## MAKE Decisions: Medical Information Science for Decision Support EXECUTIVE ACADEMY

EQUIS

Assoc. Prof. Dr. Andreas HOLZINGER (Med. Uni Graz)

https://hci-kdd.org/mini-course-make-decisions-practice

Day 1 -Part 2 -19.09.2018

### Data, Information and Knowledge

Keywords

W/

- Data
- Information
- Knowledge
- Dimensionality of data
- Biomedical Ontologies
- Standardized Medical Data
- SNOMED
- UMLS

Day 1 - Hot Ideas

1 Information Sciences meets Life Sciences

02 Data, Information and Knowledge

03 Decision Making and Decision Support

04 DSS: from Expert Systems to explainable AI

Day 2 - Cool Practice

05 Methods of Explainable-Al

Groupwork: Planning of a 500 bed Hospital - Bringing Al into the workflows

Plenary: Presenting of the developed concepts

Health Informatics - Andreas Holzinger

#### **Learning Goals**



- ... be aware of the types and categories of different data sets in biomedical informatics;
- ... know some differences between data, information, and knowledge;
- ... be aware of standardized/non-standardized and well-structured/"un-structured" information/data;
- ... have a basic overview on some ontological approaches for standardized medicine;
- ... have some background on classifications

#### Advance Organizer (1/2)



- Abduction = cyclical process of generating possible explanations (i.e., identification of a set of hypotheses that are able to account for the clinical case on the basis of the available data) and testing those (i.e., evaluation of each generated hypothesis on the basis of its expected consequences) for the abnormal state of the patient at hand;
- Abstraction = data are <u>filtered according to their relevance</u> for the problem solution and chunked in schemas representing an abstract description of the problem (e.g., abstracting that an adult male with haemoglobin concentration less than 14g/dL is an anaemic patient);
- Artefact/surrogate = error or anomaly in the perception or representation of information trough the involved method, equipment or process;
- Data = <u>physical entities</u> at the lowest abstraction level which are, e.g. generated by a
  patient (patient data) or a (biological) process; data contain no meaning;
- Data quality = Includes quality parameter such as: Accuracy, Completeness, Update status, Relevance, Consistency, Reliability, Accessibility;
- Data structure = way of storing and organizing data to use it efficiently;
- Deduction = deriving a particular valid conclusion from a set of general premises;
- DIK-Model = Data-Information-Knowledge three level model
- Disparity = containing different types of information in different dimensions
- Heart rate variability (HRV) = measured by the variation in the beat-to-beat interval;
- HRV artifact = noise through errors in the location of the instantaneous heart beat, resulting in errors in the calculation of the HRV, which is highly sensitive to artifact and errors in as low as 2% of the data will result in unwanted biases in HRV calculations:

Health Informatics - Andreas Holzinger

5

#### Agenda



- 00 Reflection follow-up from last lecture
- 01 What is data?
- 02 On Standardization
- 03 Knowledge Representation
- 04 Biomedical Ontologies
- 05 Medical Classifications

#### Advance Organizer (2/2)



- Induction = deriving a likely general conclusion from a set of particular statements;
- Information = derived from the data by interpretation (with feedback to the clinician);
- Information Entropy = a measure for uncertainty: highly structured data contain low entropy, if everything is in order there is no uncertainty, no surprise, ideally H = 0
- Knowledge = obtained by inductive reasoning with previously interpreted data, collected from many similar patients or processes, which is added to the "body of knowledge" (explicit knowledge). This knowledge is used for the interpretation of other data and to gain implicit knowledge which guides the clinician in taking further action;
- Large Data = consist of at least hundreds of thousands of data points
- Multi-Dimensionality = containing more than three dimensions and data are multivariate
- Multi-Modality = a combination of data from different sources
- Multivariate = encompassing the simultaneous observation and analysis of more than one statistical variable;
- Reasoning = process by which clinicians reach a conclusion after thinking on all facts;
- Spatiality = contains at least one (non-scalar) spatial component and non-spatial data
- Structural Complexity = ranging from low-structured (simple data structure, but many instances, e.g., flow data, volume data) to high-structured data (complex data structure, but only a few instances, e.g., business data)
- Time-Dependency = data is given at several points in time (time series data)
- Voxel = volumetric pixel = volumetric picture element

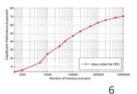
Health Informatics - Andreas Holzinger

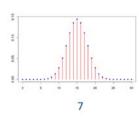
6

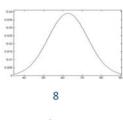


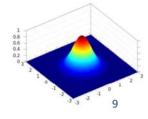








$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta) * p(\theta)}{p(\mathcal{D})}$$













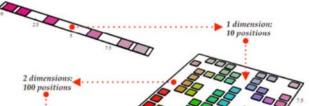

Health Informatics - Andreas Holzinger

9

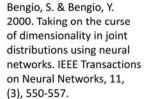
Health Informatics – Andreas Holzinger

#### W/

3 dimensions:


1000 positions!

#### **Traditional Statistics versus Machine Learning**

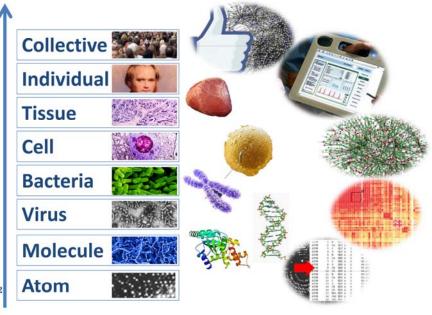

- Data in traditional Statistics
- Low-dimensional data (  $< \mathbb{R}^{100}$ )
- Problem: Much noise in the data
- Not much structure in the data but it can be represented by a simple model

- Data in Machine Learning
- High-dimensional data (  $\gg \mathbb{R}^{100}$ )
- Problem: not noise, but complexity
- Much structure, but the structure can not be represented by a simple model

#### Note: The curse of dimensionality



/05/06/books/review/turings-cathedral




http://www.iro.umontreal.ca/~bengioy/yoshua\_en/research.htm

#### Data for clinical purposes - integration is unsolved!







Health Informatics - Andreas Holzinger

13

#### Taxonomy of data

- Physical level -> bit = binary digit = basic indissoluble unit (= Shannon, Sh), ≠ Bit (!) in Quantum Systems -> qubit
- Logical Level -> integers, booleans, characters, floating-point numbers, alphanumeric strings, ...
- Conceptual (Abstract) Level -> data-structures, e.g. lists, arrays, trees, graphs, ...
- Technical Level -> Application data, e.g. text, graphics, images, audio, video, multimedia, ...
- "Hospital Level" -> Narrative (textual) data, genetic data, numerical measurements (physiological data, lab results, vital signs, ...), recorded signals (ECG, EEG, ...), Images (cams, x-ray, MR, CT, PET, ...)

