-1 is. streptococcus
n, = PATIENT-1 i fobrle.
hy = The name of PATIENT-1 is John Jones

CFh,E] = 8 @ There Is sirongly suggestive evidence (8) that
ha idantiy of ORGANISH-1 is Sireptococous
CFM,E) = =3 : There is weakly suggestve eidence (3} that
PATIENT- s not febrile
CFhyE] = +1 : IUis dofinits {1} thal the nama of PATIENT-1 is
John Jones
5
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Medical Example

= = bringen s

¥ - plese reum the car

3174 5 e = )
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@HCI-KDD o

Sequenoe Outcome

- Spacty the vatus o mac mizs Eing numeies s musten.
a5 el 3 e expacied form of he posteror distibuton:

o oy e Gt =
e CteatcaRcal 560 95, lue=0rp . cosavick o,

. roip)-FDIFE)

|
(D)

+poily the exporimaniz dota

* Simple example: Nucleatide *A” may follow nucleotide “T" in the
sequencss more frequently for outcome X than for outcome Y.

P(AIT,X)> P(AIT,Y) ?

+ Specky the prcr detroution;

Expormrentai Daa

Exp g mparm1, 7,022 1.0, )

p(D|8)-P(8)

re1D)= ) 4

Image Source: Dan Williams, Life Technologies, Austin TX
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Remember: 2 types of decisions (Diagnosis vs. Therapy) @Hcl-kop

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:
= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?
= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks y, if an
obstruction of more than z % is seen in the left coronary artery?
= What amount of insulin should be prescribed for a patient during

the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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Probabilistic-programming.org @HCI-KDD

= C — Probabilistic-C

= Scala — Figaro

= Scheme — Church

= Excel — Tabular

= Prolog — Problog

= Javascript — webPP
= — Venture
= Python - PyMC

PyMchrhonk Markov chain Monte Carlo
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T @HCI-KDD o

05 Digression:
What is
similarity?
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What is Similar? @HCI-KDD

Image credit to Eamonn Keogh (2008)
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Similarity and Correspondence @HCI-KDD

Bronstein, A. M., Bronstein, M. M. & Kimmel, R. 2008. Numerical
geometry of non-rigid shapes, New York, Springer.

http://www.inf.usi.ch/bronstein/

Structure Structure

Correspondence quality = structure similarity
(distortion)
Minimum possible correspondence distortion
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BY Distinguish topological spaces @HCI-KDD o

Counts the number of “i-dimensional holes”

bi is the “i-th Betti number”

,.-ur&“

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

bi=1 b1=0 -
b2=0 ba=1

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)
Zomorodian, A. & Carlsson, G. 2005. Computing Persistent Homology. Discrete &
Computational Geometry, 33, (2), 249-274.
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@ @ HCI-KDD %

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,

Springer.
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B Invariant Similarity @HCI-KDD -
Similarity

\ Invariant similarity (
lsible correspo!enc
=d(X,Y)
aY
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Structural Patterns are often hidden in weakly str. data  @Hci-kpD %

= Statement of Vin de Silva (2003), Pomona College:

= et M be a topological or metric space, known as the
hidden parameter space;

= let R be a Euclidean space, the observation space,

= and let f: M — R? be a continuous embedding.

= Furthermore, let X © M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;, i € I} defined on a
probability space (Q, F, P), and denote Y = f(X) c R¢
the images of these points under the mapping f.

= We refer to X as hidden data, and Y as the observed data.

= M, f and X are unknown, but Y is - so can we identify M?
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Y| @HCI-KDD

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.
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B Gromov-Hausdorff dist: finding the opt. correspondence  @HcI-KDD
:\- = Gromoy, M. (1984) Infinite groups as ¢
geometric objects.

