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Crazy Ideas > Science > Engineering > Business @ HCI-KDD %

Science is to test crazy ideas —
Engineering is to put these ideas into Business
Lucky Students ©

Holzinger Group, hci-kdd.org 2 Machine Learning Health 06



ML needs a concerted effort fostering integrated research @HCI-KDD -

MAchine Learning & Knowledge Extraction MAKE

(Safety) 4 - Privacy, Data Protection, Safety & Security

2.~ Learﬁing

Holzinger Group, hci-kdd.org 3 Machine Learning Health 06



Machine Learning Jungle Top-Level View @ HCI-KDD %

[ Cognition

Py

LVisuaIization J Data fusion ]

[ Perception Preprocessing]

Decision [ Interaction ] Integration

e

| CONCEPTS | THEORIES | PARADIGMS | MODELS | METHODS | TOOLS |

i

Dimensionality} [ Complexity ] [ Unsupervised ] [ Gaussian P. ] Regularization ] Python

Reinforcement] [Bavesian p(x)] [Supervised ] [Graphical M. Scaling ] [ Church

p

[ Representation ] [ Entropy/KL] [ Semi-Superv. ] [ Neural Nets | | Aggregation ] Anglican |

bl

No-free-lunch][Vapnik-Chernov.][ iML ] [KerneI/SVIVI Evolution ] Julia

L

[ Multi-Task Learning ] [ Transfer Learning ] [ Multi-Agent-Hybrid-Systems ]

( Data Protection, Safety and Security and Privacy Aware Machine Learning (PAML) ]

[ Application, Validation, Evaluation, Impact — Social, Economic, Acceptance, Trust ]

Holzinger, A. 2016. Machine Learning for Health Informatics. In: LNCS 9605, pp. 1-24, doi:10.1007/978-3-319-50478-0_1.
Holzinger Group, hci-kdd.org 4 Machine Learning Health 06



Red thread through the lecture today @ HCI-KDD =%

= 00 Reflection

= 01 Probabilistic Decision Making

= 02 Probabilistic Programming Part Il

= 03 Probabilistic Topic Models

= 04 Knowledge Representation in Net Medicine

Holzinger Group, hci-kdd.org 5 Machine Learning Health 06



@ HCI-KDD +£-
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To reach a level of usable intelligence we need to ... @ HCI-KDD o

" 1) learn from prior data
= 2) extract knowledge

= 2) generalize,

" j.e. guessing where a probability mass
function concentrates

= 4) fight the curse of dimensionality

" 5) disentangle underlying explanatory
factors of data, i.e.

" 6) understand the data in the context of
an application domain

Holzinger Group, hci-kdd.org 7 Machine Learning Health 06



Sampling from big data is an important topic @ HCI-KDD

Compute a; := Z_;‘ JiiTs
Draw u from Uniform(0, 1)
If u < 1/(1 + e~2a)

i = +1
Else
x; = =1

Markov chains Posterior density

Propp, J. G. & Wilson, D. B.
1996. Exact sampling with
coupled Markov chains and
applications to statistical
mechanics. Random

sigma

lteration 1

| 1 | I | I |

structures and Algorithms,
45 87 880 9, (1-2), 223-252.

mu

Holzinger Group, hci-kdd.org 8 Machine Learning Health 06



Medical Example: Breast cancer prognosis incl. Genetics @HCI-KDD:%-

Alcoholic & Skin Nipple Breast
Smoking Thickeni Discharge Pain
// Lump
b
{ Breast Cancer I
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications
Gene 2 Gene 1 Gene2 Genel Gene 1
on on off
Plon) 0.3 Pon) 0.3 0.6 n
P(off) 0.7 P(off) 0.7 0.4
Plzisesss8n) = | | Plzipalz))

Prognosis Gene2on Gene2on Gene2off Gene 2 off
Gene3on Gene3off Gene2on Gene 3 off

P(good) 0.6 0.1 0.9 0.5
P(poor) 0.4 0.9 0.1 0.5

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B.
D. (2006) Predicting the prognosis of breast cancer by
integrating clinical and microarray data with Bayesian networks.
Bioinformatics, 22, 14, 184-190.

Holzinger Group, hci-kdd.org 9 Machine Learning Health 06



Inference in Bayes Nets is intractable (NP-complete!) @ HCI-KDD -

" For certain cases it is tractable if:
= Just one variable is unobserved
= We have singly connected graphs (no undirected
loops -> belief propagation)
= Assigning probability to fully observed set of
variables
= Possibility: Monte Carlo Methods (generate
many samples according to the Bayes Net
distribution and then count the results)

= Otherwise: approximate solutions, NOTE:

Sometimes it is better to have an approximate
solution to a complex problem — than a perfect
solution to a simplified problem

Holzinger Group, hci-kdd.org 10 Machine Learning Health 06



The medical report is the most important medium

@ HCI-KDD +£-

Kurzanamnese: St.p. SHT

Fragestellung:

Untersuchung: Thorax eine Ebene liegend

SB

Das Cor in der GrofRennorm, keine akuten Stauungszeichen.

Mit kollegialen GrufRen

*** Elektronische Freigabe durch am08.05.2006 ***

angelegt am 06.05.2006/20:26

= = geschr. von
B.a.d.l_o.l.o_g.l.s.c_h.e.LB_e_fun.d gedruck‘[ am 17.11.2006/08:24

Anfo: NCHIN

Special Words
Bewegungsartefakte. Zustand nach Schadelhimtrauma. La N g Uud ge M ix
Fragliches Infiltrat parahilar li. im UF, RW-Erguss Ii. A b b r evi at i ons

Zustand nach Anlage eines ET, die Spitze ca. 5cm cranial der Bifurkation, lieg. MS, orthotop
positioniert. ZVK Uber re., die Spitze in Proj. auf die VCS. Kein Hinweis auf Pneumothorax.

Der re. Rezessus frei. r ro rs
000

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in

medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.

Holzinger Group, hci-kdd.org 11
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Why is this sentence complex? What do | need? @ HCI-KDD £

‘I saw her duck”

Holzinger Group, hci-kdd.org 12 Machine Learning Health 06



German Local Hospital Abbreviations ... (example) @ HCI-KDD -

= HWI =
= Harnwegsinfekt
= Hinterwandinfarkt
= Hinterwandischamie
= Hakenwurminfektion
= Halswirbelimmobilisation
= Hip Waist Index
= Height-Width Index
= Heart-Work Index
= Hemodynamically weighted imaging
= High Water Intake
= Hot water irrigation
= Hepatitic weight index
= Haufig wechselnder Intimpartner

= Leitung = Nervenleitung, Abteilungsleitung, Stromleitung,
Wasserleitung, Harnleitung, Ableitung, Vereinsleitung ©...

Holzinger Group, hci-kdd.org 13 Machine Learning Health 06



Final Quiz @ HCI-KDD 52

= |ntelligence?
= Hundreds of controversial definitions — very hard to define;

= For us: ability to solve problems, to make decisions and to acquire
and apply knowledge and skills

= |Learning?
= Different definitions — relatively hard to define
= basically acquisition of knowledge through prior experience
= Problem Solving?
= Process of finding solutions to complex issues
= Reasoning?
= ability of our mind to think and understand things
= Sense Making?
= Process of giving meaning to experience
= Causality?
= Relationship between cause and effect
= Decision Making?
= Process of “de-ciding” (“ent-scheiden”) between alternative options

Holzinger Group, hci-kdd.org 14 Machine Learning Health 06



Ty @ HCI-KDD -

01 Probabilistic
Decision Making

Laplace, P-S. 1781. Mémaoire sur les
probabilités. Méemoires de [/Academie
Royale des sciences de Paris, 1778, 227-332.

Holzinger Group, hci-kdd.org 15 Machine Learning Health 06



Medlcal

|éaI3act|on ... Decision
: Making

Harold C. Sox
Michael C. Higgins
Douglas K. Owens

WWILEY-BLACKWELL

decisio fﬁ?kmg under
Uhcertainty....

Holzinger Group, hci-kdd.org Machine Learning Health 06




Where can you apply artificial intelligence here? @ HCI-KDD =%

External context Internal context

Verbal suggestions:
“This is going to make
you feel better”

Place cues:
Doctor’s office C

Social cues:
* Eye gaze |
* Body language
* Voice cues

e White coat Treatment cues:

* Syringe

* Needle puncture

* Qutcome expectancies:
“My pain will go away”

* Emotions:
“I am less anxious”

* Meaning schema:
“I am being cared for”

* Explicit memories

* Pre-cognitive
associations

Nature Reviews | Neuroscience

Wager, T. D. & Atlas, L. Y. 2015. The neuroscience of placebo effects: connecting context,
learning and health. Nat Rev Neurosci, 16, (7), 403-418, doi:10.1038/nrn3976

Holzinger Group, hci-kdd.org 17 Machine Learning Health 06



Remember: 2 types of decisions (Diagnosis vs. Therapy) @HcI-KpD 4

= Type 1 Decisions: related to the diagnosis, i.e. computers
are used to assist in diagnosing a disease on the basis of
the individual patient data. Questions include:

= What is the probability that this patient has a myocardial
infarction on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices,
given the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are
used to select the best therapy on the basis of clinical
evidence, e.g.:

= What is the best therapy for patients of age x and risks y, if an
obstruction of z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient
during the next 5 days, given the blood sugar levels and the
amount of insulin taken during the recent weeks?
Harold C. Sox, Michael C. Higgins & Douglas K. Owens 1988. Medical decision making, Second Edition, Chichester, Wiley.

Holzinger Group, hci-kdd.org 18 Machine Learning Health 06



Decision Making under Uncertainty @ HCI-KDD %

Holzinger Group, hci-kdd.org Machine Learning Health 06




Remember: Expected Utility Theory E (U|d) @ HCI-KDD s

For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

FEU | d) = Z P B 55 005 B | EWRER, o 5 + 3 By @)

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax = arg max FEU | d)
dedom(D)

Von Neumann, J. & Morgenstern, O. 1947. Theory of games and economic
behavior, Princeton university press.

Holzinger Group, hci-kdd.org 20 Machine Learning Health 06



http://www.stat.columbia.edu/~gelman/book/ @ HCI-KDD %

Bayesian Data Analysis
Third Edition

Ruolative Mumbar of Births

I i i L L i i P i i I i
Jan Fob Mar  Ape May Jun Jul Aug Sep O Mov Dec
T T T T T T T T T T T T

Valonting's, day

and.ﬂm'm Mernorial day dﬁfm b

Newymar : & . boependencedsy : . i s
Jan Fab Mar Apr May Jun  Jul Aug Sep Oct Mov Dec

Andrew Gelman, John B. Carlin, Hal S. Stern,

David B. Dunson, Aki Vehtari, and Donald B. Rubin Andrew Gelman, John B. Carlin,
Hal S. Stern, David B. Dunson, Aki

https://github.com/avehtari/BDA_py _demos Vehtari & Donald B. Rubin 2014.
Bayesian data analysis, Boca

http://www.stat.columbia.edu/~gelman/book/data/ Raton (FL), CRC press.

Holzinger Group, hci-kdd.org 21 Machine Learning Health 06



Human learning vs. Machine Learning @ HCI-KDD +£-

= Example 1: Inverse Probability
= Example 2: Diagnhosis

= Example 3: Language understanding
p(hld) oc p(D|0) * p(h)

P(words|sounds) o« P(sounds|words) * P(words)

_ [-l:-h ‘ a(t - 1) ) (t+1) .Recognize SpeeCh
5 2 E 2 W

reck a nice beach

" Learning ensures that new observations (d)
match our previous hypotheses (h)

Holzinger Group, hci-kdd.org 22 Machine Learning Health 06



Cognition as probabilistic inference @ HCI-KDD +£-

1O

w w
0 1
h,

" VVisual perception, language understanding,
motor learning, associative learning,
categorization, concept learning, reasoning,
causal inference, ...

" Learning concepts from (few!) examples

" Learning and applying intuitive theories
(balancing complexity vs. fit optimality)

Holzinger Group, hci-kdd.org 23 Machine Learning Health 06



Modeling basic cognitive capacities as intuitive Bayes @ HCI-KDD o

= Similarity
= Representativeness and evidential support
" Causal judgement

= Coincidences and causal discovery

" Diagnostic inference

. . L
Predicting the future J, T
2
Tenenbaum, J. B., Griffiths, T. L. & Kemp, C. E i ol i
.2006..Theory—b.ased Baye5|an.models of | l Pt | Priicinks)
inductive learning and reasoning. Trends in
cognitive sciences, 10, (7), 309-318. Stuctured probabilistic model

l P{Data | Structure)

Observable data
Holzinger Group, hci-kdd.org 24 Machine Learning Health 06



Human brains as probabilistic reasoning machines @ HCI-KDD :%-

LTM: Prior knowledge H

H={H; Hyy... Hp}

STM:

p(0|D) =

p(D|6) * p(0)

p(D)

Uncertain
world

Holzinger Group, hci-kdd.org
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Similar as our RL-Agent seeks to maximize rewards @ HCI-KDD :%-

e b i Intelligent behavior arises from the actions of an
The agent perceives state s;

The agent performs action 2. | INAiVidual seeking to maximize its received reward

The environment evolves to s;¢1

The agent receives reward r; Slgnals |n a Complex and Changing WOrld

end for

Agent
- Representation
3 Learning algorithm
Rew;ard Action selection policy
State rtt Action
7(t) . r(t+1) a®
I
: Environment G
o

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press
Holzinger Group, hci-kdd.org 26 Machine Learning Health 06



De-cision (Ent-scheidung) between alternatives @ HCI-KDD 4

('Belief ) (Desire )

?
a b C
{a,b,c} {a(pa),b(pb),c(pc)}
—> decision that is —> decision that maximizes
best for worst case expected utility value
Non-deterministic model Probabilistic model

~ Adversarial search

Holzinger Group, hci-kdd.org 27 Machine Learning Health 06



HCI-KDD £-

02 Probabilistic
Programming

Holzinger Group, hci-kdd.org
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Recommended Resources for Probabilistic Programming @Hci-kop

= Dan ROY: Probabilistic Programming Wiki
http://www.probabilistic-programming.org/wiki/Home

= Frank WOOD, many tutorials, slides, code and papers
http://www.robots.ox.ac.uk/~fwood/teaching/index.html

= Avi PFEFFER 2016. Practical probabilistic programming, Shelter
Island (NY), Manning
https://www.manning.com/books/practical-probabilistic-
programming

Practical

Look also for work of:
Andrew GORDON
Noah GOODMAN
Josh TENENBAUM
John WINN

Rob ZINKOV

Vikash MANSINGHA
David WINGATE

listic
minc

Holzinger Group, hci-kdd.org 29 Machine Learning Health 06



Reasoning under uncertainty: Decision Making @ HCI-KDD -

= Take patient information, e.g., observations,
symptomes, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be ...
" Prior = belief before making a particular observation

= Postewjor = belief after making the observation and is
thie prioNor the next observation — intrinsically
Ingrementa

il — POYX)P(x) oy plyjlzi)plei)
PxXY) = =) plaily;) > plxi, y;)p(a;)

Holzinger Group, hci-kdd.org 30 Machine Learning Health 06



Learning representations (G h) from observed data @ HCI-KDD £

Observed data:

~Trainingdata: D — L1:m = {.5131,,%2, 56 a:n} X,y A,B, ..