Private Health vault data Electronic health record data Physiological data Laboratory results

Metabolomics Chemical processes Cellular reactions Enzymatic reactions

Metabolomics Chemical processes Cellular reactions Enzymatic reactions

> **Proteomics Protein-Protein Interactions**

**Epigenetics Epigenetic modifications** 

Health Informatics - Andreas Holzinger

Exposome Environmental data Air pollution Exposure (toxicants)

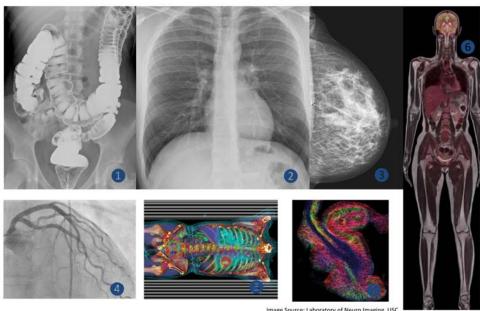


Nutrition data (Nutrigenomics) Diet data (allergenics)

Collective data

Fitness, Wellness data

Ambient Assisted Living data


Social data

Imaging data X-Ray, ultrasound, MR, CT, PET, cams, observation (e.g. sleep laboratory), gait (child walking)

**Transcriptomics** RNA, mRNA, rRNA, tRNA

#### **Examples: Imaging Data**





Genomics

14

Image Source: Laboratory of Neuro Imaging, USC

#### Example Data Structures (1/3): List

ink p.q:

wnew link();

p.key=x;

g-new link():

hey next

q •

q •

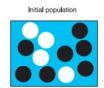
q •

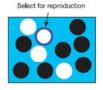
•

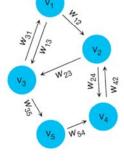
•

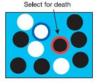
.

P 🚺


x .





#### Example Data Structures (2/3): Graph




Evolutionary dynamics act on populations. Neither genes, nor cells, nor individuals evolve; only populations evolve.













Lieberman, E., Hauert, C. & Nowak, M. A. (2005) Evolutionary dynamics on graphs. *Nature*, 433, 7023, 312-316.

Health Informatics – Andreas Holzinger

node = RECORD key : ItemType next : link; END;

VAR p, q : link

p := NEW(link);

p".key:=x;

q :- NEW(link) ;

17

Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. (2004) WebLogo: A sequence logo

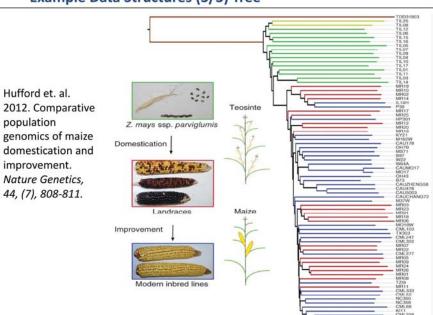
A CAP-DNA Complex

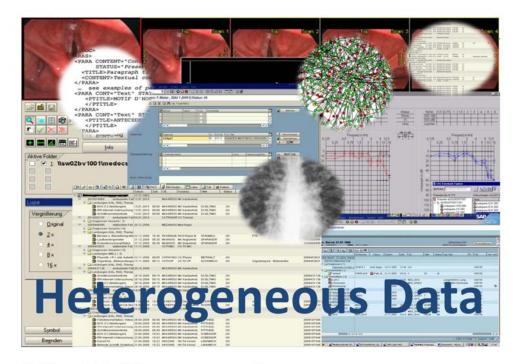
B CAP recognition

bits

site DNA Logo

C CAP Helix-Turn-Helix Logs


Health Informatics - Andreas Holzinger


1

#### Example Data Structures (3/3) Tree

generator. Genome Research, 14, 6, 1188-1190.







20

Health Informatics – Andreas Holzinger 19 Health Informatics – Andreas Holzinger

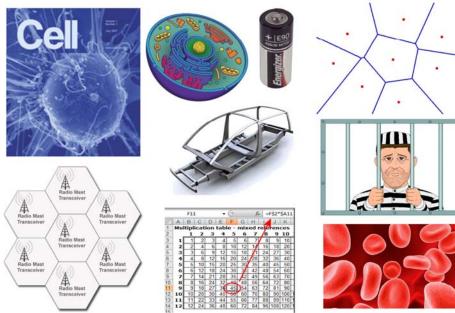


Biomedical R&D data (e.g. clinical trial data)

Clinical patient data (e.g. EPR, lab, reports etc.)

#### The combining link is text

Health business data (e.g. costs, utilization, etc.) Private patient data (e.g. AAL, monitoring, etc.)


Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.

Health Informatics - Andreas Holzinger

21

#### **Semantic Ambiguity - Missing Context**

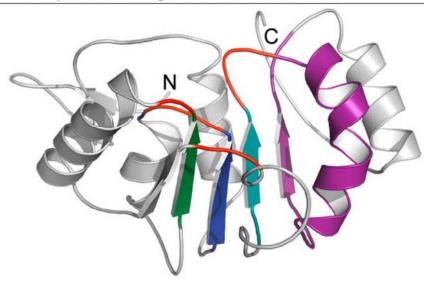




#### **Problem: Context!**



Health Informatics - Andreas Holzinger


2



## Is a picture really worth a thousand words?







Magnani, R., et al. 2010. Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nature Communications, 1, 43.

Health Informatics - Andreas Holzinger





#### A picture is worth a thousand words ...



27



Radiologischer Befund

Bewegungsartefakte. Zustand nach \$chädelhimtrauma.

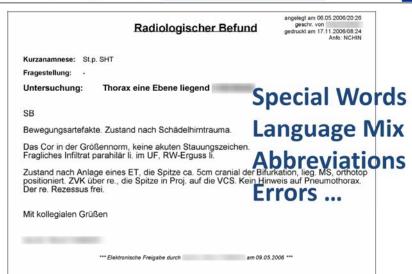
Das Cor in der Größennorm, keine akuten Stauungszeichen Fragliches Infiltrat parahilâr li. im UF, RW-Erguss II.

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.

Health Informatics - Andreas Holzinger






Health Informatics - Andreas Holzinger

Health Informatics - Andreas Holzinger



#### The medical report is the most important medium





Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in medizinischen Informationssystemen. *Informatik Spektrum, 30, (2), 69-78.* 



Holzinger, A., Geierhofer, R., Ackerl, S. & Searle, G. (2005). CARDIAC@VIEW: The User Centered Development of a new Medical Image Viewer. Central European Multimedia and Virtual Reality Conference, Prague, Czech Technical University (CTU), 63-68.