Felix Hausdorff

Michail Gromov (1868-1942)

(1943-) y
— S B
(n/\’7 (SX) Correspondence (Y’ (S),)
Metric space Metric space
il
dgu(X,Y)==min max |dx(x;z;) — éy (v, y:)
GH ) 2 C (zw)eC 10 x (2 7 Y \Yi: Uy |
(zj.y;)€C

Vo, Jy; s.t.(z;,y) €C Yy, Iz stz y) €C

Discrete optimization over correspondences is NP hard !
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Topological Data Mining Q@HCI-KDD 4
A&
s — Ly B
' ﬂl/ (Y : \_4/)5
i =

= Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014. On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5_19.
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v GHCI-KDD s

06 Review of basic
concepts, metrics
and measures
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Baby Stuff: Computational Graph Representation @HCI-KDD

1, if{j k} €E

Adjacency (o-'ja-sn(t)-s&) Matrix A = (aj) ay = [ o e e

== 000
OmROOCOm
===}
O O =
COROmRO

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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Some Network Metrics (2/2) @HCI-KDD

= Centrality (d) = the level of “betweenness- centrality” of a node I (“hub-node
in Slide 28); d

k=2

(1204 i

3

= Nodal degree (e) = number of links connecting i to its neighbors: k; = ¥; a;;

e
f
@
Modularity (f) = describes the possible

® ® formation of communities in the network, i ®

® ® indicating how strong groups of nodes ® ]

L . {
® form relative isolated sub-networks within
L the full network (refer also to Slide 5-8).
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Complex Biological Systems key concepts @HCI-KDD o

= |n order to understand complex biological systems, the
three following key concepts need to be considered:

= (i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

= (ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

= (iii) modularity, vertices sharing similar functions are
highly connected.

= Network theory can largely be applied for biomedical
informatics, because many tools are already available

Holzinger Group, hci-kdd.org 146 Machine Learning Health 06
Example: Tool for Node-Link Visualization @HCI-KDD %

Jean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. IEEE, 167-174.
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Network Topologies @HCI-KDD o=
a
regular small-world random
] ® [ ]
ct ¢t cl
- ®,, e °, . e °
] [ ] [ ] [ ] [ ]
® 9 ® ® 9 ® ® g b
randomness
" e
Scale-free network
. Van Heuvel & Hulshoff (2010)
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Network Basics on the Example of Bioinformatics @HCI-KDD

G(V,E) Graph
V..vertex
E ..edge{a,b}
abeVia+hb

Hodgman, C. T., ‘
French, A. &

Westhead, D. R. .
(2010) Bioinformatics.

Second Edition. New

York, Taylor & Francis.
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Some Network Metrics (1/2) @HCI-KDD

Order = total number of nodes n; Size = total number of links (a): e
‘edge / connection e
2.2 o> ¥
[
® ]
[ 2 ®

Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

= 2t; c= 12 c
CTk(k - 1) T n '
T
c
@J _»
Path length (c) = is the arithmetical ./Jb
3 mean of all the distances: *
1
1= —Z dy
b nn=1) £y

]
Costa, L. ., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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Small-World Networks @HCI-KDD A
Regular Small-world Resida

p=0.0001

Increasing randomness

/J 29.000 citations ...

Watts, D. J. & Strogatz, S. (1998) Collective dynamics of small-world networks. Nature, 393, 6684, 440-442.
Milgram, S. 1967. The small world problem. Psychology today, 2, (1), 60-67.
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Slide 5-15 Graphs from Point Cloud Data Sets @HCI-KDD

—

A Ty
Tl
Uik = :
h\,/h\ ,«J'r
LA Mt A,

- o
< Ty 3t
(d) Euclidean Minimum Spanning

Tree.

NSy
% o

W <§\

¢ v“éxf
(h) G-Skeleton Graph, 3 133
black edges, 5 = 0.9: grey edges.
Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:

Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.

N
(g) Gabriel Graph.

() 3-Neurest- Neighbor Grapht
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Example Watershed Algorithm @HCI-KDD
Algorithm 4.2 Watershod transform w.r.t. topographical distance based on fmage intogration

via the Dijkstra-Moore shortest paths algorithm.

procedure ShortestPathWatershed:

INPUT: lower complete digital grey seale image G = (V, E, m) with cost fanction cost.