Feature Parameter: () or hypothesis h heH

Prior belief ~ prior probability of hypothesis h: () p(h)
Likelihood =~ p(x) of the data that h is true p(D|0) p(dlh)

Data evidence ~ marginal p(x) that h = true p(D) h;H p(d|h) * p(h)
Posterior ~ p(x) of h after seen (“learn”) datad  p(4|D)  P(h|d)
posterior = “IL B g ) — PPIO) < 2(0)

D
p(h|d)= 2P ® p(D)

2heH p(d|h3)1 p(h)

Holzinger Group, hci-kdd.org Machine Learning Health 06



Probabilistic Programming Concept @ HCI-KDD

Inference

pX|&)p(0)

py|X)p(x)

Frank Wood, Jan-Willem Van De Meent & Vikash Mansinghka. A New Approach to
Probabilistic Programming Inference. AISTATS 2014, Reykjavik, IMLR, 1024-1032

Holzinger Group, hci-kdd.org 32 Machine Learning Health 06



Comparison

Define model

. 2

@ HCI-KDD +5-

Define model

Choose inference method

. 4

Derive algorithm by hand |

0

Implement algorithm
(e.g. Matlab)

!

Write model as
probabilistic program

L

. 4

Revise model/method

L

Re-implement algorithm
(e.g. C++/C#)

Image credit to John WINN (2010)

Holzinger Group, hci-kdd.org

Apply
inference engine

&

Revise model/
engine settings

Machine Learning Health 06




Probabilistic Programming Languages

@ HCI-KDD +£-

Image credit to
Frank Wood (2016)

Graphical Models

i 7
v Y
’
LA

Factor Graphs

oo 0l

Factorie Infer.NET

STATS

LibBi
STAN

JAGS

WinBUGS

BUGS

* 1940s: connecting wires to represent Os and 1s
* 1950s: assemblers, FORTRAN, COBOL, LISP

* 1960s: ALGOL, BCPL(->B -> C), SIMULA

* 1970s: Prolog, FP, ML, Miranda

BUGS STAN
Fls Al ML
. sl r%}gagitistic—c
Figaro Venture Anglican
2010 pansal
A, Chureh | cerNET
ProblLog Factorie
Blog
2000 IBAL
Prism KMP
1990
- o * 1980s: Eiffel, C++
muia rolog » 1990s: Haskell, Java, Python
ALGOL 60 Y

Holzinger Group, hci-kdd.org 34
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Some selected PPLs @ HCI-KDD %

= https://github.com/pymc-devs/pymc

= http://infernet.azurewebsites.net/

= http://mc-stan.org/
= https://github.com/p2t2/figaro
= https://sites.google.com/site/bloginference/

= http://projects.csail.mit.edu/church/wiki/Church

= http://factorie.cs.umass.edu/

= http://www.openbugs.net/w/FrontPage

= http://mcmc-jags.sourceforge.net/

Holzinger Group, hci-kdd.org 35 Machine Learning Health 06



Try out WebPPL (“web-people”) http://dippl.org

HCI-KDD £-

P B O [ = SR ) R R PR .

10

var obs = loadData('data.json’);

var guideNet = nn.mlp(1, [{nOut: 3, activation: nn.sigmoid}, {nOut: 2}],

var model = function() {

var
var
var
var

var mu_x = modelParam({{name: "mu_x'});
var sigma_x = softplus{modelParam({{name: 'sigma_x'1}));
var sigma_y = softplus{modelParam{{name: 'sigma_y'}));
var latents = mapData({data: obs}, function(y) {

var nnInput = Vector([v]);

var nndutput = nnEval(guideNet, nnInput);

var x = sample({Gaussian({mu: mu_x, sigma: sigma_x3}), {

guide: Gaussian({mu: T.get{nnOutput, 0},

sigma: softplus(T.get(nnOutput, 133}

1

observe(Gaussian({mu: x, sigma: sigma_y}), ¥J;
return {x: x};

1

return latents:

obs = loadData('data.json’);
nComps = 3;

guideNet = nn.mlp{1, [{nOut: 3, activation: nn.sigmoid}, {nOut: nComps-13}],

model = function(} {

var theta_x = simplex(modelParam({{dims: [nComps=-1, 1], name:

var params_y = [

{mu: modelParam{{name: ‘mul’'}), sigma: softplus(modelParam({name:
{mu: modelParam({{name: 'mu2'}), sigma: softplus(modelParam({name:
{mu: modelParam{{name: 'mul’}), sigma: softplus(modelParam({name:

i -

var latents = mapData({data: obs}, function(y) {
var nnInput = Vector([y1);
var nndutput = nnEval (guideMNet, nnInput):

var x = sample(Discrete({ps: theta_x}), {
guide: Discrete(simplex(nnOutput))
1)
observe (Gaussian(params_y[x]1), ¥);:
return {x: x};
b,

return latents:

"guideMet’);

*theta_x'}));

's1'31)1,
's2° 13},
's3°1)}

qﬁ- i

(.i}___

Inference for Probabilistic Programs. arXiv:1610.05735.
Holzinger Group, hci-kdd.org 36

'guideNet');

Daniel Ritchie, Paul Horsfall & Noah D Goodman 2016. Deep Amortized
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Remember: directed graphical model @ HCI-KDD -

Diederik P Kingma & Max Welling 2013. Auto-
encoding variational Bayes. arXiv:1312.6114
(1983 citations as of 13.05.2018 07:00)

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section [2.3|can be used. We use settings M/ = 100 and L = 1 in experiments.

6, ¢ < Initialize parameters

repeat
XM + Random minibatch of M datapoints (drawn from full dataset)

€ <+ Random samples from noise distribution p(€)

g — VQ@EM(Q, ¢; XM €) (Gradients of minibatch estimator (8))

0, ¢ «+ Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (8, ¢)
return 6, ¢

Holzinger Group, hci-kdd.org 37 Machine Learning Health 06



Explainability gets increasingly important ...

@ HCI-KDD %

Deep Probabilistic Programming Languages: A Qualitative Study

Guillaume Baudart
IBM Research
guillaume.baudart@ibm.com

ABSTRACT

Deep probabilistic programming languages try to combine the ad-
vantages of deep learning with those of probabilistic programming
languages. If successful, this would be a big step forward in ma-
hine learning and programming languages. Unfortunately, as of
now, this new crop of languages is hard to use and understand. This
paper addresses this problem directly by explaining deep proba-
bilistic programming languages and indirectly by characterizing
their current strengths and weaknesses.

CCS CONCEPTS

heory of computation — Probabilistic computation;
Computing methodologies — Neural networks;

+ Software and its engineering — Domain specific languages;

17 Apr 2018

KEYWORDS
DL, PPL, DSL

1 INTRODUCTION

A deep probabilistic programming language (PPL) is a language
for specifying both deep neural networks and probabilistic models.
In other words, a deep PPL draws upon programming languages,

<
o)
Q
—_
—
>

Holzinger Group, hci-kdd.org 38

Martin Hirzel
IBM Research
hirzel@us.ibm.com

Louis Mandel
IBM Research
Imandel@us.ibm.com

These frameworks provide automatic differentiation (users need not
manually calculate gradients for gradient descent), GPU support
(to efficiently execute vectorized computations), and Python-based
embedded domain-specific languages [18].

Deep PPLs, which have emerged just recently [29-32], aim to
combine the benefits of PPLs and DL. Ideally, programs in deep
PPLs would overtly represent uncertainty, yield explainable models,
and require only a small amount of training data; be easy to write
in a well-designed programming language; and match the break-
through accuracy and fast training times of DL. Realizing all of
these promises would yield tremendous advantages. Unfortunately,
this is hard to achieve. Some of the strengths of PPLs and DL are
seemingly at odds, such as explainability vs. automated feature
engineering, or learning from small data vs. optimizing for large
data. Furthermore, the barrier to entry for work in deep PPLs is
high, since it requires non-trivial background in fields as diverse
as statistics, programming languages, and deep learning. To tackle
this problem, this paper characterizes deep PPLs, thus lowering the
barrier to entry, providing a programming-languages perspective
early when it can make a difference, and shining a light on gaps
that the community should try to address.

This paper uses the Stan PPL as a representative of the state of
the art in regular (not deep) PPLs [9]. Stan is a main-stream, mature,

1T ~

Machine Learning Health 06



Explainable Al via Bayes:  Pr(z|0) « Pr(0|z) @ HCI-KDD s

Training data Full corpus Selected Teaching
examples y examples
Bayesian L FT L]
teaching -
: Train model Teach model
Learning model with corpus with examples Model structure
@ Target model Learner
O O Match with O
¥ ... [[hichpob @

o O

Supervised learning ; ) .

x examples and labels ‘ """

© parameters, boundaries

Unsupervised learning User selects substructure of interest

X examples

© latent structures

Reinf t learni . . .

ntlomsscvarvations. enis Scott Cheng-Hsin Yang & Patrick Shafto 2017. Explainable

© learned policy & world model Artificial Intelligence via Bayesian Teaching. NIPS 2017

Deep learning Workshop Machine Teaching. Long Beach (CA).

X training examples

© network weights rg 39 Machine Learning Health 06



What are people doing with PPL

@ HCI-KDD +5-

program source code
scene description
policy and world
cognitive process

simulation

------------------------------------------------------------------------------------

program output
Image
rewards
pbehavior

constraint

Holzinger Group, hci-kdd.org
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Image credit to Frank Wood (2016)
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Image Interpretation @ HCI-KDD -

Approximate Bayesian Image Interpretation using
Generative Probabilistic Graphics Programs

Vikash K. Mansinghka® ', Tejas D. Kulkarni® "2, Yura N. Perov'™*, and Joshua B. Tenenbaum'-

’Cumla-uter Science and Artificial Intelligence Laboratory, MIT
“Department of Brain and Cognitive Sciences, MIT
*Institute of Mathematics and Computer Science, Siberian Federal University

Abstract

The idea of computer vision as the Bayesian inverse problem to computer graphics
has a long history and an appealing elegance, but it has proved difficult o directly
implement. Instead, most vision tasks are approached via complex bottom-up
processing pipelines. Here we show that it is possible to write short, simple prob-
abihstic graphics programs that define flexible generative models and to automati-
cally invert them to interpret real-world images. Generative probabilistic graphics
programs (GPGP) consist of a stochastic scene generator, a renderer based on
graphics software, a stochastic likelihood model linking the renderer’s output and
the data, and latent vanables that adjust the hdelity of the renderer and the toler-
ance of the hkelihood. Representations and algorithms from computer graphics
are used as the determinisiic backbone for highly approximate and stochastic gen-
erative models. This formulation combines probabilistic programming, computer
graphics, and approximate Bayesian computation, and depends only on general-
purpose, automatic inference techniques. We descnibe two applications: read-
ing sequences of degraded and adversarially obscured characters, and inferring
. . 3D road models from vehicle-mounted camera images. Each of the probabilistic
Holzinger Group, hci-kdd.org graphics programs we present relies on under 20 lines of probabilistic code, and

Welling, Max, Ghahramani, Zhoubin & Weinberger, Kilian
Q., eds. Advances in Neural Information Processing

interpretation using generative probabilistic graphics
programs. In: Burges, Christopher J. C., Bottou, Leon,
Systems, 2013 Lake Tahoe. NIPS, 1520-1528.

Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov &

Josh Tenenbaum. Approximate Bayesian image



B Scene Description -> Image @ HCI-KDD s

P(S|Ip) o fP{S)P(X)‘Sf(s,x)(IR)P(IDURaX)dX

X y

A Input Image Intermediate lterations Final Inferred Image
Stochastic
Scene Generator e es gV Dy ( nMm 1W
X~ P(X) l S ~ P(S) ' ‘ :
\ Approximate vl -

Renderer

Data Ipmemapp| ~ Stochastic g pq, 1, X)

Comparison

Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov & Josh Tenenbaum. Approximate Bayesian image
interpretation using generative probabilistic graphics programs. In: Burges, Christopher J. C., Bottou, Leon, Welling,
Max, Ghahramani, Zhoubin & Weinberger, Kilian Q., eds. Advances in Neural Information Processing Systems, 2013
Lake Tahoe. NIPS, 1520-1528.
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Another Example

@ HCI-KDD +£-

(a) Scene
Language Representation Layer
l Scene S” e.g. Deep Neural Net,
Contours, Skeletons, Pixels
Approximate ; () ~ |Observed
Renderer Ip I| Image
7 v(Ig) | |vin)
P
Rendering Likelihood or Likelihood-free
Tolerance Comparator
P(Ip|Ig,X)
or
A(v(Ip), v(Ir))
) Inference Engine
Given Automatically . ar((87,X%) = (5. X"7))
current produces g g'p New
(qp X"J) MGMC, HMC, — ‘;"hmc[- ::a! 4 :fga) —."{Srp X"'G)
ol y Elliptical Slice, 7 9stice(Srear —+ Sreat) ’
an Data-driven > i
: Aia((SP, XP) = (S0, X'°
image I p ol g Gdatal( )= ( ))
T 99 144
Random :

AR
vt

3D human-pose
program

= & B2%
PG 14

probabilistic
programs
3D Face 3D object
program program

function PROGRAM (MU, PC, EV, VERTEX_ORDER)
# Scene Language: Stochastic Scene Gen
face=Dict () ;jshape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)

face[S] [p] = MU[S] [p]+PC[S] [p].x*(coeff.«EV[S] [p])
end
end
shape=face["shape"][:]; tex=face["texture"][:];

camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)

# Approximate Renderer
rendered_img= MeshRenderer (shape, tex, light, camera)

# Representation Layer
ren_ftrs = getFeatures ("CNN_Conve", rendered_img)

# Comparator
#Using Pixel as Summary Statisties
observe (MvNormal (0,0.01), rendered_img-obs_img)
#Using CNN last conv layer as Summary Statistics
observe (MvNormal (0, 10), ren_ ftrs—-obs_ cnn)

end

global obs_img = imread("test.png")

global obs_cnn = getFeatures ("CNN_Convé", img)
#Load args from file

TR = trace (PROGRAM, args=[MU, PC, EV, VERTEX_ORDER])
# Data-Driven Learning
learn_datadriven_ proposals (TR, 100000, "CNN_Convé")
load proposals (TR)

# Inference

infer (TR,CB, 20, ["DATA-DRIVEN"])

infer (TR,CB, 200, ["ELLIPTICAL"])

Kulkarni, Kohli, Tenenbaum & Mansinghka. Picture: A probabilistic programming language for scene perception.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 4390-4399.
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Probabilistic Program for Inference @ HCI-KDD %

X y

Inferred model Inferred model
OII:ns;zrv:d (rec:::lf:trrrl.?:tion) re-rendered with re-rendered with
g novel poses novel lighting

&
©
%
<

X
&
vt
©

Kulkarni, Kohli, Tenenbaum & Mansinghka. Picture: A probabilistic programming language for scene perception.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 4390-4399.
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Topic modelling — small topic but hot topic in ML @ HCI-KDD £

/ e
TOPIC

MODELING

PROBABILISTIC
MODELING

STATISTICS
MACHINE LEARNING
DATA SCIENCE

Holzinger Group, hci-kdd.org 46 Machine Learning Health 06



>
S>

<PARA CONTENT="Co

STATUS=" Pres

<TITLE>Paragraph €
<CONTENT> Textual ¢

</PARA>

<PARA CONT="Text"

see examples of

STAL

110 CU0 JNE DOLD ON o

<PTITLE>MOTIF D®HO™ F.Maler, Bild 1 (0001)Ststus. A

[ Aktive Foider

! A

L 1

16 x

Symbol

Begnden

j_?f 1 Wsw02bv1001imedoc

</PTITLE> ¢ 2 X QN W rogmens
</PARA> Datere _Cesa oot .
<PARA CONT="Text" ST | |
<PTITLE>ANTECEDE ' : o
</PTITLE> (N0 i < s
PARA> 3 -
N | aF e 20 Mty Deieted st R
EONT sinust 545 D Patesttis aaOilerte, chreeiah (o Te e e
.
o P — —— D ¢
Info
) ardeare oy Seresturgiten k|
«
Dal2 e | @l .26 eBracs [Ennsm | Lobor [ 2Fad | @ Diskedo |
Datum |zsit |oE | Kurzbez. | wma | _status |
s Eeas——— 17 111053
2010018065 ambulanter Fall 13.01.2010 MKKARDIO MK KardioAmb il
< 1 Leistungen (KAL, RAD, Therap
[ EKOG (12 Ableitungen) 13012010 0800 MKKARDIO MK KardioAmb DUSLTIMO OK '*
[® RR-Intervall- Untersuchung 13.01.2010 0800 MKKARDIO MK KardicAmb  DUSLTIMO oK
[ schritmacherkontrolle  12.01.2010 02:00 MKKARDIO MK KardicAmb  DUSLTIMO oK -
< 2010002187 ambulanter Fall 04.01.2010 CKTRANSF CK Transpl. Vi
b (1 Diagnosen Gesamt ( 3)
@ 2009484985 stationarer Fall 20122009 MEDANGIO Med Angio
D 1 Diagnosen Gesamt (14)
¥ (1 Leistungen (KAL, RAD, Therap
[ Becken-u. Beinarteriografie 22122008 16:36 RKVIRADB RKVIRaum B  STANMELI OK PTA
B Laumandergometer 21122008 0830 MKANGIO MKAngioAmb SPARANDR oK
[® Erstuntersuchung/Stalus 21122009 0830 MKANGIO MKAngioAmb  SPARANDR oK
o 2009453621 stationarer Fall 17.11.2009 CKTXIMC CKTXIMC
P ) Diagnosen Gesamt(12)
= ] Leistungen (MEL) ( 2)
[ Physioth. | R 1 stal Aufentn 23.11.2008 0805 CKPHYSIO CK Physio BEIMWALT oK
@ organbiop., Bildwandlerge; 17.11.2009 0812 CKTXOP CKTXOP SCHWMICH oK Organblopsie - Bilawandiel
B L Leistungen (KAL, RAD. Therap
< 2008431136 ambulanter Fall 28.10.2009 MKKARDIO MK KardioAmb
< (1 Leistungen (KAL, RAD, Therap
[® schritmacherkontrolle  29.10.2008 0915 MKKARDIO MK KardioAmb  DUSLTIMO oK
@ RR-Intervall- Untersushung 29.10.2000 09015 MISARDIO MK KardioAmb  DUSLTIMO oK
® (12 Ableitungen) 29102009 0915 MKKARDIO MK KardioAmb DUSLTIMO oK

Yideoc 29.10.2009

@ (3 Leistungen (KAL, RAD, Therap
D Fotodokumaentation, Videoc 29.04.2009
[ EKG (12 Ableitungen) 29.04.2009
[ RR-Intervall-Untersuchung 29.04.2009
[ Schritmacherkontrolle | 29.04.2009
[ EKOG (12 Ableitungen) 23.04.2009
D RR-Intervall-Untersuchung 23.04.2009
[ wonsil FA 21.04.2009
[ Befunde (sehrifl. Erstellung 21.04.2009

Holzinger Group, hci-kdd.org

0849
0849
0849
0848
1043
1043
10:22
10:22

MIKARDIO MIC I
MEKARDIO MK Kardid
MKKARDIO MK KardioAmb
MKKARDIO MK KardioAmb
MKIKARDIO MK KardioAmb
MIKKARDIO MK KardioAmb
NKKONS  NKFA Konsil

NKKONS  INK FA Konsil

DUSLTIMO OK

PITTHEID OK
PITTHEID OK
PITTHEID oK
KOBEINGR OK
KOBEINGR oK
LANNMICH OK
LANNMICH OK

47

74 .
" N ‘
‘ d Wb %0505||523468
\ " Foe
4 - CE D 5B
2 Uma Loschar
P,
L
% Frequng b
0. 1 0.12% 05 4 125
025 0] 18 025 orq 15 10|16
0 0 — g I 0 q
10f—4— =2 10
Fl 20
»
1 B %
€
L)
70
80
0
100 C
[ySre———
10 B tuponn 2 o1 02
120 F B by e T4 1 O
3 =l (=] LS 875 AP
H 00e LN®
nizer
495
194995 -
2009494905 W, Bemd. 01.07. 5568 Johanres- KM —_—
008494995 Autm 7011 2001 0470 Duzseisont (")
2008453621
2009453621
7 ) Duaprasen (1)
resteroensrcten @ 5W151 A oesn. 14113061 1336 O 100135
AERLALY @Pm e 71112000 1910 1 2 - 100155
2009431138
2000431138 WEC_E Langoes £50, Lurg. 160135
2000431138 o000 » Vokakega 100198
009431136 100155 =
b B s
Y"
=
X
0_E
O K
21912081 1918 MEO_EWD 100158
20091876546
2009187546
2008187546
2009187548
2008187546 i 0000
2009187546 5
2000187546

v
| e patrte Bt oo | QU LT e

2000187546 D0 | apretorcontosier 50| aptst-woitarst, 53| oF 549 Logon w0

Machine Learning Health 06



D2 [se|BllBz]]| 2| 2|6 || Sracs | @ pidsenden | Labor

| Fal | @ Disledo |

|Datum  |Zeit |OE | Kurzbez. | VA | Staws | Kiass. |erg. Bez | Dokum... | Fall
] eem— 17.11.1953 Ea e e
<@ 2010018065 ambulanter Fall13.01.2010 MKKARDIO MK KardioAmb
< (] Leistungen (KAL, RAD, Therap
@ EKG (12 Ableitungen) 13.01.2010 08:00 MKKARDIO MK KardioAmb DUSLTIMO OK 2010018065
@ RR-Intervall-Untersuchung 13.01.2010 08:00 MKKARDIO MK KardioAmb DUSLTIMO OK 2010018065
@ Schrittmacherkontrolle 13.01.2010 08:00 MKKARDIO MK KardioAmb DUSLTIMO OK 2010018065
g 2010002197 ambulanter Fall04.01.2010 CKTRANSF CK Transpl.
D ) Diagnosen Gesamt( 3)
2 2009494995 stationarer Fall 20.12.2009 MEDANGIO Med Angio
> [ Diagnosen Gesamt(14)
<2 (] Leistungen (KAL, RAD, Therap
@ Becken-u. Beinarteriografie 22.12.2009 16:36 RKVIRADB RKVIRaumB  STANMELI (0174 PTA % 2009494995
[& Lauthandergometer 21.12.2009 08:30 MKANGIO MKAngioAmb SPARANDR OK 2009494995
m ErstuntersuchungfStatus 21.12.2009 08:30 MKANGIO MKAngioAmb  SPARANDR OK 2009494995
< 2009453621 stationarer Fall 17.11.2009 CKTAIMC CKTXIMC
> 1 Diagnosen Gesamt(12)
< [ Leistungen (MEL) ( 2)
@. Physioth. i.R.1 stat. Aufenth 23.11.2009 08:05 CKPHYSIO CK Physio BEITWALT OK 2009453621
[ Organbiop., Bildwandlerge;17.11.2009 08:12 CKTXOP CKTXOP SCHWMICH OK Organbiopsie - Bildwandlel 2009453621
D [ Leistungen (KAL, RAD, Therap
@ 2009431136 ambulanter Fall 29.10.2009 MKKARDIO MK KardioAmb
< (] Leistungen (KAL, RAD, Therap
@ Schrittmacherkontrolle 2910.2009 09:15 MKKARDIO MK KardioAmb DUSLTIMO oK 2009431136
@ RR-Intervall-Untersuchung 29.10.2009 09:15 MKKARDIO MK KardioAmb DUSLTIMO OK 2009431136
@ EKG (12 Ableitungen) 29.10.2009 09:15 MKKARDIO MK KardioAmb DUSLTIMO OK 2009431136
@ Fotodokumentation, Videoc 29.10.2009 09:15 MKKARDIO MK KardiocAmb DUSLTIMO 0K 2009431136
4 2009378733 ambulanter Fall 16.09.2009 MKNEPHR(MK NephroAmb
D () Diagnosen Gesamt( 8)
< ] Leistungen (KAL, RAD, Therap
[ Blutdruck: Langzeit (24 Stur17.09.2009 10:59 MKNEPHR(MK NephroAmb RUDRHELM OK ab 2009378733
[& Blutdruck: Langzeit (24 Stur16.09.2009 12:02 MKNEPHR(MK NephroAmb RUDRHELM OK an 2009378733
< 2009187546 stationarer Fall 21.04.2009 CKGMIU CKGM IU
D ) Diagnosen Gesamt( 5)
< {3 Leistungen (KAL, RAD, Therap
@ Fotodokumentation, Videoc 29.04.2009 08:49 MKKARDIO MK KardioAmb PITTHEID OK 2009187546
@ EKG (12 Ableitungen) 29.04.2009 08:49 MKKARDIO MK KardioAmb PITTHEID OK 2009187546
[ RR-Intervall-Untersuchung 29.04.2008 08:49 MKKARDIO MK KardioAmb  PITTHEID OK 2009187546
[ Schrittmacherkontrolle 29.04.2009 08:43 MKKARDIO MK KardioAmb PITTHEID OK 2008187546
@ EKG (12 Ableitungen) 23.04.2009 10:43 MKKARDIO MK KardiocAmb KOBEINGR OK 2009187546
@ RR-Intervall-Untersuchung 23.04.2009 10:43 MKKARDIO MK KardioAmbh KOBEINGR OK 2009187546
m Konsil FA 21.04.2009 10:22 NKKONS NKFA Konsil LANNMICH OK 2009187546



1\ @ HCI-KDD -

Biomedical R&D data Clinical patient data
(e.g. clinical trial data) (e.g. EPR, lab, reports etc.)
The combining link is text
Health business data Private patient data
(e.g. costs, utilization, etc.) (e.g. AAL, monitoring, etc.)