Health Informatics - Andreas Holzinger

30

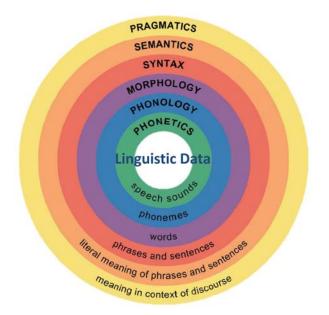
#### **German Example: Synonymity and Ambiguity**

| W         |
|-----------|
| VV        |
| EXECUTIVE |

| Untersuchungsbefund/Beschwerden: per Austhy fry high in when his for the in a list of when the high with  or have well with a count of said  or high to the property of the by a love 2 m  she coff when 2 M |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disances                                                                                                                                                                                                     |
| Diagnose: unbline Aholum . AD: Gaham Lits                                                                                                                                                                    |
| Empletiung/Therapie: hope of file is anythe the date                                                                                                                                                         |
| 11 1 122 1214                                                                                                                                                                                                |
| a rue and at hy th but                                                                                                                                                                                       |
|                                                                                                                                                                                                              |
| Mit freundlichen kollegialen Gußen                                                                                                                                                                           |
| / Gelm                                                                                                                                                                                                       |
| -Unterschrift-                                                                                                                                                                                               |
|                                                                                                                                                                                                              |

"die Antrumschleimhaut ist durch Lymphozyten infiltriert" "lymphozytäre Infiltration der Antrummukosa" "Lymphoyteninfiltration der Magenschleimhaut im Antrumbereich"




- HWI =
  - Harnwegsinfekt
  - Hinterwandinfarkt
  - Hinterwandischämie
  - Hakenwurminfektion
  - Halswirbelimmobilisation
  - Hip Waist Index
  - Height-Width Index
  - Heart-Work Index
  - Hemodynamically weighted imaging
  - High Water Intake
  - Hot water irrigation
  - Hepatitic weight index
  - Häufig wechselnder Intimpartner
- Leitung = Nervenleitung, Abteilungsleitung, Stromleitung, Wasserleitung, Harnleitung, Ableitung, Vereinsleitung ©...

Health Informatics - Andreas Holzinger

33

#### Text = Good example for Non-Standardized Data





Thomas, J. J. & Cook, K. A. 2005. Illuminating the path: The research and development agenda for visual analytics, New York, IEEE Computer Society Press.

- Syntax
- Semantics
- Pragmatics
- Context
- [Emotion]



Andrej Karpathy & Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. 3128-3137.

Health Informatics - Andreas Holzinger

34

#### **Key Challenges**



- Increasingly large data sets due to data-driven medicine [1]
- Increasing amounts of non-standardized data and un-structured information (e.g. "free text")
- Data quality, data integration, universal access
- Privacy, security, safety, data protection, data ownership, fair use of data [2]
- Time aspects in databases [3]

[1] Shah, N. H. & Tenenbaum, J. D. 2012. The coming age of data-driven medicine: translational bioinformatics' next frontier. Journal of the American Medical Informatics Association, 19, (E1), E2-E4. [2] Kieseberg, P., Hobel, H., Schrittwieser, S., Weippl, E. & Holzinger, A. 2014. Protecting Anonymity in Data-Driven Biomedical Science. In: LNCS 8401. Berlin Heidelberg: Springer pp. 301-316.. [3] Gschwandtner, T., Gärtner, J., Aigner, W. & Miksch, S. 2012. A taxonomy of dirty time-oriented data. In: LNCS 7465. Heidelberg, Berlin: Springer, pp. 58-72.



Health Informatics - Andreas Holzinger

37

#### Still a big problem: Inaccuracy of medical data



- Medical (clinical) data are defined and detected disturbingly "soft" ...
- ... having an obvious degree of variability and inaccuracy.
- Taking a medical history, the performance of a physical examination, the interpretation of laboratory tests, even the definition of diseases ... are surprisingly inexact.
- Data is defined, collected, and interpreted with a degree of variability and inaccuracy which falls far short of the standards which engineers do expect from most data.
- Moreover, standards might be interpreted variably by different medical doctors, different hospitals, different medical schools, different medical cultures, ...

Komaroff, A. L. (1979) The variability and inaccuracy of medical data. Proceedings of the IEEE, 67, 9, 1196-1207.

#### Quest for standardization as old as med. informatics



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-19, NO. 5, SEPTEMBER 1972

#### HEWLETT-PACKARD LIBRARY331

#### Standardization and Health Care AUG 18 1972

NON-CIRCULATING J. H. U. BROWN, SENIOR MEMBER, IEEE, AND DEWITT JAMES LOW

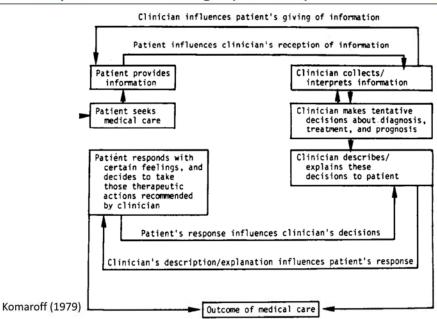
Abstract-In order to deliver reasonable health care to all people, it is arbiter may be the market place or agencies that rely on exessential that standards be established. Standards vary with the type of control and with the approach desired in determining the quality of care. This paper discusses various kinds of standards and their application in the health care field. Standards may be determined as a process or as a direct regulation. It is probable that regulation of standards by process is the most satisfactory method.

pertise from many sources to set acceptable standards of quality or performance. For these reasons, the final moderator may be found in a governmental authority, and its delegation into a system of regulation, law, and judicial action, so that an established code can become the focal point of resolution.

#### Introduction

COCIETY cannot exist without a yardstick by which its acare called standards. They are created by the need for regutowards greater achievement. In the ultimate, society dictates these limits by the demands it places upon itself. Standards provide opportunities for security and augmentation of process and output by virtue of the goal and process structure that they provide.

#### THE OBJECTIVES OF STANDARDIZATION


complishments or failures are measured. Such yardsticks tablish quality. However, they accomplish more for society than the mere establishment of a level of quality and perforlation and control as an escape from anarchy or to motivate mance. A standard allows coordination of effort between producers so that like products can be produced. It permits the reproduction of similar units in mass quantity and permits by performance. It establishes freedom of interchange of material and ideas, and permits the activity in one part of society

Brown, J. H. U. & Loweli, D. J. (1972) Standardization and Health Care. IEEE Transactions on Biomedical Engineering, BME-19, 5, 331-334.

Health Informatics - Andreas Holzinger

#### The patient-clinician dialogue (from 1979)





Health Informatics - Andreas Holzinger Health Informatics - Andreas Holzinger

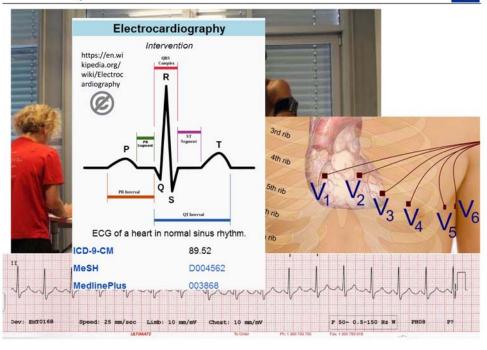
#### Standardized data ...