OUTPUT: labelled image lab on V

Ftdefine WSHED 0 (+label of the watershed pixels+)
(# Uses distanee image disi. On output, dist[u] =smlv], for all v € V.

for all v £ V do (+ Initialize +}
labu] — 0 ; dist[s] — oo
end for
for all local minima m, do
for all v £ m, do
lab{e] i ; dist[v] —im[s]  (winitialize distance with values of minima )
end for
14: end for
15: while V £ 0 do

CEorwupEEwNe

PR

18 for all v £V with (u,v) € £ do

10 if dist[u] + cost[u.v] < dist[o]

0. dist[v] — distfu] + cost(u, )

21 labfu] —labu]

22; else if [ablv] # WSHED and dist[u] + costlu.v] — distfv] and lab[v] # lablu] then
23: labjy] = wsHED

2 end if

25: end for

26:_ end while

Meijster, A. & Roerdink, J. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 1995. Springer, 790-795.
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Slide 5-20 Graphs from Images: Voronoi <> Delaunay @HCI-KDD o

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, J. F.,, Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture
Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
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B Finally a practical example

@ HCI-KDD %
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07 How do you get
point cloud data
from natural
images?

Machine Learning Health 06

Are graphs better than feature vectors ? @HCI-KDD o=
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More expressive data structures
Find novel connections between data objects

Fit for applying graph based machine learning
techniques

New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, P.,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin) 7-19

Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014), IEEE (2014) in print

Machine Learning Health 06

Graphs from Images @HCI-KDD

I ?Tﬁ )
d) SLIC superpixels

£ Ll o8

c) Watershed Algorithm
Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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Graphs from Images: Watershed + Centroid @HCI-KDD %

‘
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@HCI-KDD o4
% 0a
o 4
. - y
-
. .

e

Watershed methods

)
= Topographic maps => ™
landscapes with height structures

= Segmentation into regions of pixels

= Assuming drops of water raining on the map

= Following paths of descent

Lakes called catchment basins

= Also possible: Flooding based

= Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6), 583-598.
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Watershed 4 Steps

G HCI-KDD 5%
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Challenges

1) Transformation into a topographic map
= Convert gray values into height information

2) Finding local minima
= |nspecting small regions in sequence

3) Finding catchment basins

= Algorithm simulating flooding

= Graph algorithms such as Minimum Spanning Trees
4) Erecting watersheds

= Artificial divide between catchment basins
= Final segmentation lines

Machine Learning Health 06

@HCI-KDD %
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We want to find “interesting” novel patterns
(rules, anomalies, outliers, similarities, ...)

Problem #1: How to get a graph?
Problem #2: How do graphs evolve?
Problem #3: What tools to apply?
Problem #4: Scalability to TB, PB, EB ...
Success is in repeatability and scalability

Machine Learning Health 06

Watershed Algo based on connected components @HCI-KDD o
7 [ 8 [12[ 1180 [~ [ <[~ [o @ o [o |1 [
7|78 ]12|11 Al R« Al+|[ofJoJoJo 11
13113151616 13| |+ | T [N|N| AT 0100 |0 |11
19| 19| 18| 17| 15| 7 Tttt =2 N4 0100 |2 [2]2
20[ 18] 17| 16| 15080 | = =[] (2 [2 ]2 ]2 [2 |2
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State-of-the-Art Facts

(a) The original image (b) Each pixel connect to lowest  (c¢) The Image with labels

minimum

Connects each pixel to the lowest neighbor pixel, all pixel connected to same lowest
neighbor pixel form a segment

Machine Learning Health 06

@HCI-KDD o

Holzinge

Study of complex networks started in the 1990s with the
insight that real networks contain properties not present
in random (Erdds-Renyi) networks.

Meanwhile networks and network-based approaches
form an integral part of many studies throughout the
sciences.

Graph-Theory provides powerful tools to organize data
structurally and in combination with statistical and
machine learning methods allows a meaningful analysis of
underlying processes.

For instance, a mapping of causal disease genes and
disorders as made available by the OMIM database
provided novel insights into disease patterns, as recently
demonstrated by investigating the diseasome
(http://diseasome.eu).

r Group, hei-kdd.org 167 Machine Learning Health 06

Region Merging (from here see Tutorial Bernd Malle)

G HCI-KDD 5%
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Future Outlook

Region Merging
= Based on Kruskals MST algorithm

= Takes input image as natural graph with vertices := pixels and
edges := pixel neighborhoods

= Visits edges in ascending order of weight and merges regions
if they satisfy a certain criterion

= Flexible as merging criterion can be adapted as desired (for
amount, size, or shape of resulting regions)

Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.

International Journal of Computer Vision 59 (2004) 167-181
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@HCI-KDD %
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Personalized
Medicine

Machine Learning Health 06