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next
frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.
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Salton, Wong, Yang, Cornell University 1975

Information Retrieval C.A. Montgomery
and Language Processing Editor

A Vector Space Model
for Automatic Indexing

G. Salton, A. Wong
and C. S. Yang
Cornell University

In a document retrieval, or other pattern matching
environment where stored entities (documents) are
compared with each other or with incoming patterns
(search requests), it appears that the best indexing
(property) space is one where each entity lies as far away
from the others as possible; in these circumstances the
value of an indexing system may be expressible as a
function of the density of the object space; in parficular,
retrieval performance may correlate inversely with space
density. An approach based on space density computations
is used to choose an optimum indexing vocabulary for a
collection of documents. Typical evaluation results are
shown, demonstating the usefulness of the model.

Key Words and Phrases: automatic information
retrieval, automatic indexing, content analysis, document
space

CR Categories: 3.71, 3.73, 3.74, 3.75

Holzinger Group, hci-kdd.org

1. Document Space Configurations

Consider a document space consisting of documents
D, , each identified by one or more index terms T;;
the terms may be weighted according to their im-
portance, or unweighted with weights restricted to 0
and 1. A typical three-dimensional index space is
shown in Figure 1, where each item is identified by up to
three distinct terms. The three-dimensional example
may be extended to ¢ dimensions when ¢ different
index terms are present. In that case, each document
D; is represented by a r-dimensional vector

D; - (dx,l; di!!, R R d“)]

d;; representing the weight of the jth term.

Given the index vectors for two documents, it is
possible to compute a similarity coefficient between
them, s(D;, D;), which reflects the degree of similarity
in the corresponding terms and term weights. Such a
similarity measure might be the inner product of the
two vectors, or alternatively an inverse function of the
angle between the corresponding vector pairs; when the
term assignment for two vectors is identical, the angle
will be zero, producing a maximum similarity measure.

Instead of identifying each document by a complete
vector originating at the O-point in the coordinate sys-
tem, the relative distance between the vectors is pre-
served by normalizing all vector lengths to one, and
considering the projection of the vectors onto the en-
velope of the space represented by the unit sphere. In
that case, each document may be depicted by a single

50 Machine Learning Health 06
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Vector representation of document space

@ HCI-KDD £~

F = iis(ﬂirﬂﬂ

tm=l j=1

17

\] Groups of Relevant Items

x Individual Documents

Gerard M. Salton, Andrew Wong & Chungshu S.
Yang 1975. Vector-Space Model for automatic
indexing. Communications of the ACM, 18, (11),
613-620, do0i:10.1145/361219.361220.

Holzinger Group, hci-kdd.org
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@ Cluster Centroid

B Main centroid
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@ HCI-KDD +£-

Table 1. Effect of Performance Change on Space Density

(a) Effect of performance improvement on
space density

(b) Effect of performance deterioration on
space density

Cluster organization A Cluster organization B Cluster organization A Cluster organization B
(155 clusters;

2.1 overlap)

(83 clusters;
1.3 overlap)

(155 clusters;
2.1 overlap)

(83 clusters;
1.3 overlap)

Term Term Term Term
Standard  frequency Standard frequency Standard frequency Standard frequency
term with term with term with term with
frequency inverse frequency inverse frequency document frequency document
weights doc. freq. weights doc. freq. weights frequency weights frequency
Type of indexing (fi%) (fi¥- IDFy) (fi%) (f*IDF)  (f%) (fi*-DFy) (%) (fi*-DFy)
Recall-precision output* - +149%, - +149%, —_ —10.1% — —10.1%
Average similarity between
documents and correspond- 712 668 .650 .589 712 141 .650 .696
ing cluster centeroids (x) (—.044) (—.061) (+4.029) (4 .046)
Average similarity between
cluster centroids and . 500 .454 537 .492 . 500 .555 .537 .574
main centroid (—.046) (—.045) (+.055) (+.037)
Average similarity between
pairs of cluster 273 .209 315 252 273 .329 315 362
centroids (y) (—.046) (—.063) (+.056) (+.047)
Ratio y/x 273/.712 .209/.668  .315/.650  .252/.589  .273/.712  .329/.741 .315/.650 .362/.696
= ,383 = .318 = .485 = .428 = ,383 = , = .485 = 520
(—19%) (—12%) (+16%) (+7%)
* From [2].

Gerard M. Salton, Andrew Wong & Chungshu S. Yang 1975. Vector-Space Model for automatic

indexing. Communications of the ACM, 18, (11), 613-620, doi:10.1145/361219.361220.

Holzinger Group, hci-kdd.org
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Example (1) @ HCI-KDD -

» D=(dq, d,, ... d,)
u di =t1, tz, tk

Lt 01101 .. 1)
Wi,j_o’ tz% dje‘i—(,,”’."’)
( N .
g = (1+1logfi;) *log -, if fi; >0
\ 0 otherwise
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Example (2)

Q@ HCI-KDD +£-
Wia Wi o Wi W)
Wog oo Wy n=1 Waon
D =% & L
“’1;?;'—1.1 L(l;m—l.i H;m—l.ﬁ' H:m—].ﬁ
H}m " | H’!m 2 i H’!m m—1 w!;fr.ﬂr
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Example (3) G HCI-KDD %

leber

verdacht
> -

hepatitis
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Vector Space Model @ HCI-KDD -

leber A
q.d;
cos(¢) =
e
< ‘ verdacht
// s |
@7
hepatitis Salton, G., Wong, A. & Yang, C. S. 1975.

Vector-Space Model for automatic

indexing. Communications of the ACM, 18,
(11), 613-620.

Holzinger Group, hci-kdd.org 56 Machine Learning Health 06



Geometry of Topic Models

@ HCI-KDD %

P(wordl)

@ = topic

O = observed
document

® = generated
document

9!
2
1 O
0 o
L @) >
L' P(word2)
P(word3)

Documents =
categorical
distributions over a
large space of
predefined vocabulary

Topics = categorical
distributions

Generative model =
each document can be
seen as a convex
combination of the
topic distributions

Teh, Y. W, Jordan, M. I, Beal, M. J. & Blei, D. M. 2006. Hierarchical dirichlet
processes. Journal of the american statistical association, 101, (476), 1566-1581.
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Generative statistical model for natural language @ HCI-KDD o

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

How many genes does anBEEIRBM necd to comparison to the 75,000 genes in the hu

supvive! Last week ar the senome meeting man genome, notes Siv Andersson of Uppsala

B here, ™ two genome researchers with radically University in Sweden, who arrived ar the
different approaches presented complemen- 800 number. But coming up with o consen

tary views of the hasic genes needed forllf®  sus answer may be more than just a cenetic
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.\\\\‘. S¢s [0 '\-l-""][‘ e kl]l‘\L n genomes, Cu ‘nl.'nl\\l\'\i more genames are L\‘l'I'IPLL[L'l'l' l'l].l]‘["L‘.l "H'IL]

that today"s BEEIENE can be sustained with sequenced. “Ie may be 3 way of organizing
just 230 genes, and that the earliest life forms ny newly s le\'-."- d genome,” explains

required a mere 128 genes. The Arcady Mus an, a computational ma
other rescarcher o ey | gene P ™ lecular biologist at the National Center
ina IIllll wirastte and est P A for Biotechnology Information (NCBIY
| Hasmophitus \ o .
mated that for this organism, | ganoma in Bethesda, Maryland. Comparing an
1 1703 {
300 genes are || nty todothe | e ;
- 15 11 F
i
1 N
gene 501

o l—lml]nr anything short  \

[I E = L of 100 wouldn't be enougl \
J‘hlr C n nough. H\\

M Althoug hllunnmlu
lil‘l[\.'ll Fl\'l'l\'&.‘\\., Th\‘ 1|\ Lo
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S — S ‘\\m e v
* Genome Mapping and Sequenc- —
ing, Gold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12, mate of the minimum modern and ancient genomes

SCIENCE » VOL, 272 = 24 MAY 1996

Given the parameters a and (3, the joint distribution of a
topic mixture 0, a set of N topics z, and a set of N words w

is given by: N
p(0,z,w|o,B) = p(6|o) H (zn|8)p(Wn | 20, B)

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation.
The Journal of machine Learning research, 3, 993-1022.
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Motivation: to get insight into unknown document sets @HcI-kpp +%-
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avidence wark ' k i wordswerth
language make draaria i
fact text never mind
reading 1 L philosophy
way Y
e . thought
reality man
nietzsche nature
science
natural

http://agoldst.github.io/dfr-browser/demo/#/model/scaled

Holzinger Group, hci-kdd.org 59 Machine Learning Health 06



Example from Bioinformatics

@ HCI-KDD %

A

Functional module 1

FD-I

N 2
FD-E H@Q
FD-J "’”’Dr:*'\
FD-K

Protein complex

B

Hidden generative process

Functional module 1

1

0

Topic 1

Functional module 2 i

1

/ \

/ X

Functional module 2
P(FD)
Enzyme 1 Enzyme 2 Enzyme 3 Enzyme 4
FD-A FD-X FD-W FD-P
A - O - O e - O
o Educt Product
Topic 1 =
Metabolic pathway P(wld;) = E P(w|t;) - P(t;1d;)
i=1
R 9 ———— a5
FD-A FD-I FD-E FD-A FD-I FD-E Statistical inference
Genome
FD-Z FD-J FD-K Genome ; 7 ED- g
0 annotation 1 annotation 1 | FD-ZFD-J FDK \
FD-A FD-E FD-B FD-A FD-E FD-B
s N
& FD-E FD-A FD-X FD-E FD-A FD-X / fPote._-mal
G Genome 7 unctional
I o annotation 2 . module 1
FD-J FD-P FD-K | annotation 2 FD-J FD-P FDK | V|
5
FD-W FD-A FD-I FD-W FD-A FD-I
— e,
FD-A FD-W FD-X . —_— FD-A FD-W FD-X
0 endms tation 3 Potential
FD-W FDV FD-p | annotation 3 Amoston= | row oV P functional
module 2

Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring functional modules of protein
families with probabilistic topic models. BMC bioinformatics, 12, (1), 1.
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Eval. scheme for inferred potential functional modules  @Hci-kpp 4

©® .9 @ .= A N
) .. S @®" SR A |
_ '”" Konietzny, S. G., Dietz, L. & Mchardy, A. C. 2011. Inferring

functional modules of protein families with probabilistic

topic models. BMC bioinformatics, 12, (1), 1. ) _
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Generative Probabilistic Model @ HCI-KDD o

Goal: to get insight in unknown document collections
See a nice demo http://agoldst.github.io/dfr-browser/demo/#/model/grid

Eac
ano

Holzinger Group, hci-kdd.org

Topics

gene 0.84
dna .82
genetic 0.81

—

life 0.02
evolve 0.01
organism 0.61

data 0.82
number  0.82
computer 0.01

EEE

f

Topic proportions and

Documents .
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— “are not all that far apart,” especially in
How many genes does an OFganism nggd 1o comparison w the 75,000 genes in the hu

survive? Last week ar the genome meeling e, notes Siv Anderssop ST
here,* rwo genome rescarchers with radically University in -
different approaches presented complemen- | 500 ~ But coming up with @ €O

tary views of the basic genes needed for lifer

sus answer may be more than jusr ag

lel\' [L'-‘l.vl'l'l.h Lo, us omputer -II'lil.‘\." n II',I‘I.'I"‘ P

S5 [0 campare: L'Ihi‘ﬂ’l\ g

n

\'-\II'I\',ll,J\!\.'\] IS SEMOIICs A i

that today's Grganisms can be sustained with sequenced. *Tt may be a way of nrgantzime

just 250 genes, and that the earliest life forms any newly sequence cme,” explains
required a mere 128 genes. The e Arcady Mushegian, a compurational mo
P - .

other researcher mapped senes -
in a simple parasite and esti I,r"
mated that for this organism, |
800 genes are plenty to do the !'
jub—hut that anything short
of 100 wouldn't be enough.
Although the numbers don't
match precisely, those predictions

ADRFTED FROM NGB

Angenes bl
_,
" Genome Mapping and Sequenc- e ot
ing, Cold Spring Harbor, New York, Stripping down, Computer analysis yields an esti-
May 8 10 12. mate of the minimum modam and ancient genomes.

SCIENCE » WOL. 277 = 24 MAY 1995

—_—

n doc is a random mix of corpus-wide topics
each word is drawn from one of these topics
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TU

WIEN

HCI-KDD £-

Topics

Documents

Topic proportions and
assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
Haow masny genes does an organism |t
survive! Last week at the genome meeting
here,* two genome researchers with eadic :|||‘_.'
different approaches presented complemen-
tary views of the hasic genes needed for Lif&

Ohne research ream, using compurer analy

ses to compare kiown genomes, concluded
that roday’s arganisms can be sustamed with
Just 250 penes, and char the earliest life forms

required o mere 128 senes. The Lo
2

ather researcher mapped genes 7
in a simple parasite and esti-
mared thar for this OFrAnIsm,
S0 genes are plenty todo the
jub—hbur that anything short
of 100 wouldn't he enough.
Although the numbers don't
match precisely, those predicrions

—

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May B 1o 12,

SCIENCE = VOL. 272 = 24 MAY 1996

Stripping down. Computer analysis yields an esti-
mate of the minimum medern and ancient genomes.