W/

- ... ensures that information is interpreted by all users with the same understanding;
  - supports the <u>reusability</u> of the data,
  - improves the efficiency of healthcare services and
  - avoids errors by reducing duplicated efforts in data entry;
- Data standardization refers to
  - a) the data content;
  - b) the terminologies that are used to represent the data;
  - c) how data is exchanged; and
  - iv) how knowledge, e.g. clinical guidelines, protocols, decision support rules, checklists, standard operating procedures are represented in the health information system (refer to IOM).
- Elements for sharing require standardization of identification, record structure, terminology, messaging, privacy etc.
- The most used standardized data set to date is the International Classification of Diseases (ICD), which was first adopted in 1900 for collecting statistics (Ahmadian et al. 2011)

Health Informatics - Andreas Holzinger

41


#### Standardization of ECG data (1/2)



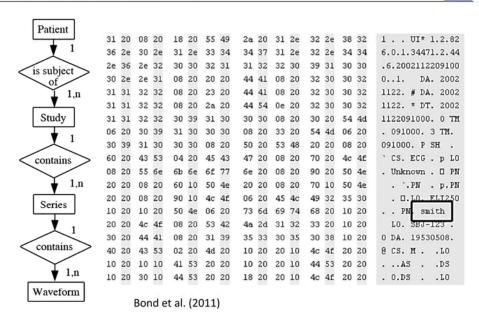
- There has been a large number of ECG storage formats proclaiming to promote interoperability.
- There are three predominant ECG formats:
  - SCP-ECG (1993, European Standard, Binary data)
  - DICOM-ECG (2000, European Standard, Binary data)
  - HL7 aECG (2001, ANSI Standard, XML data)
- A mass of researchers have been proposing their own ECG storage formats to be considered for implementation (= proprietary formats).
- Binary has been the predominant method for storing ECG data

Bond, R. R., Finlay, D. D., Nugent, C. D. & Moore, G. (2011) A review of ECG storage formats. *International Journal of Medical Informatics*, 80, 10, 681-697.





#### Standardization of ECG (2/2)




#### Overview on current ECG storage formats

| ECG format Year Method of implementation |      | Specification | Viewers                                                                                        |                                                            |  |
|------------------------------------------|------|---------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| SCP-ECG                                  | 1993 | BINARY        | Can be freely downloaded from the Internet [7].                                                | Freely available SCP-ECG Viewer made<br>by EcgSoft [8].    |  |
| DICOM-WS 30                              | 2000 | BINARY        | Can be freely downloaded from the Internet [5].                                                | Freely available DICOM-ECG viewer made by Charruasoft [9]. |  |
| HL7 aECG                                 | 2001 | XML           | The XML Schema can be used as the<br>specification or the implementation guide<br>by AMPS [6]. | Freely available aECG viewer by AMPS [10].                 |  |
| ecgML                                    | 2003 | XML           | Can be freely downloaded from the Internet [11].                                               | None currently exist. Under development.                   |  |
| MFER                                     | 2003 | BINARY        | Can be freely downloaded from the Internet [12].                                               | Freely available MFER viewer [13].                         |  |
| Philips XML                              | 2004 | XML           | The specification is packaged with the actual product.                                         | Philips viewer. Not freely available.                      |  |
| XML-ECG                                  | 2007 | XML           | Can be freely downloaded from the Internet [14].                                               | XML-ECG viewer [14]. Not freely available.                 |  |
| mECGml                                   | 2008 | XML           | Can be freely downloaded from the Internet [15].                                               | mECGml mobile viewer [15]. Not freely available.           |  |
| ecgAware                                 | 2008 | XML           | Can be freely downloaded from the Internet [16].                                               | TeleCardio viewer [16]. Not freely available.              |  |

Bond, R. R., Finlay, D. D., Nugent, C. D. & Moore, G. (2011) A review of ECG storage formats. *International Journal of Medical Informatics*, 80, 10, 681-697.

Health Informatics – Andreas Holzinger 43 Health Informatics – Andreas Holzinger



Health Informatics – Andreas Holzinger

45



## 03 Knowledge Representation

#### **Examples for famous knowledge representations**



| Mathematical Logic | Psychology | Biology          | Statistics | Economics         |
|--------------------|------------|------------------|------------|-------------------|
| Aristotle          |            |                  |            |                   |
| Descartes          |            |                  |            |                   |
| Boole              | James      |                  | Laplace    | Bentham<br>Pareto |
| Frege              |            |                  | Bernoullii | Friedman          |
| Peano              |            |                  |            |                   |
|                    | Hebb       | Lashley          | Bayes      |                   |
| Goedel             | Bruner     | Rosenblatt       |            |                   |
| Post               | Miller     | Ashby            | Tversky,   | Von Neumann       |
| Church             | Newell,    | Lettvin          | Kahneman   | Simon             |
| Turing             | Simon      | McCulloch, Pitts |            | Raiffa            |
| Davis              |            | Heubel, Weisel   |            |                   |
| Putnam             |            |                  |            |                   |
| Robinson           |            |                  |            |                   |
| Logic SOAR         |            | Connectionism    | Causal     | Rational          |
|                    | Frames     |                  | Networks   | Agents            |

Davis, R., Shrobe, H., Szolovits, P. 1993 What is a knowledge representation? Al Magazine, 14, 1, 17-33.

Health Informatics - Andreas Holzinger



#### Formalization versus Expressivity



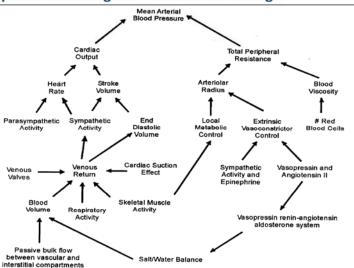
Yes, of course.
That is exactly why I hate you,

Health Informatics - Andreas Holzinger

49

General logic Formal ontologies Modal logic Expressivity First-order logic Description logic Propositional logic Formal languages Frames Blobel, B. Formal taxonomies (2011) Ontology Data models Meta-data and driven health XML Schema data models Database schemas information systems Principled, informational hierarchies architectures XML DTD Thesauri and enable pHealth Structured glossaries taxonomies for empowered Thesauri patients. Data dictionaries International Ad hoc hierarchies Glossaries and data Journal of "ordinary" glossaries Medical dictionaries Terms Informatics, 80,

Health Informatics - Andreas Holzinger


2, e17-e25.

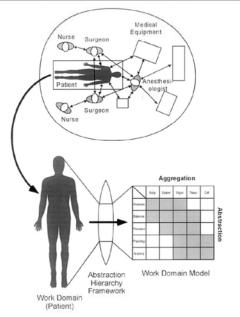
50

52

#### **Example for Modeling of biomedical knowledge**



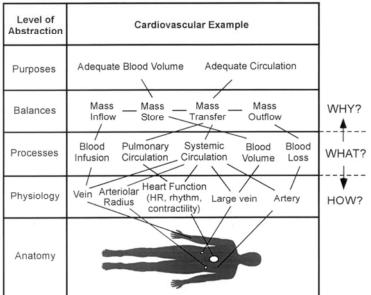



Hajdukiewicz, J. R., Vicente, K. J., Doyle, D. J., Milgram, P. & Burns, C. M. (2001) Modeling a medical environment: an ontology for integrated medical informatics design. *International Journal of Medical Informatics*, 62, 1, 79-99.