“are not all that far apare,” especially in
comparison ta the 75,000 penes igghe hu
-

er. But coming up with a consers

sequenced. “le may be a way of organizn
any newly sequenced genome,” explains
Arcady Musheman, a computational mo

oty -
a0 al Center

TLAT s ppoles =i _'\|1.||;r_~ - Q5]
P , -

University in_Susee “m

IR,

DAFTED FROM N

J

We only observe the docs — the other structure is
hidden; then we compute the posterior p(t,p,a|docs)
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Output Example: 4 learned topics (credit to Blei, 2008)

@ HCI-KDD +£-

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

Holzinger Group, hci-kdd.org

evolution
evolutionary
specles
Organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

64

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

Columns sorte
probability
word given tc

D. Blei
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LDA is an example for a probabilistic graphical model @ HCI-KDD -

Proportions
parameter

Per-document

|

Per-word
topic assignment

Observed

topic proportions word

.

Topic
parameter
Topics

o——{é}}»@—»@«

Zd.n Wd .n

N

D

04_
P

K

=

" Encodes assumptions on data with a factorization of the joint
= Connects assumptions to algorithms for computing with data
= Defines the posterior (through the joint)

Holzinger Group, hci-kdd.org
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Posterior inference @ HCI-KDD +£

o—ag}»o—’o« ?«—4

=

p(B,0,z,w)
Jg Jo 2. P(B. 0,2, W)

We can’t compute the denominator, the marginal
p (w), therefore we use approximate inference;

However, this do not scale well ...

pp,0.z|w) =
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For “big data” stochastic variational inference @ HCI-KDD :%-

GLOBAL HIDDEN STRUCTURE
MASSIVE

DATA oI,
/ A

;
’ N
-

S
’ [N

’ \\

¥ ¥

Subsample \ =[ Infer local \ :/ Update global
data ] K structure } structure
O O ® O
L) ® O

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Stochastic variational inference

@ HCI-KDD +£-

1: Initialize A" randomly.

2. Set the step-size schedule py appropriately.

3: repeat

4:  Sample a document wy uniformly from the data set.
5. Initialize vy = 1, fork € {1,..., K.

6 repeat

7 Forne {1,...,N} set

S  xp {Eflog fas] + E[log B, ]} . k € {1

Setyg=a+ . din
. until local parameters ¢4, and 4 converge.
10: Forke{l,..., K'} set intermediate topics
-

5 k
Ap=a+d Z Pein Weln +

=1

1: Set A = (1 — p)Alt-D 4 p A,
until forever

=
(B

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Stochastic variational inference in LDA @ HCI-KDD -

Yd | Pd.n Ak

T| T I
OO~ @—HOe
07 | Zdn Wdn - Bk ]

D K

1. Sample a document
Estimate the local variational parameters using the current topics

Form intermediate topics from those local parameters

W Ie

Update topics as a weighted average of intermediate and current topics

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Approximate inference can be difficult to achieve

KNOWLEDGE

£

Make assumptions

Discover patterns

Predict & Explore

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.

Holzinger Group, hci-kdd.org
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B Black Box Approach G HCI-KDD -

REUSABLE MASSIVE
VARIATIONAL DATA
FAMILIES

ANY MODEL

BLACK BOX p(p.z|x)
(P VARIATIONAL

INFERENCE

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. 2013. Stochastic variational
inference. The Journal of Machine Learning Research, 14, (1), 1303-1347.
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Conclusion: What is needed ... @ HCI-KDD -

" Flexible and expressive components for building
models

" Scalable and generic inference algorithms

" Easy to use software to stretch probabilistic
modeling into the health domain

= Topic models are only one approach towards
detection of topics in text collections

" More general: ldentify re-occurring patterns in
data collections generally ...

= Much open work for you in the future ©
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Please look at some toolkits @ HCI-KDD -

e Particular topic models

» Stanford topic model toolbox
http://nlp.stanford.edu/software/tmt

» Topic modeling at Princeton
http://www.cs.princeton.edu/"blei/topicmodeling.htm|

» MALLET (Java) http://mallet.cs.umass.edu

» Network topic models: Bayes-stack
https://github.com /bgamari/bayes-stack

» Gensim (Python) http://radimrehurek.com/gensim/

» R package for Topic models. http://epub.wu.ac.at/3987/

e Frameworks for generative models

» Variational inference: Infer.net
http://research.microsoft.com/infernet/
» Gibbs sampling: OpenBUGS http://openbugs.net/
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1\ @ HCI-KDD -

Dehmer, M., Emmert-Streib, F., Pickl, S. &
Holzinger, A. (eds.) 2016. Big Data of Complex Bl UJUAILA
Networks, Boca Raton, London, New York: CRC oF COVIPLEX
Press Taylor & Francis Group. NETWORKS

e . B
g =V
-
<a Edited by
Matthias Dehmer
Frank Emmert-Streib

Stefan Pickl ==

04 Knowledge ==&
Representation In
Network Medicine
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Network of Networks in Biology

HCI-KDD £-

Signaling
networks

Activate TFs

Form TF

Regulatory
networks

Transcribe :
Transcribe
enzymes ;
roteins

Protein
interaction
networks

Metabolic
networks

Image credit to Anna Goldenberg, Toronto

complexes

Holzinger Group, hci-kdd.org 75 Machine Learning Health 06



Genome-Phenome association in complex diseases @ HCI-KDD o

Pleotropic effects

CTTCACTCGTGTCTATITTGAATTGCLCTAT
= ™ > L =

Two subnetworks
for lung physiology,

Epistatic effects

Image credit to Eric Xing, Carnegie Mellon University, Pittsburgh
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From data sets to networks @ HCI-KDD 5~

Existing biological knowledge

Nature Reviews | Molecular Cell Biology

Image description find here:

http://www.nature.com/nrm/journal/v6/n2/fig_tab/nrm1570_F1.html
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Regulatory>Metabolic>Signaling>Protein>Co-expression @HCI-KDD -

Transcription factor Enzymes Receptors

eI 0'—0

Gema- c Meta bchtes

§ &8 o

Directed, Signed, Undirected,
weighted weighted Directed Undirected Undirected

Protein

Image credit to Anna Goldenberg, Toronto
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Example for a Medical Knowledge Space @ HCI-KDD o

# Nodes: 641
# Edges: 1250

e N
iy N

Agent
Condition

Average Degree: 3.888
Average Path Length: 4.683
7.  Network Diameter: 9

Holzinger, A., Ofner, B., Dehmer, M.: Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices:
State-of-the-Art and Future Challenges. In: LNCS 8401, pp. 241-254, (2014)
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Medical Details of the Graph @ HCI-KDD -

a ¥
" Nodes s J
= drugs Y * . . ..O:D ..‘
o chmcalgwdelnt@ .. B

= patient condltlons(lqdlcatlon contrinndlcat‘or;)

- pharmacologlcalgrot;& « \ ’ &
= tables and calculations o?svllcal SO o

= algorithms and other medl&?dom S #

= Edges: 3 crucial types of relatlonsnlneﬁclrg medical,

relevance between two active substances ..I a
-

= pharmacological groups 5 2"

= indications "”

m contra-indications 0. ..
..
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Example for the shortest path @ HCI-KDD -
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BEExample for finding related structures @ HCI-KDD +£-

0O
O

Relationship between

Adrenaline (center black node) and
Dobutamine (top left black node)
Blue: Pharmacological Group

Dark red: Contraindication;

Light red: Condition

Green nodes (from dark to light):

1. Application (one ore more indications +
corresponding dosages)

2. Single indication with additional details
(e. g. “VF after 37 Shock”)

3. Condition (e.g. VF, Ventricular
Fibrillation)
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Interactive Visual Data Mining @ HCI-KDD -

http://ophid.utoronto.ca/navigator

JURISICA LAB S AT s,
IBM Life Sciences Discovery Center % !' : R : ‘ m

@ HCI-KDD +£-

. ®

Otasek, D., Pastrello, C., Holzinger, A. & Jurisica, 1. 2014. Visual Data Mhn\kﬁectwe Exploration of the Biological
Universe. In: Holzinger, A. & Jurisica, |. (eds.) Interac ive KnowTedge Disco anch.aIa Mining in Biomedical Informatics:
State-of-the-Art and Future Challenges. Lecture Notes in Computer Sgience LNCS 8401. Heidelberg, Berlin: Springer, pp.
19-34, doi:10.1007/978-3-662-43968-5_2.

[ ]
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Example: Graph Entropy Measures @ HCI-KDD %

# Engineering

B Computer Science

8 Physics

& Humanities
unkown

Holzinger et al.
2013. On Graph
Entropy Measures
for Knowledge : : , |
Discovery from &« 2% 5 o A0
Publication Network N AT ' ,.-f'g-‘g'}_-‘:l?'
Data. In: LNCS 8127, O F
354-362. N
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Some selected open problems @ HCI-KDD +£-

Problem: What is the max. number of edges of an Relative Neighborhood
Graph in R3 ? No supra-linear lower bound is known.

Problem: What is the structural interpretation of graph measures ? They are
mappings which maps graphs to the reals. Thus, they can be understood as
graph complexity measures and investigating their structural interpretation
relates to understand what kind of structural complexity they detect.

Problem: It is important to visualize large networks meaningfully. So far, there
has been a lack of interest to develop efficient software beyond the available
commercial software.

Problem: Are multi-touch interaction graphs structurally similar to other
graphs (from known graph classes)? This calls for a comparison of graph
classes and their structural characteristics.

Problem: Which graph measures are suitable to determine the complexity of
multi-touch interaction graphs? Does this lead to any meaningful classification
based on their topology?

Problem: What is interesting? Where to start the interaction?

Holzinger, A., Ofner, B., & Dehmer, M. (2014). Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges. LNCS 8401 (pp. 241-254). Berlin, Heidelberg: Springer.
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Example: The brain is a complex network @ HCI-KDD -

Van Den Heuvel, M. P. &
Hulshoff Pol, H. E. (2010)
Exploring the brain network: a
review on resting-state fMRI
functional connectivity.
European Neuropsycho-
pharmacology, 20, 8, 519-534.
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Representative Examples of disease complexes

@ HCI-KDD +£-

Atrial septal defect

Examples of -

4 functional § S
networks S o-0

driving the ?%@\3
development of 0,654 o
different o 2
anatom ica I Abnorm:alr‘:::low tract development gé’
structures in — 2
the human

heart of a b
37-day old

human embryo

FGF/PDGFR
signaling

Semaphorin
signaling

Holzinger Group, hci-kdd.org 88

Abnormal atrioventricular valve morphology

Transcription
regulalion

Abnormal myocardial trabeculae morphology

ERBEB signaling

»
Lage, K. et. al (2010) Dissecting spatio-temporal protein networks driving human heart development and
related disorders. Molecular systems biology, 6, 1, 1-9.
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Example: Cell-based therapy

@ HCI-KDD +5-

A

E1. Abnormal heart
tube morphology

Early phenotypes

E3. Abnormal
sinus venosus

E2. Abnormal looping
marphogenesis

o‘@ O e

Intermediate phenotypes

Early
=iz
60 |
40
20
0 T
E1 E2 E3 E4 11 12 13 14
Holzinger Group, hci-kdd.org 89

E4. Abnormal atrio-
ventricular canal
morphology

O

/’
Function of clusters

‘Transcription regulation

' FGF/PDGFR signaling

Other function

No. of proteins in clusters

10 20 30 40 &0

—— Direct interaction

- Indirect interaction

L3 L4

Lage et. al (2010)
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Identifying Networks in Disease Research @ HCI-KDD :%-

oy %
s & " u“
- 4 ..- .'. *
"'. r. ;4 : :-a .l-:-'
. :o;.‘ e
R B *e =
: - .:-"‘ § 4
L ..." e ‘ L m
. ul ... E
E KIDNEY éﬂ
! >
= . -
metabolite network w

Schadt, E. E. & Lum, P. Y. (2006) Reverse engineering gene networks to identify key drivers of
complex disease phenotypes. Journal of lipid research, 47, 12, 2601-2613.
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Three main types of biomedical networks @ HCI-KDD 2

@

T
o

Protein A ., Protein |

Protein B | Protein H

Protein D / Protein G

: % Protein E :

Protein C pr(l._.tein ; Q
Transcriptional regulatory Protein-Protein Metabolic network
network with two interaction network (constructed considering the
components: reactants, chemical reactions
TF = transcription factor and enzymes)
TG = target genes
(TF regulates the Costa, L. F., Rodrigues, F. A. & Cristino, A. S. (2008)
transcription of TG) Complex networks: the key to systems biology.

Genetics and Molecular Biology, 31, 3, 591-601.
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Example Transcriptional Regulatory Network @ HCI-KDD o

Salgado, H., Santos-
Zavaleta, A., Gama-
Castro, S., Peralta-Gil,
M., Pefialoza-Spinola,
M. I., Martinez-
Antonio, A., Karp, P. D.
& Collado-Vides, J.
2006. The
comprehensive
updated regulatory
network of
Escherichia coli K-12.
BMC bioinformatics,
7, (1), 5.
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Network Representations of Protein Complexes @ HCI-KDD =%-

True PPI topology

Matrix-Model

@ Spoke-Model

Wang, Z. & Zhang, J. Z. (2007) In search of the biological significance of modular structures in
protein networks. PLoS Computational Biology, 3, 6, 1011-1021.
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B Correlated Motif Mining (CMM) @ HCI-KDD +£-

Boyen, P., Van Dyck, D., Neven, F., van Ham, R. C. H. J. & van Dijk, A. (2011) SLIDER: A Generic
Metaheuristic for the Discovery of Correlated Motifs in Protein-Protein Interaction Networks.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8, 5, 1344-1357.
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Steepest Ascent Algorithm applied to CMM @ HCI-KDD +£-

Input: PPI-network G = (V,E,\), {,de N, d < ¥
Output: {X™*,Y*} best correlated motif pair found in G
: {X*,Y*} « randomMotifPair()
mazsup — f{X*,Y*},G)
SUp — —00
while maxsup > sup do
{X,Y} — {X*,Y*}
SUP <— MaAxTSuUp
for all {X",Y'} e N{X,Y}) do
if f({X',Y'},G) > maxsup then
~{)’(*’Y*}é___{)(/’yl}
mazxsup — f{X",Y'},G)

T R kR EEREE

—
—

Boyen et al. (2011)
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Metabolic Network @ HCI-KDD 2

M1 M2
M1 M4
M1 M5
M2 M1
M2 M3
M2 M4
M4 M1
M5 M1

Hodgman, C. T, French, A. &

Matrix contains many sparse elements - In Westhead, D. R. (2010)

this case it is computationally more efficient Bioinformatics. Second

to represent the graph as an adjacency list Edition. New York, Taylor &
Francis.
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Metabolic networks are usually big ... big data © @ HCI-KDD -

I
6 i
1 =% a1
i 4 i ‘mi?%
: . Y
Schmid, A. K., . sys o 0 {1
s ) 4 1 P ] ] € ]
Reiss, D. J ik CLHEET NS | I A
’ ’ HATRLIN: ; g
. "E;c‘ i1 1 \ & 11 P
Pan, M., Koide, B 1= ‘
. 4 i by kil
T. & Baliga, N. | | NelT
0

S.(2009)A g
single f—
transcription | | =
factor "
regulates =
evolutionarily
diverse but
functionally
linked

metabolic
pathways in
response to
nutrient
availability.
Molecular
Systems

Biology, 5, 1-9.

ctrees o1 Sen

http://www.nature.com/msb/journal/v5/n1/fig_tab/msb200940_ F6.html
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Using EPRs to Discover Disease Correlations Q@ HCI-KDD £

Electronic patient records
remain a unexplored, but
potentially rich data source
for example to discover
correlations between
diseases.

Roque, F. S., Jensen, P.

B., Schmock, H.,

Dalgaard, M., ®
Andreatta, M., Hansen,

T., Seeby, K., Bredkjeer,

S., Juul, A., Werge, T.,

Jensen, L. J. & Brunalk,
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Disease Correlations
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Heatmap of disease-disease correlations (ICD) @ HCI-KDD =%
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Example: opoAoyéw (homologeo) @ HCI-KDD £

T0499

He, Y., Chen, Y.,
Alexander, P,
Bryan, P. N. &
Orban, J. (2008)
NMR structures of
two designed
proteins with high
sequence identity
but different fold
and function.
Proceedings of the
National Academy
of Sciences, 105,
38, 14412.

DAGTAEKYFKLIANAKTVEGVWTYKDE IKTFTVTE
T (1 I O O O trerrereed
DAGTAEKY IIKLTANAKTVEGVWT\ILKDE IKTFTVTE

T0499 TTYKL ILNLKQAKEEAIKE
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T0498 TTYKL ILNLKQAKEEAIKE
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Conclusion @ HCI-KDD -

Homology modeling is a knowledge-based
prediction of protein structures.

In homology modeling a protein sequence with
an unknown structure (the target) is aligned with
one or more protein sequences with known
structures (the templates).

The method is based on the principle that
homologue proteins have similar structures.

Homology modeling will be extremely
important to personalized and molecular
medicine in the future.
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HCI-KDD s

05 Machine Learning
on Graphs
Relevant for Health
Informatics
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Example: Lymphoma is the most common blood cancer  @Hcl-kpp :£

The two main forms of lymphoma
are Hodgkin lymphoma and non-
Hodgkin lymphoma (NHL).
Lymphoma occurs when cells of the
immune system called
lymphocytes, a type of white blood
cell, grow and multiply
uncontrollably. Cancerous
lymphocytes can travel to many
parts of the body, including the
lymph nodes, spleen, bone marrow,
blood, or other organs, and form a
mass called a tumor. The body has
two main types of lymphocytes that
can develop into lymphomas: B-
lymphocytes (B-cells) and T-
lymphocytes (T-cells).

www.lymphoma.org http://imagebank.hematology.org/
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ML tasks on graphs N @ HCI-KDD %

= Discover unexplored
Interactions in PPI-
networks and gene
regulatory networks

= | earn the structure

= Reconstruct the

structure - O )
- e
w0 =i
. a3 ]

"’"(D MO m“&_ I’uﬁ _m{:} mou-no
Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, _, i) "Clﬁ
T. & Miiller, T. 2008. Identifying functional modules in =0T o) @
protein—protein interaction networks: an integrated o\

exact approach. Bioinformatics, 24, (13), i223-i231.
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'Learning'a Health Kndwledge'
Graph from Electronic Medical
Records

Maya Rotmensch’, Yoni Halpern®, Abdulhakim Tlimat’, Steven Hormng™" & David Sontag ()"

Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers

has substantially increased in recent years. Existing platforms rely on knowledge bases manually
compiled through a labor-intensive process or automatically derived using simple pairwise statistics.
This study explored an auvtomated process to learn high quality knowledge bases linking diseases and
symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-
identified patient records and maximum likelihood estimation of three probabilistic models was used
to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian
network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned
parameters and the constructed knowledge graphs were evaluated and validated, with permission,
against Google's manually-constructed knowledge graph and against expert physician opinions. Our
study shows that direct and automated construction of high quality health knowledge graphs from
medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high
quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR
significantly outperforms all tested models across evaluation framewaorks (p < 0.01).
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Workflow for modeling relationship disease-symptom

@ HCI-KDD +5-

Model the data

Maive Baves

Patients
Logistic Regression
%"‘ Disease -
J — :
Byvaptoons [ % [
\
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%
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Ill' i I
I'.II Discases | [ 1 i =y :
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Suggest edges

Disease | Symptom | Weight

Owvarian Cancer | Bowel obetruction | 2.402
Cwarian Cancer | Fluid in the abdomen | 2246
Ovarian Cancer | Pelvic pain | 1.643

aw-aﬁan Cancer | Fatigue | 0.804
Crarian Cancer | Vomiting | 0.867
-------------------- {threshold)
Owarian Cancer | Fever | 0.703
Owvarian Cancer | Nausena | 0,765

Disease | Symptom | Weight

Orvarian Cancer | Fluid in the abdomen | 1.456
Owarian Cancer | Bowel obstruction | 0.9g6
Owvarlan Cancer | Constipation | o.722
Owarian Cancer | Fever | o.502

Il}l.anan Dancer | Vomiting | 0.273
- {threshold)
D-mnan Cancar | Ceamping | o.194

Owarian Cancer | Infection | 0.179

Disease | Symptom | Weight
Crwarian Cancer | pain | 0.286

Onvarian Cancer | Nausea | 0178
Owvarian Cancer | Abdominal pain | 0.147
Ovarian Cancer | Vomiting | 0.106

Orvarian Cancer, | Discomfort | 0.031
------------------- {threshold)

Owarian Cancer, | shoriness of breath | 0.029
Owvarian Cancer, | bowel obstruction | o.o28

Create a Knowledge Graph

C Bowe
Dibmiructong

| Vomitieg | -
/ " F

_(® &
DO | e ol
i
S

f,f (P  hvarian
1llh.w|$ 7 \, Cancer
}

=
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\ / |, Abdstress
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\, Canrer
| Wenmiiig . | Pain

Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng & David Sontag 2017. Learning a Health Knowledge
Graph from Electronic Medical Records. Scientific Reports, 7, 5994, doi:10.1038/s41598-017-05778-z.
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From structure to function @ HCI-KDD o4

Subscribe Recommend Publish Editorial Boards | Testimonials | About Welcome. Learn more about access or create an account

*
love Search by keywords, for example: 'stem cells' Advancad Search Sign In

O A Protocol for Computer-Based Protein Structure and Function Prediction

Ambrish Roy}2, Dong Xul, Jonathan Poissonl, Yang Zhang!?

1Center for Computaiional Medicine and Bioinformaiics, University of Michigan, ZCenter for Bioinformatics and Deparimeni of Molecular Bioscience, University of Kansas

Ariicle Downloads Comments Metrics m

0:05 Tile Thiz article is Open Access.

2:21  Running the -TASSER
Server Recommend JoVE

to Your Librarian

3:37  Structure Analysis

558 LOMETS Target Template
Alignment

2 The ITS2 Database
7:30  Structural Analogs |ﬁ PPB Published 311272012
and Enzyme Commission
Number Prediction

89:20 Gene Ontology (GO) Term ] Analyzing and Building
Nucleic Acid

Related Videos

and Protein-ligand Bind site T

Predictions Published 4/26/2013

12:05 Representative - TASSER Protein WISDOM: A
Results Workbench for In...
F’ul‘hrhed 712512013
15:43 Conclusion

j Optimization of
Bl Synthetic Proteins:...
Bl Published 7/14/2015

Cluster Centroid

Guidelines for computer based structural and functional characterization of protein using the I-TASSER

Translate text to:

Choose Language...

pipeline is described. Starting from query protein sequence, 3D models are generated using multiple

threadinm alinnmante and iterativa ctriictiiral aceamhhr cimulatinne Cinetinnal infarenrac ara theareaftar drauwm

http://www.jove.com/video/3259/a-protocol-for-computer-based-protein-structure-function
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Interesting: Hubs tend to link to small degree nodes @ HCI-KDD

Nodes: proteins
Links: physical interactions (binding)

Puzzling pattern:
Hubs tend to link to small

degree nodes.
Why is this puzzling?

In a random network, the probability
that a node with degree k links to a -

node with degree k’is:
kk' -
T

.\' L, &

=

‘ N

k=50, k’'=13, N=1,458, L=1746 [

Psos =0.15  p,, =0.0004

Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. 2001. Lethality and centrality in

protein networks. Nature, 411, (6833), 41-42.
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Example: Subgraph Discovery @ HCI-KDD -

P
HIGH ENERGY PHYSICS: (/| 4|
THEORY S\ (/1 '
 ASTROPHYSICS

4

TN SR : s il:ét‘YearWilkinson
Quasinormal Modes of N 8 - Microwave Anisotropy
Black Holes and Black Branes = : A »

GENERAL RELATMVITY - "
AND QUANTUM COSMOLOGY -

Gopalan, P. K. & Blei, D. M. 2013.
Efficient discovery of overlapping

communities in massive A Large Mass Hierarchy B

networks. Proceedings of the from a Small Extra Dimension .~ HIGH ENERGY PHYSICS:
National Academy of Sciences, - .. . . . ... PHENOMENOLOGY
110, (36), 14534-14539. i
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Why do we want to apply ML to graphs @ HCI-KDD £

= A) Discovery of unexplored interactions
" B) Learning and Predicting the structure

= C) Reconstructing the structure

= Which joint probability distributions does a
graphical model represent?

" How can we learn the parameters and structure
of a graphical model?

52 months > S weithe The chemical space
1.Find a | 2. identiry _ | 3-Hit-ta-lead: | 4 Lead oA s K 1060 pOSSible small or-
target > hits »| characterize »| optimization > Yy .
hits and synthesis ganlc moleCuleS

® 10?2 stars in the observ-
able universe
$2,000,000,000

Holzinger Group, hci-kdd.org 110 Machine Learning Health 06



Example Question: Predicting Function from Structure @ HCI-KDD =%-

] A
B.cereus 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGREKNYEA
B.anthracis 1 --MIVSFMVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHP------- LIMGREKNYEA
E.coli 1 ---MISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTLNKP------- VIMGRHTWES
H.sapiens 1 MVGSLNCIVAVSQNMGIGENGDLPWPPLRNE FRYFQRMTTTS SVEG KQNLVImmWFS
. *k s, skk k. sk s .
Y
B.cereus 51 I---GRPLPGRRNIIVIRNEGYHVEGCEVV-HSVEEVFEL------ CKNEEEIFIFGGAQ
B.anthracis 51 I---GRPLPGRRNIIVIRNEGYHVEGCEVA-HSVEEVFEL------ CKNEEEIFIFGGAQ
E.coli 50 I---GRPLPGRKNIILSSQPGTD-DRVIWV-KSVDEAIAA------ CGDVPEIMVIGGGR HG. 1. (2) Alinment of the DHER. s
H.sapiens 61 IPEKNRPLKGRINLVLSRE LKEPPQGAHFLSRSLDDALKLTEQPE LANKVDMVWIVGGSS foalia (] Atgment bt DR
* akE wE g X i v R om B. anthracis, E. coli, and Homo supiens (P
‘ 3 BN r o LA numbers AAPI9158, AAT40581, AANTSS5
tively). Sequence identity with DHFRg, is shov
B.cereus 101 IYDLFL--PYVDELYITKIHHAFEGDTFFPEIDMINWKEIFVEKG- - -LTDEKNPYTYYY maxiize alignment are shown as dashes. Res
B.anthracis 101 IYDLFL--PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG- - - LTDEKNPYTYYY the Ieft of the alignment. The consensus sy
E. coli 99 VYEQFL e PKAQHIYLTHI DAEVEGDTHFPDYEPDDWESVFSEFH - - - DADAQNSHSYCF idei[}’, colons indicate sequence conservatior
H served tesidues, and arrows indicate residues t

.8apiens 121 VYKEM[NHPGHLKLFVTR IMODFESDTFFPE IDLEKYKLLPEYPGVLSDVQEEKG 1 KYKF

* *ka kK Lk kk kok oceupied by the ligand. (b) Model of DHFR

from DHERy, in ribbon form. Methotrexate

(CH,)4COOH
NH, OMe
| NH,

N/
P

HoN” N
O(CH,)4COOH (CHy)sCOOH  °
23 24

How similar are two graphs? How similar is their
structure? How similar are their node and edge labels?

Joska, T. M. & Anderson, A. C. 2006. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate
reductase: toward the identification of new potent drug leads. Antimicrobial agents and chemotherapy, 50, 3435-3443.
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Graph Comparison @ HCI-KDD +£

= Similar Property Principle: Molecules having
similar structures should have similar activities.