#### Building and Creating a work domain model (WDM)



Formalization


Hajdukiewicz, J. R., Vicente, K. J., Doyle, D. J., Milgram, P. & Burns, C. M. (2001) Modeling a medical environment: an ontology for integrated medical informatics design. *International Journal of Medical Informatics*, 62, 1, 79-99.



Health Informatics – Andreas Holzinger 51 Health Informatics – Andreas Holzinger

#### Partial abstraction of the cardiovascular system





Hajdukiewicz et al. (2001)

Health Informatics - Andreas Holzinger

53

#### WDM of: (b) the cardiovascular system



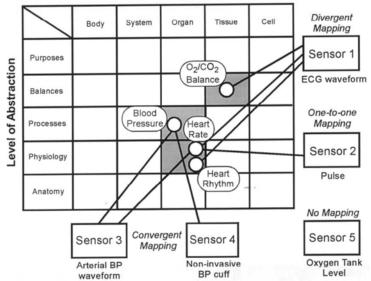
Hajdukiewicz

et al. (2001)

|                      |            | /                                                              | <i>i</i>                                                                                                   | 1                                                                                                                |                                                                                                                             |
|----------------------|------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| b)                   |            | System                                                         | Subsystem                                                                                                  | Organ                                                                                                            | Component                                                                                                                   |
| u                    | Purposes   | Adequate Circulation<br>and<br>Blood Volume                    |                                                                                                            |                                                                                                                  |                                                                                                                             |
| ostractic            | Balances   | Cardiovascular System:<br>Mass Inflow, Storage,<br>and Outflow | Pulmonary and Systemic<br>Systems: Balance Mass Flows;<br>Mass Inflow, Storage,<br>Outflow, and Transfer   | Organ Vascular Network:<br>Balance Mass Flows; Mass<br>Inflow, Storage, Outflow,<br>and Transfer                 | Vascular Components:<br>Balance Mass Flows; Mass<br>Inflow, Storage, Outflow,<br>and Transfer                               |
| Level of Abstraction | Processes  | Circulation, Volume, Fluid<br>Supply and Sink                  | Pulmonary and Systemic<br>Circulation (Pressure, Flow,<br>Resistance) and Volume, Fluid<br>Supply and Sink | Cardiac Output, Organ Circulation (Pressure, Flow, Resistance), Fluid Supply and Sink from each Vascular Network | Circulation through Vascular<br>Components (Pressure, Flow,<br>Resistance), Vascular Blood<br>Volume, Fluid Supply and Sink |
| Le                   | Physiology | Cardiovascular<br>System Function                              | Pulmonary and Systemic<br>System Function                                                                  | Cardiac Function<br>(Heart Rate, Rhythm)                                                                         | Atrial and Ventricular Function;<br>Arterial, Arteriolar, Capillary,<br>Venule, Venous Function                             |
|                      | Anatomy    |                                                                |                                                                                                            | Cardiac<br>Anatomy                                                                                               | Atrial, Ventricular,<br>and Vascular Anatomy                                                                                |

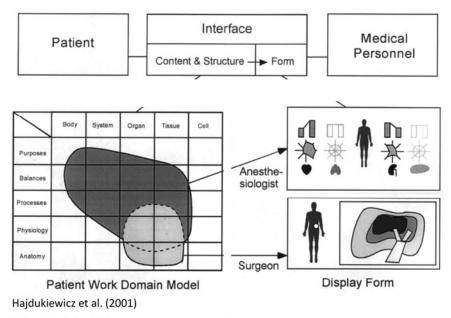
Hajdukiewicz et al. (2001)

#### WDM of: (a) the human body


#### **Level of Aggregation**

| a)                   |                        | Body                                                                                                                                    | System                                                                           | Organ                                                                           | Tissue                                                                           | Cell                                                                               |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| _                    | Purposes               | Homeostasis<br>(Maintenance of<br>Internal<br>Environment)                                                                              | Adequate Circulation,<br>Blood Volume,<br>Oxygenation, Ventilation               | Adequate Organ<br>Perfusion, Blood Flow                                         | Adequate Tissue<br>Oxygenation and<br>Perfusion                                  | Adequate Cellular<br>Oxygenation and<br>Perfusion                                  |
| stractio             | Balances               | Balances: Mass and<br>Energy Inflow,<br>Storage, and Outflow                                                                            | System Balances: Mass<br>and Energy Inflow,<br>Storage, Outflow, and<br>Transfer | Organ Balances: Mass<br>and Energy Inflow,<br>Storage, Outflow, and<br>Transfer | Tissue Balances: Mass<br>and Energy Inflow,<br>Storage, Outflow, and<br>Transfer | Cellular Balances: Mass<br>and Energy Inflow,<br>Storage, Outflow, and<br>Transfer |
| Level of Abstraction | Processes              | Total Volume of Body<br>Fluid, Temperature,<br>Supply: O <sub>2</sub> , Fluids,<br>Nutrients, Sink: CO <sub>2</sub> ,<br>Fluids, Wastes | Circulation,<br>Oxygenation,<br>Ventilation, Circulating<br>Volume               | Perfusion Pressure,<br>Organ Blood Flow,<br>Vascular Resistance                 | Tissue Oxygenation,<br>Respiration, Metabolism                                   | Cell Metabolism,<br>Chemical Reaction,<br>Binding, Inflow, Outflow                 |
| Lev                  | Physiology             |                                                                                                                                         | System<br>Function                                                               | Organ<br>Function                                                               | Tissue<br>Function                                                               | Cellular<br>Function                                                               |
|                      | Anatomy                |                                                                                                                                         |                                                                                  | Organ<br>Anatomy                                                                | Tissue<br>Anatomy                                                                | Cellular<br>Anatomy                                                                |
|                      | łukiewicz<br>I. (2001) |                                                                                                                                         |                                                                                  | 1                                                                               |                                                                                  | ces include: Water, Salt,<br>trolytes, pH, O <sub>2</sub> , CO <sub>2</sub>        |

#### **Example: Mapping OR sensors onto the WDM**














Health Informatics - Andreas Holzinger

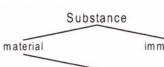
57

#### **04** Ontologies

Health Informatics - Andreas Holzinger

#### A simple question: What is a Jaguar?

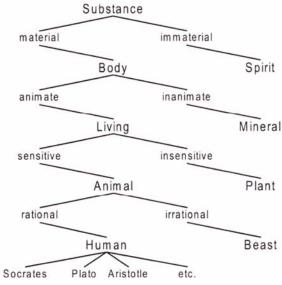












#### The first "Ontology of what exists"





\* 384 BC † 322 BC

Simonet, M., Messai, R., Diallo, G. & Simonet, A. (2009) Ontologies in the Health Field. In: Berka, P., Rauch, J. & Zighed, D. A. (Eds.) Data Mining and Medical Knowledge Management: Cases and Applications. New York, Medical Information Science Reference, 37-56.