= Structure-based representations: Compare
molecules by comparing substructures, e.g.

= Sets as vectors: Measure similarity by the cosine
distance

= Sets as sets: Measure similarity by the Jaccard
distance

= Sets as points: Measure similarity by Euclidean
distance

" Problems: Dimensionality, Non-Euclidean cases
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@ HCI-KDD +£-
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HCI-KDD £-

Holzinger Group, hci-kdd.org

Questions
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Sample Questions (1/3) @ HCI-KDD -

= Describe the clinical decision making process!

= Which type of graph is particularly useful for
inference and learning?

= What is the key challenge in the application of
graphical models for health informatics?

= What was Judea Pearl (1988) discussing in his paper,
for which he received the Turing award?

= What main difficulties arise during breast cancer
Prognosis?

= \What can be done to increase the robustness of
prognostic cancer tests?

" Inference in Bayes Nets is NP-complete, but there
are certain cases where it is tractable, which ones?
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Sample Questions (2/3) @ HCI-KDD -

= Why do we want to apply ML to graphs?

" Describe typical ML tasks on the example of
blood cancer cells!

" |f you have a set of points — which similarity
measures are useful?

" Why is graph comparison in the medical domain
useful?

" Why is the Gromov-Hausdorff distance useful?

" What is the central goal of a generative
probabilistic model?

= Describe the LDA-model and its application for
topic modelling!
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Sample Questions (2/3) @ HCI-KDD -

Briefly describe the stochastic variational inference
algorithms!

What is the principle of a bandit?
How does a multi-armed bandit (MAB) work?
In which ways can a MAB represent knowledge?

What is the main problem of a clinical trail —and
maybe the main problem in clinical medicine?

Why are rare diseases both important and relevant?
Describe an example disease!

What is the big problem in clinical trials for rare
diseases?

What did Richard Bellman (1956) describe with
dynamic programming?
Why are graph bandits a hot topic for ML research?
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Solutions of the Quiz @ HCI-KDD +£

= 1=thisis a factor graph of an undirected graph — we have seen this in protein networks (refer to slide
Nr. 70 in lecture 5). Factor graph is bipartite and has two types of nodes: Variables, which can be
either evidence variables (when we know its value) or query variables (when the value is unknown
and we want to predict the value); and factors, which define the relationship between variables in the
graph. Each factor can be connected to many variables and comes with a factor function to define the
relationship between these variables. For example, if a factor node is connected to two variables
nodes A and B, a possible factor function could be imply(A,B), meaning that if the random variable A
takes value 1, then so must the random variable B. Each factor function has a weight associated with
it, which describes how much influence the factor has on its variables in relative terms. For more
information please consult: http://deepdive.stanford.edu/inference

= 2=thisis the decomposition of a tree, rooted at nodes into subtrees
=  3=an example for machine translation, Image credit to Kevin Gimpel, Carnegie Mellon University

=  4=the famous expectation-utility theory according to von Neumann and Morgenstern (1954): a
decision-maker faced with risky (probabilistic) outcomes of different choices will behave as if he is
maximizing the expected value of some function defined over the potential outcomes at some
specified point in the future.

= 5= MVYCIN —expert system that used early Al (rule-based) to identify bacteria causing severe infections,
such as bacteremia and meningitis, and to recommend antibiotics, with the dosage adjusted for
patient's body weight — the name derived from the antibiotics themselves, as many antibiotics have
the suffix "-mycin".

= 6= metabolic and physical processes that determine the physiological and biochemical properties of a
cell. These networks comprise the chemical reactions of metabolism, the metabolic pathways, as well
as the regulatory interactions that guide these reactions.

= 7= W.ith the sequencing of complete genomes, it is now possible to reconstruct the network of
biochemical reactions in many organisms, from bacteria to human. Several of these networks are
available online, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG), EcoCyc, BioCyc etc.
Metabolic networks are powerful tools for studying and modelling metabolism.
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HCI-KDD £-
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HCI-KDD s

1) Reasoning under
Uncertainty
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Remember: Taxonomy of Decision Support Models @ HCI-KDD +£-

Decision Model
Quantitative (statistical) Qualitative (heuristic)
. . Truth tabl Decision Reasoning
supervised Bayesian ruth tables trees models
<ed . Boolean Expert
unsupervise uzzy sets e Non- systems
e Logistic
network 8

Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical Informatics. Heidelberg, Springer.

parametric
Partitioning Critiquing
systems
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Dealing with uncertainty in the real world @ HCI-KDD £

= The information available to humans is often
imperfect — imprecise - uncertain.

" This is especially in the medical domain the case.
"= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Aistrue THEN A is non-false and
IF B is false THEN B is non-true

= Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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MYCIN - rule based system - certainty factors @ HCI-KDD o

MYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

Goal oriented strategy (“Rickwartsverkettung”)

To every rule and every entry a certainty factor (CF) is
assigned, which is between O und 1

Two measures are derived:
MB: measure of belief
MD: measure of disbelief

Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] — MD[h]

CF is positive, if more evidence is given for a hypothesis,
otherwise CF is negative

CF[h] =+1->his 100 % true
CF[h] =-1->his 100% false
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B Original Example from MYCIN @ HCI-KDD -

h, = The identity of ORGANISM-1 is streptococcus
PATIENT-1 is febrile
h; = The name of PATIENT-1 is John Jones

-
ha
i

CF[h,,E]) = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[h,,E] = +1 : Iltis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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MYCIN was no success in the clinical practice @ HCI-KDD -

https://www.youtube.com/watch?v=IVGWMOCKNWA (“real nurse triage”)
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Gamuts: Triangulation to find diagnoses @ HCI-KDD £

Gamut F-137

PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. latrogenic (eg, surgical injury; chest tube; therapeu-
tic avulsion or injection; subclavian vein puncture)
2. Infection (eg, tuberculosis; fungus disease; abscess)
3. Neoplastic invasion or compression (esp. carcinoma
of lung)

UNCOMMON

Aneurysmg, aortic or other

Birth trauma (Erb’s palsy)

Herpes zoster

Neuritis, peripheral (eg, diabetic neuropathy)
Neurologic diseaseg (eg. hemiplegia; encephalitis:
polio; Guillain-Barré S.)

Pneumonia

. Trauma

Correlation of radiographic findings
and Gamut with patients' clinical
and lab findings to arrive at the
most likely diagnosis

M, R e

Reeder, M. M. & Felson, B. 2003.
Reeder and Felson's gamuts in
radiology: comprehensive lists of

=~ o

. . . . Reference
roentgen d’fferentla/ dlCIgI’)OSIS, New 1. Prasad S, Athreya BH: Transient paralysis of the phrenic
; nerve associated with head injury. JAMA 1976;236:2532—
York, Springer Verlag. i
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Example - Gamuts in Radiology @ HCI-KDD %

REEDER AND FELSON'S

GAMUTS IN RADIOLOGY

GAMUT G-25

ERCSIVE GASTRITIS*

COMMON Reeder, M. M. & Felson, B. (2003) Reeder
1. Acute gastritis (eg, alcohol abuse) ' . . .

i Ea and Felson s.gan.vuts in radiology:

3. Drugs (eq, aspirin B El: NSAID B8 steroids) comprehensive lists of roentgen

= l’f:}’s;ife”’”ﬂ” agirsion N differential diagnosis. New York, Springer
6. [Normal areae gastricae I Ver /Gg

7. Peptic ulcer; hyperacidity

UNCOMMON

1. Corrosive gastritis Il

2. Cryptospondium antritis

3. [Lymphoma]

4. Opportunistic infection (eg, candidiasis {moniliasis} Ell; herpes simplex; cytomegalovirus)
5. Postoperative gastritis

6. Radiation therapy

7. Zollinger-Ellison S. Ell; multiple endocrine neoplasia (MEN) S.

* Superficial erosions or aphthoid ulcerations seen especially with double contrast technigque.

[ ] This condition does not actually cause the gamuted imaging finding, but can produce imaging changes that simulate it.

http://rfs.acr.org/gamuts/data/G-25.htm
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Reasoning under uncertainty @ HCI-KDD -

Take patient information, e.g., observations,
symptomes, test results, -omics data, etc. etc.

Reach conclusions, and predict into the future,
e.g. how likely will the patient be re-admissioned
Prior = belief before making a particular observation

Posterio elief after making the observation and is
the\prior for t ext observation — intrinsically
increygental

B > Dl yj)p(ilfz)
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Remember: 2 types of decisions (Diagnosis vs. Therapy) @HcI-KpD 4

= Type 1 Decisions: related to the diagnosis, i.e. computers are
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:

= What is the probability that this patient has a myocardial infarction
on the basis of given data (patient history, ECG, ...)?

= What is the probability that this patient has acute appendices, given
the signs and symptoms concerning abdominal pain?

= Type 2 Decisions: related to therapy, i.e. computers are used
to select the best therapy on the basis of clinical evidence,
e.g.:
= What is the best therapy for patients of age x and risks y, if an
obstruction of more than z % is seen in the left coronary artery?

= What amount of insulin should be prescribed for a patient during
the next 5 days, given the blood sugar levels and the amount of
insulin taken during the recent weeks?

Bemmel, J. H. V. & Musen, M. A. 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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Future Outlook @ HCI-KDD %

The future is in integrative ML, i.e. combining relational databases,
ontologies and logic with probabilistic reasoning models and
statistical learning — and algorithms that have good scalability

w Smokes(x) A Friends(x,y) = Smokes(y) I

14
= 12
o 10
ﬁ 8
= 6
— 4
5 1 L 1 1 1
0 5000 10000 15000 20000 25000 30000

Domain Size (Number of People)

m Learns a model over
900,030,000 random variables
Blg mOdE|S Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J. & De Raedt, L.

Lifted probabilistic inference by first-order knowledge compilation.
Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2011. AAAI Press, 2178-

2185.
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@ HCI-KDD +£-

a=2 a0 ay=1 a=3 ag=4 ag=2 a;=5
@ = brngen sie bitte das auto zurlick

~Z X/

y = please return the car

E(U | d) =

Z P(-‘.EI,.._’:L‘H | d)U('Tl’anﬁd)

= The identity of ORGANISM-1 is streptococcus 0
PATIENT-1 is febrile

.
The name of PATIENT-1 is John Jones ®—-
CF[h,,E) = 8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus /
CF[h,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile ’
CF[h,,E] = +1 : Itis definite (1) that the name of PATIENT-1 is 6 :
John Jones O
5
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Probabilistic-programming.org @ HCI-KDD 52

= C — Probabilistic-C
= Scala — Figaro

= Scheme — Church

= Excel — Tabular

= Prolog — Problog

= Javascript — webPP

- — Venture
= Python »> PyMC

PYMQ~yT}1<nnic Markov chain Monte Carlo

ST IRV M IS
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Probabilistic programs vs. graphical models @ HCI-KDD

Probabilistic Graphical
Program Model
Variables Variable nodes

Functions/operators Factor nodes/edges
Fixed size loops/arrays Plates
If statements Gates (Minka & Winn)

Variable sized loops,
Complex indexing,
jagged arrays, mutation, No common equivalent
recursion, objects/
properties...
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Medical Example @ HCI-KDD +£

Sequence Outcome 1
CGTCGGAGGTACATGATTGGAAGAAAACCT Y . . “A . wT
* Simple example: Nucleotide “A” may follow nucleotide “T" in the
GCGCCTTTGCACATCICTTAATCTCAGTCA X
R sequences more frequently for outcome X than for outcome Y,
TTAAAATAGCAGAGACACTTCTACTGATAC Y

CCAAGAGCCTCGTAATTAAGTATTGCAATA Y

el I P(AIT,X)>P(AIT,Y) 2

+ Compute maximum a posteriori estimates of

e " 1 R Prior Distribution
the probabilities: = Specify the prior distribution: HioNucieotides {

Posterior Distribution of f\;leiznﬁogﬁ)ﬁt e B Tondbiat import numpy as np

T el B - ;:}‘?ﬁ’model? . from pymc import Dirichlet # conjugate prior IIII

alpha = np.array([30.0,25.0,20.0,25.0])
» The MAP estimates are now contained in th prob_dist = Dirichlet(‘prob_dist', alpha)
I M.prob_dist value:

>>> print M.prob_dist.value
0.19472259 0.26B42748 0.25265728]

P(D16)- P(9) P91 D)= P(D16)|P(8)
~ P(D) P(D)

6 . X Experimental Data
« Specify the value to maximize using numerical simulation, - Specify the experimental data: Observation# | Nusleotide
as well as the expected form of the posterior distribution:

P(HID

‘s_/

1

exp_data = np.array([1, 1,3, 2,2, 1,0, ...])

I NTISNTXRIN
CaNNLaa

from pymec import Categorical
f_x = Categorical('cat’, prob_dist, value=exp_data, observed=True)

PDIGIPE)  p(o)p)- P(IEII 6)- P(6)
P(D) Pp) 4

s P@ID)=

Image Source: Dan Williams, Life Technologies, Austin TX
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HCI-KDD £-

Holzinger Group, hci-kdd.org

05 Digression:
What is
similarity?
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B What is Similar? @ HCI-KDD s

—=

(4 “n" Y.

AR

Image credit to Eamonn Keogh (2008)
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@ HCI-KDD +£-

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.

Holzinger Group, hci-kdd.org
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@ HCI-KDD +£-

Rock

Bronstein, A. M., Bronstein,
M. M. & Kimmel, R. 2008.
Numerical geometry of non-
rigid shapes, New York,
Springer.

Holzinger Group, hci-kdd.org
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Similarity and Correspondence @ HCI-KDD o4

Bronstein, A. M., Bronstein, M. M. & Kimmel, R. 2008. Numerical
geometry of non-rigid shapes, New York, Springer.

http://www.inf.usi.ch/bronstein/

X I %

Structure Structure

Correspondence quality = structure similarity

(distortion)

Minimum possible correspondence distortion
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Invariant Similarity @ HCI-KDD +£

Similarity

Invariant similarity

sible correspo
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Bl Gromov-Hausdorff dist: finding the opt. correspondence  @HcI-KoD -

Gromov, M. (1984) Infinite groups as
geometric objects.

Felix Hausdorff

Michail Gromov (1868-1942)

(1943-) X ,
H i N W
(X’ 6X) Correspondence (K 5Y)
Metric space Metric space

1
d X,Y)=—min max |0 L) — 0 Y
GH( ) 50 (:E@‘,yq;)EC| x(z; 37]) v (Y yj)l

‘v’at,,; Elyi S.t.(.:UZ', yz) cC ‘v’yz E|.”L‘Z S.t.(a’:@-, yz) cC

Discrete optimization over correspondences is NP hard !
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Distinguish topological spaces @ HCI-KDD +£-

Counts the number of “i-dimensional holes”

bi is the “i-th Betti number”

e / | .l ] *‘q
b J,md?

Emmy Noether
(1882-1935)

Enrico Betti
(1823-1892)

Betti numbers are computed as dimensions of Boolean vector spaces (E. Noether)

Zomorodian, A. & Carlsson, G. 2005. Computing Persistent Homology. Discrete &
Computational Geometry, 33, (2), 249-274.
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Structural Patterns are often hidden in weakly str. data  @HcI-kpp -

= Statement of Vin de Silva (2003), Pomona College:

= et M be a topological or metric space, known as the
hidden parameter space;

= et R? be a Euclidean space, the observation space,
= and let f: M — R? be a continuous embedding.

" Furthermore, let X € M be a finite set of data points,
perhaps the realization of a stochastic process, i.e., a
family of random variables {X;,i € I} defined on a
probability space (Q, F, P), and denote Y = f(X) c R
the images of these points under the mapping f.

= \We refer to X as hidden data, and Y as the observed data.
* M, f and X are unknown, but Y is - so can we identify M?
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Topological Data Mining @ HCI-KDD -

" Mega Problem: To date none of our known
methods, algorithms and tools scale to the massive
amount and dimensionalities of data we are
confronted in practice;

= we need much more research efforts towards
making computational topology successful as a
general method for data mining and knowledge
discovery

Holzinger, A. 2014. On Topological Data Mining. In: Lecture Notes in Computer Science, LNCS
8401. Berlin Heidelberg: Springer, pp. 331-356, doi:10.1007/978-3-662-43968-5 19.
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HCI-KDD s

06 Review of basic
concepts, metrics
and measures
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Complex Biological Systems key concepts @ HCI-KDD =%

In order to understand complex biological systems, the
three following key concepts need to be considered:

(i) emergence, the discovery of links between elements of
a system because the study of individual elements such as
genes, proteins and metabolites is insufficient to explain
the behavior of whole systems;

(ii) robustness, biological systems maintain their main
functions even under perturbations imposed by the
environment; and

(iii) modularity, vertices sharing similar functions are
highly connected.

Network theory can largely be applied for biomedical
informatics, because many tools are already available
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Network Basics on the Example of Bioinformatics @ HCI-KDD

G(V,E) Graph

V..vertex h
E ..edge {a, b} L\
abeV,axzb |

Hodgman, C. T,, .
French, A. &
Westhead, D. R. .
(2010) Bioinformatics.
Second Edition. New
York, Taylor & Francis.
Machine Learning Health 06
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Baby Stuff: Computational Graph Representation @ HCI-KDD +£-

Adjacency (o-'ja-s°n(t)-sé) Matrix A = (a;y) ay = { 1, if{jk} €E

0010107
000011
100010
000011
111100

01010 0

Simple graph, symmetric, binary

Directed and weighted
For more information: Diestel, R. (2010) Graph Theory, 4th Edition. Berlin, Heidelberg, Springer.
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Example: Tool for Node-Link Visualization

@ HCI-KDD +5-

Bl lnbay  Micrneaft Nuatlank BUGoh 0 e

2Q X P

4 MNet:_379

EEEEEEEEEEENE
EEEEEEEEEEEEEN
EEEEEEEEEEEEEN

- [B]X]

EEEEEEEERS
miimiE
Rt
P

Jean-Daniel Fekete http://wiki.cytoscape.org/InfoVis_Toolkit

Fekete, J.-D. The infovis toolkit. Information Visualization, INFOVIS 2004, 2004. |EEE, 167-174.
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Some Network Metrics (1/2) @ HCI-KDD o4

Order = total number of nodes n; Size = total number of links (a): -
edge / connection
node
e <T\;
S @ -
- -
o 9 ®

Clustering Coefficient (b) = the degree of concentration of the connections of the node’s
neighbors in a graph and gives a measure of local inhomogeneity of the link density:

" k(- 1) Tyt
l

o~
Path length (c) = is the arithmetical ./O b
mean of all the distances:

1
TR

e

Costa, L. F., Rodrigues, F. A., Travieso, G. & Boas, P. R. V. (2007) Characterization of complex networks: A
survey of measurements. Advances in Physics, 56, 1, 167-242.
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Some Network Metrics (2/2) @ HCI-KDD 4

= Centrality (d) = the level of “betweenness- centrality” of a node | (“hub-node
in Slide 28); d ees

-
Modularity (f) = describes the possible
® ® formation of communities in the network,
- - indicating how strong groups of nodes P

@ form relative isolated sub-networks within
o 9 the full network (refer also to Slide 5-8).
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Network Topologies @ HCI-KDD :%-

regular small-world random
- ) -
c ct cl
- ®©, o ® - ®
- - (& - - -
® 9 ® @ @ ® ® 9 ®
randomness g
b
-
Scale-free network
- -
O -
® ®

Van Heuvel & Hulshoff (2010)
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Small-World Networks @ HCI-KDD 2-

Regular Small-world
=1
p= p=0.0001 P

Increasing randomness

/ 29.000 citations ...

Watts, D. J. & Strogatz, S. (1998) Collective dynamics of small-world networks. Nature, 393, 6684, 440-442.

Milgram, S. 1967. The small world problem. Psychology today, 2, (1), 60-67.
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Slide 5-15 Graphs from Point Cloud Data Sets @ HCI-KDD =%-

@ﬁé‘ R
YATNGE

) SN

¥
M

h
U

SRR

(a) Initial set of pDi.nLS. ) (b) 1-ball Graph. (¢) 1-Nearest-Neighbor Graph. (d) Euclidean Minimum Spanning
Tree.

(e) 3-Nearest-Neighbor Graph. (f) Relative Neighborhood Graph. (2) Gabriel Graph. (h) 3-Skeleton Graph, 3 = 1.1:
black edges, 3 = 0.9: grey edges.

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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Finally a practical example @ HCI-KDD s

07 How do you get
point cloud data
from natural
images?
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Graphs from Images @ HCI-KDD -

e

HIE\{}%-;.

d) SLIC superpixels

Lézoray, O. & Grady, L. 2012. Graph theory concepts and definitions used in image processing
and analysis. In: Lézoray, O. & Grady, L. (eds.) Image Processing and Analysing With Graphs:
Theory and Practice. Boca Raton (FL): CRC Press, pp. 1-24.
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Example Watershed Algorithm

@ HCI-KDD +5-

Algorithm 4.2 Watershed transform w.r.t. topographical distance based on image integration
via the Dijkstra-Moore shortest paths algorithm.

1:

o AR

e e
T

—
o Lo

SR m

procedure ShortestPathWatershed;
INPUT: lower complete digital grey scale image &G = (V, E, im) with cost function cost.
OUTPUT: labelled image lab on V.

#define WSHED 0 (*+label of the watershed pixels )
(+ Uses distance image dist. On output, distfv] = im|v], for all v € V. +)
for all v = V do (* Initialize =)
lablv] — 0 ; dist|v]+— oo
end for

for all local minima m,; do
for all v € my; do
lablv] — 1 ; dist[v] — im|v] (*mmitialize distance with values of minima =)
end for

- end for
15:
16:
| i
18:
14:
20:
21:
22:
23:
24:
25:
D6

while V < @ do
u— GetMinDist(V) (= find v € V with smallest distance value dist]uf *)
Ve V\ fu}
for all v € ¥V with (u,v) € F do
if dist|u| + costu,v] < dist|v] then
dist|v] — dist[u] + cost(u,v)
lablv] — labfu]
else if lablv] # WSHED and dist[u] + cost|u,v| = dist{v]| and lablv| # lablu] then
lablv] = WSHED
end if
end for
end while

Meijster, A. & Roerdink, J. B. A proposal for the implementation of a parallel watershed
algorithm. Computer Analysis of Images and Patterns, 1995. Springer, 790-795.
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Graphs from Images: Watershed + Centroid @ HCI-KDD +£-
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B Slide 5-20 Graphs from Images: Voronoi <> Delaunay @ HCI-KDD %

Holzinger, A., Malle, B. & Giuliani, N. 2014. On Graph Extraction from Image Data. In: Slezak, D.,
Peters, J. F., Tan, A.-H. & Schwabe, L. (eds.) Brain Informatics and Health, BIH 2014, Lecture

Notes in Artificial Intelligence, LNAI 8609. Heidelberg, Berlin: Springer, pp. 552-563.

For Voronoi please refer to: Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a
fundamental geometric data structure. Computing Surveys, 23, (3), 345-405.

For Delaunay please refer to: Lee, D.-T. & Schachter, B. J. 1980. Two algorithms for constructing
a Delaunay triangulation. Intl. Journal of Computer & Information Sciences, 9, (3), 219-242.
Machine Learning Health 06
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Are graphs better than feature vectors ? @ HCI-KDD =%-

" More expressive data structures
" Find novel connections between data objects

" Fit for applying graph based machine learning
techniques

= New approaches (Belief Propagation, global
understanding from local properties)

Bunke, H.: Graph-based tools for data mining and machine learning. In Perner, P,,
Rosenfeld, A., eds.: Machine Learning and Data Mining in Pattern Recognition,
Proceedings. Volume 2734 of Lecture Notes in Artificial Intelligence. Springer-
Verlag Berlin, (Berlin) 7-19

Holzinger, A., Blanchard, D., Bloice, M., Holzinger, K., Palade, V., Rabadan, R.:
Darwin, lamarck, or baldwin: Applying evolutionary algorithms to machine learn-
ing techniques. In: The 2014 IEEE/WIC/ACM International Conference on Web
Intelligence (W1 2014), IEEE (2014) in print
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Watershed methods @ HCI-KDD o

" Topographic maps =>
landscapes with height structures

= Segmentation into regions of pixels

= Assuming drops of water raining on the map

" Following paths of descent

= |Lakes called catchment basins

= Also possible: Flooding based

" Needs Topographical distance measures (MST)

Vincent, L. & Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion
simulations. IEEE transactions on pattern analysis and machine intelligence, 13, (6), 583-598.
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Watershed 4 Steps @ HCI-KDD -

* 1) Transformation into a topographic map
= Convert gray values into height information

= 2) Finding local minima
" |nspecting small regions in sequence

= 3) Finding catchment basins
= Algorithm simulating flooding
= Graph algorithms such as Minimum Spanning Trees

= 4) Erecting watersheds
= Artificial divide between catchment basins
= Final segmentation lines

Holzinger Group, hci-kdd.org 163 Machine Learning Health 06



Watershed Algo based on connected components @ HCI-KDD o

7 4 8 | 12| 11 8 —fm| |« | —=fm| | 0 OO0 |0 |1 F1

707 |18 (12117 1T 1IN« AT 0O (0 |0 [0 |1 |1

13| 13 15| 16| 16| 13 Tt ININ AT 0O (0 [0 [0 |11

19119 18| 17| 15| 7 T I 1T = N\ 0 (0 [0 [2 ]2 ]2

20| 18| 17| 16| 15|56 S| === —>fm] |2 (2|2 (2|2 [2

(a) The original image (b) Each pixel connect to lowest  (c¢) The Image with labels
minimum

Connects each pixel to the lowest neighbor pixel, all pixel connected to same lowest
neighbor pixel form a segment
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Region Merging (from here see Tutorial Bernd Malle) @ HCI-KDD s

= Region Merging
= Based on Kruskals MST algorithm

= Takes input image as natural graph with vertices := pixels and
edges := pixel neighborhoods

= Visits edges in ascending order of weight and merges regions
if they satisfy a certain criterion

= Flexible as merging criterion can be adapted as desired (for
amount, size, or shape of resulting regions)

Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59 (2004) 167-181
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Challenges @ HCI-KDD -

" We want to find “interesting” novel patterns
(rules, anomalies, outliers, similarities, ...)

" Problem #1: How to get a graph?

" Problem #2: How do graphs evolve?
" Problem #3: What tools to apply?

" Problem #4: Scalability to TB, PB, EB ...
= Success is in repeatability and scalability
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State-of-the-Art Facts @ HCI-KDD -

Study of complex networks started in the 1990s with the
insight that real networks contain properties not present
in random (Erdods-Renyi) networks.

Meanwhile networks and network-based approaches
form an integral part of many studies throughout the
sciences.

Graph-Theory provides powerful tools to organize data
structurally and in combination with statistical and
machine learning methods allows a meaningful analysis of
underlying processes.

For instance, a mapping of causal disease genes and
disorders as made available by the OMIM database
provided novel insights into disease patterns, as recently
demonstrated by investigating the diseasome
(http://diseasome.eu).

Holzinger Group, hci-kdd.org 167 Machine Learning Health 06



Future Outlook @ HCI-KDD %

Personalized
Medicine
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