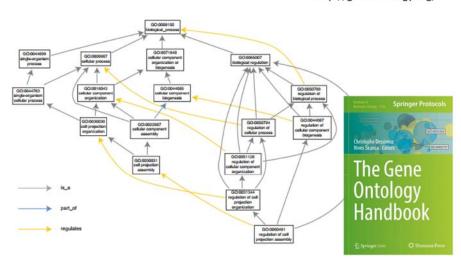
Later: Porphyry (≈ 234-305) 2 tree

Health Informatics - Andreas Holzinger Health Informatics - Andreas Holzinger



- Aristotle attempted to classify the things in the world where it is employed to describe the existence of beings in the world;
- Artificial Intelligence and Knowledge Engineering deals also with reasoning about models of the world.
- Therefore, Al researchers adopted the term 'ontology' to describe what can be computationally represented of the world within a program.
- "An ontology is a formal, explicit specification of a shared conceptualization".
  - A 'conceptualization' refers to an abstract model of some phenomenon in the world by having identified the relevant concepts of that phenomenon.
  - 'Explicit' means that the type of concepts used, and the constraints on their use are explicitly defined.

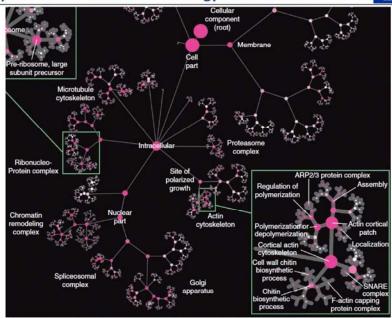
Studer, R., Benjamins, V. R. & Fensel, D. (1998) Knowledge Engineering: Principles and methods. *Data & Knowledge Engineering*, 25, 1-2, 161-197.


Health Informatics - Andreas Holzinger

61

#### **Example: GO**




http://geneontology.org/



Hastings, J. 2017. Primer on Ontologies. In: Dessimoz, C. & Škunca, N. (eds.) The Gene Ontology Handbook. New York, NY: Springer New York, pp. 3-13, doi:10.1007/978-1-4939-3743-1\_1.

#### **Example: Network-Extracted Ontology of human cell**



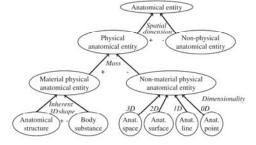


http://www.kurzweilai.net/images/cell-model.png (Credit: UC San Diego School of Medicine)

#### **Ontology: Terminology**



- Ontology = a structured description of a domain in form of concepts → relations;
- The IS-A relation provides a taxonomic skeleton;
- Other relations reflect the domain semantics;
- Formalizes the terminology in the domain;
- Terminology = terms definition and usage in the specific context;
- Knowledge base = instance classification and concept classification;
- Classification provides the domain terminology


•••

#### Additionally an ontology may satisfy:



- (1) In addition to the IS-A relationship, partitive (meronomic) relationships may hold between concepts, denoted by PART-OF. Every PART-OF relationship is irreflexive, asymmetric and transitive. IS-A and PART-OF are also called hierarchical relationships.
- (2) In addition to hierarchical relationships, associative relationships may hold between concepts. Some associative relationships are domain-specific (e.g., the branching relationship between arteries in anatomy and rivers in geography).
- (3) Relationships r and r' are inverses if, for every pair of concepts x and y, the relations  $\langle x, r, y \rangle$  and  $\langle y, r', x \rangle$  hold simultaneously. A symmetric relationship is its own inverse. Inverses of hierarchical relationships are called INVERSE-IS-A and HAS-PART, respectively.
- (4) Every non-taxonomic relation of x to z,  $\langle x, r, z \rangle$ , is either inherited  $(\langle y, r, z \rangle)$  or refined  $(\langle y, r, z' \rangle)$  where z' is more specific than z) by every child y of x. In other words, every child y of x has the same properties (z) as it parent or more specific properties (z').

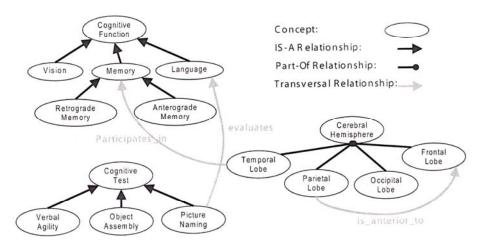
Zhang, S. & Bodenreider, O. 2006. Law and order: Assessing and enforcing compliance with ontological modeling principles in the Foundational Model of Anatomy. *Computers in Biology and Medicine*, 36, (7-8), 674-693.



Health Informatics - Andreas Holzinger

65

#### **Examples of Biomedical Ontologies**




| Name Ref      | Dof  | Scope                                                 | #        | # concept names |     |     | I., I | Subs. | Version / Notes                               |
|---------------|------|-------------------------------------------------------|----------|-----------------|-----|-----|-------|-------|-----------------------------------------------|
|               | Nei. |                                                       | concepts | Min             | Max | Med | Avg   | Hier. | version / ivoles                              |
| SNOMED CT     | [21] | Clinical medicine (patient records)                   | 310,314  | 1               | 37  | 2   | 2.57  | yes   | July 31, 2007                                 |
| LOINC         | [24] | Anical observations and laboratory tests              | 46,406   | 1               | 3   | 3   | 2.85  | no    | Version 2.21<br>(no "natural language" names) |
| FMA           | [25] | Human anatomical structures                           | 72,000   | 1               | ?   | ?   | ~1.50 | yes   | (not yet in the UMLS)                         |
| Gene Ontology | [28] | Functional annotation of gene products                | 22,546   | 1               | 24  | 1   | 2.15  | yes   | Jan. 2, 2007                                  |
| RxNorm        | [31] | Standard names for prescription drugs                 | 93,426   | 1               | 2   | 1   | 1.10  | no    | Aug. 31, 2007                                 |
| NCI Thesaurus | [34] | Cancer research, clinical care, public information    | 58,868   | 1               | 100 | 2   | 2.68  | yes   | 2007_05E                                      |
| ICD-10        | [36] | Diseases and conditions (health statistics)           | 12,318   | 1               | 1   | 1   | 1.00  | no    | 1998 (tabular)                                |
| MeSH          | [38] | Biomedicine (descriptors for indexing the literature) | 24,767   | 1               | 208 | 5   | 7.47  | no    | Aug. 27, 2007                                 |
| UMLS Meta.    | [41] | Terminology integration in the life sciences          | 1,4 M    | 1               | 339 | 2   | 3.77  | n/a   | 2007AC (English only)                         |

Bodenreider, O. (2008) Biomedical ontologies in action: role in knowledge management, data integration and decision support. *Methods of Information In Medicine*, 47, Supplement 1, 67-79.

#### Example of a conceptual structure from CogSci





Simonet, M., Messai, R., Diallo, G. & Simonet, A. (2009) Ontologies in the Health Field. In: Berka, P., Rauch, J. & Zighed, D. A. (Eds.) *Data Mining and Medical Knowledge Management: Cases and Applications. New York, Medical Information Science Reference, 37-56.* 

Health Informatics - Andreas Holzinger

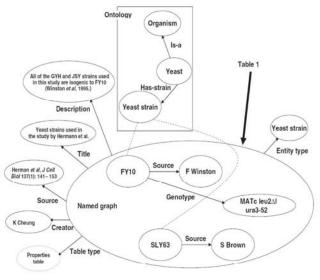
66

#### **Taxonomy of Ontology Languages**



#### ■ 1) Graph notations

- Semantic networks
- Topic Maps (ISO/IEC 13250)
- Unified Modeling Language (UML)
- Resource Description Framework (RDF)


#### 2) Logic based

- Description Logics (e.g., OIL, DAML+OIL, OWL)
- Rules (e.g. RuleML, LP/Prolog)
- First Order Logic (KIF Knowledge Interchange Format)
- Conceptual graphs
- (Syntactically) higher order logics (e.g. LBase)
- Non-classical logics (e.g. Flogic, Non-Mon, modalities)

#### 3) Probabilistic/fuzzy

#### **Example for (1) Graphical Notation: RDF**





| Name     | Genotype*                                                                                   | Source      |
|----------|---------------------------------------------------------------------------------------------|-------------|
| FY10     | MAT's leu2\D1 uru3-52                                                                       | F Winston   |
| FY22     | MAT's his 35200 usu3-82                                                                     | F Winston   |
| CHYI     | MAT's leu2\Delta1 his3\Delta200 ura3-52 mdm20-1                                             | This study  |
| JSY707   | MAT's his3\(\Delta\)200 ura3-\$2 tpm1D::HIS3                                                | This study  |
| JSY948   | MAT's leu2\(\Delta\)/leu2\(\Delta\) ura3-\$2/ura3-\$2                                       | This study  |
| JSY999   | MAT's leu2\Delta1 his3\Delta200 uru3-52                                                     | This study  |
| JSY1065  | MAT's lou2A1 his3A200 ura3-52 mdm20D::<br>LEU2                                              | This study  |
| JSY1084  | MAT's leu2\D1 his3\D200 uru3-52 tpm1D::HIS3                                                 | This study  |
| J5Y1138  | MAT's leu2A1/leu2A1 lus3A200/lus3A 200<br>unu3-S2/unu3-S2 tpm1D::HBS3/ +<br>mdm20D::LEU2/ + | This study  |
| JSY1285  | MATs leu2\Delta1 his3\Delta200 uru3-52 tpm2D::<br>HIS3                                      | This study  |
| JSY1.340 | MAT's leu2\Lambda1 his3\Lambda200 ura3-52 mdm20D::<br>LEU2                                  | This study  |
| JSY1374  | MATu leu2A1/leu2A1 his3A200/his3A200<br>unu3-52/unu3-52 tpm2D::HIS3/+ mdm20D::<br>LEU2/+    | This study  |
| ABY1249  | MAT's leu2-3,112 ura3-52 lys2-801 ade2-101<br>ade3 bem2-10                                  | A Bretscher |
| IGY4     | MAT's leu2-3,112 his3\(\Delta\)200 uru3-52 lys2-801<br>ade2 sac6D::LEU2                     | A Adams     |
| SLY63    | MATa leu2-3,112 ura3-52 trp1-1 his6 myo2-66                                                 | S Brown     |

Cheung, K.-H., Samwald, M., Auerbach, R. K. & Gerstein, M. B. 2010. Structured digital tables on the Semantic Web: toward a structured digital literature. *Molecular Systems Biology, 6, 403*.

Health Informatics - Andreas Holzinger

69

#### **OWL class constructors**



#### Intersection/conjunction of concepts, Speak: C1 and ... Cn

| Constructor     | DL syntax                      | Example                                        |
|-----------------|--------------------------------|------------------------------------------------|
| Intersection    | $C_1\sqcap\ldots\sqcap C_n$    | Anatomical_Abnormality   Pathological_Function |
| Union           | $C_1 \sqcup \ldots \sqcup C_n$ | Body_Substance \( \text{Organic_Chemical} \)   |
| Complement      | $\neg C$                       | -Invertebrate                                  |
| One of          | $X_1 \sqcup \ldots \sqcup X_n$ | Oestrogen u Progesterone                       |
| All values from | ∀P.C                           | ∀co_occurs_with.Plant                          |
| Some values     | ∃P.Ç                           | ∃co_occurs_with.Animal                         |
| Max cardinality | $\leq nP$                      | 1has_ingredient                                |
| Min cardinality | $\geq nP$                      | ≥ 2x ingredient                                |

Universal Restriction
Speak: All P-successors are in

Bhatt et al. (2009)

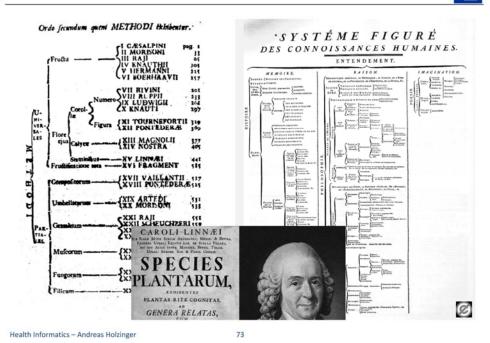
Existential Restriction eak: An P-successor exists in C

#### **Example for (2) Web Ontology Language OWL**



| DL = Description Logic                                  | Concept inclusion,<br>Speak: All C1 are C2 |                                |  |
|---------------------------------------------------------|--------------------------------------------|--------------------------------|--|
| Axiom Concept equivalence Speak: C1 is equivalent to C2 | OL syntax                                  | Example                        |  |
| Sub class                                               | $C_1 \sqsubseteq C_2$                      | Alga ⊑ Plant ⊑ Organism        |  |
| Equivalent class                                        | $C_1 \equiv C_2$                           | Cancer                         |  |
| Disjoint with                                           | $C_1 \sqsubseteq \neg C_2$                 | Vertebrate ⊑ ¬Invertebrate     |  |
| Same individual                                         | $x_1 \equiv x_2$                           | Blue_Shark   ■ Prionace_Glauca |  |
| Different from                                          | $x_1 \sqsubseteq \neg x_2$                 | Sea Horse   ¬Horse             |  |
| Sub property                                            | $P_1 \sqsubseteq P_2$                      | has_mother ⊑ has_parent        |  |
| Equivalent property                                     | $P_1 \equiv P_2$                           | treated_by = cured_by          |  |
| Inverse                                                 | $P_1 \equiv P_2^-$                         | location_of ≡ has_location -   |  |
| Transitive property                                     | $P^+ \sqsubseteq P$                        | part_of <sup>+</sup> ⊑ part_of |  |
| Functional property                                     | $\top \sqsubseteq \leq 1P$                 | ⊤ ⊑≤ 1has_tributary            |  |
| Inverse functional property                             | $\top \sqsubseteq \leq 1P^-$               | ⊤ ⊑≤ 1has_scientific_name⁻     |  |

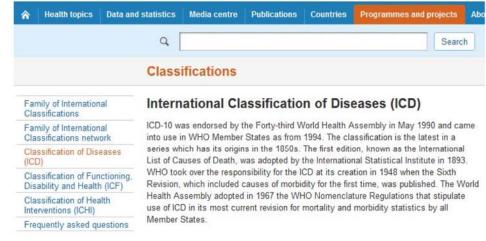
Bhatt, M., Rahayu, W., Soni, S. P. & Wouters, C. (2009) Ontology driven semantic profiling and retrieval in medical information systems. *Web Semantics: Science, Services and Agents on the World Wide Web, 7, 4, 317-331.* 


Health Informatics - Andreas Holzinger

70



## 05 Medical Classifications


Health Informatics – Andreas Holzinger 71 Health Informatics – Andreas Holzinger



#### International Classification of Diseases (ICD)







#### http://www.who.int/classifications/icd/en

- Since the classification by Carl von Linne (1735) approx. 100+ various classifications in use:
  - International Classification of Diseases (ICD)
  - Systematized Nomenclature of Medicine (SNOMED)
  - Medical Subject Headings (MeSH)
  - Foundational Model of Anatomy (FMA)
  - Gene Ontology (GO)
  - Unified Medical Language System (UMLS)
  - Logical Observation Identifiers Names & Codes (LOINC)
  - National Cancer Institute Thesaurus (NCI Thesaurus)

Health Informatics – Andreas Holzinger

74

#### International Classification of Diseases (ICD)



- 1629 London Bills of Mortality
- 1855 William Farr (London, one founder of medical statistics): List of causes of death, list of diseases
- 1893 von Jacques Bertillot: List of causes of death
- 1900 International Statistical Institute (ISI) accepts Bertillot's list



- 1948 WHO
- 1965 ICD-8
- 1989 ICD-10
- 2015 ICD-11 due
- 2018 ICD-11 adopt



Health Informatics – Andreas Holzinger 75 Health Informatics – Andreas Holzinger



- 1965 SNOP, 1974 SNOMED, 1979 SNOMED II
- 1997 (Logical Observation Identifiers Names and Codes (LOINC) integrated into SNOMED
- 2000 SNOMED RT, 2002 SNOMED CT





#### 239 pages

#### SNOMED CT® Technical Reference Guide January 2011 International Release

(US English)

http://www.isb.nhs.uk/documents/isb-0034/amd-26-2006/techrefguid.pdf

Health Informatics - Andreas Holzinger

77

#### Medical Subject Headings (MeSH)



- MeSH thesaurus is produced by the National Library of Medicine (NLM) since 1960.
- Used for cataloging documents and related media and as an <u>index</u> to search these documents in a database and is part of the metathesaurus of the Unified Medical Language System (UMLS).
- This thesaurus originates from keyword lists of the Index Medicus (today Medline);
- MeSH thesaurus is polyhierarchic, i.e. every concept can occur multiple times. It consists of the three parts:
  - 1. MeSH Tree Structures,
  - 2. MeSH Annotated Alphabetic List and
  - 3. Permuted MeSH.

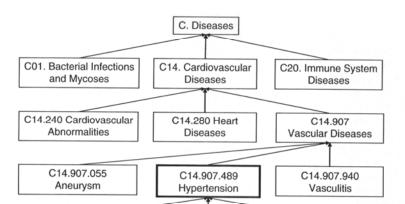
#### A

24184005|Finding of increased blood pressure (finding) → 38936003|Abnormal blood pressure (finding) AND roleGroup SOME (363714003|Interprets (attribute) SOME 75367002|Blood pressure (observable entity))

#### В

12763006|Finding of decreased blood pressure (finding) → 392570002|Blood pressure finding (finding) AND roleGroup SOME (363714003|Interprets (attribute) SOME 75367002|Blood pressure (observable entity))

Rector, A. L. & Brandt, S. (2008) Why Do It the Hard Way? The Case for an Expressive Description Logic for SNOMED. *Journal of the American Medical Informatics Association*, 15, 6, 744-751.


Health Informatics - Andreas Holzinger

78

#### The 16 trees in MeSH



- 1. Anatomy [A]
- 2. Organisms [B]
- 3. Diseases [C]
- 4. Chemicals and Drugs [D]
- 5. Analytical, Diagnostic and Therapeutic Techniques and Equipment [E]
- Psychiatry and Psychology [F]
- 7. Biological Sciences [G]
- 8. Natural Sciences [H]
- 9. Anthropology, Education, Sociology, Social Phenomena [I]
- 10. Technology, Industry, Agriculture [J]
- 11. Humanities [K]
- 12. Information Science [L]
- 13. Named Groups [M]
- 14. Health Care [N]
- 15. Publication Characteristics [V]
- 16. Geographicals [Z]



C14.907.489.480

Hypertension,

Pregnancy-Induced

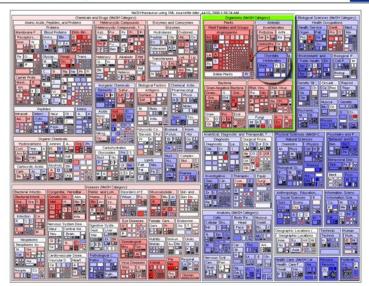
Hersh, W. (2010) Information Retrieval: A Health and Biomedical Perspective. New York, Springer.

Health Informatics - Andreas Holzinger

C14.907.489.330

Hypertension,

Malignant


81

#### MeSH Interactive Tree-Map Visualization (see L 9)



C14.907.489.631

Hypertension, Renal



Eckert, K. (2008) A methodology for supervised automatic document annotation. *Bulletin of IEEE Technical Committee on Digital Libraries TCDL, 4, 2.* 

#### National Library of Medicine - Medical Subject Headings

#### 2011 MeSH

#### **MeSH Descriptor Data**

Return to Entry Page

Standard View. Go to Concept View; Go to Expanded Concept View

| MeSH<br>Heading         | Hypertension                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tree Number             | C14.907.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Annotation              | not for intracranial or intraocular pressure; relation to <u>BLOOD PRESSURE</u> : Manual <u>23.27</u> ; Goldblatt kidney is <u>HYPERTENSION</u> , <u>GOLDBLATT</u> see <u>HYPERTENSION</u> , <u>RENOVASCULAR</u> ; hypertension with kidney disease is probably <u>HYPERTENSION</u> , RENAL, not <u>HYPERTENSION</u> ; venous hypertension: index under <u>VENOUS PRESSURE</u> (IM) & do not coordinate with <u>HYPERTENSION</u> ; <u>PREHYPERTENSION</u> is also available |
| Scope Note              | Persistently high systemic arterial <u>BLOOD PRESSURE</u> . Based on multiple readings ( <u>BLOOD PRESSURE DETERMINATION</u> ), hypertension is currently defined as when <u>SYSTOLIC PRESSURE</u> is consistently greater than 140 mm Hg or when <u>DIASTOLIC PRESSURE</u> is consistently 90 mm Hg or more.                                                                                                                                                               |
| Entry Term              | Blood Pressure, High                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| See Also                | Antihypertensive Agents                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| See Also                | Vascular Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Allowable<br>Qualifiers | BL CF CL CL CN CO DH DI DT EC EH EM EN EP ET GE HI IM ME MI MO NU PA PC PP PS PX RA RH RI RT SU TH UR US VE VI                                                                                                                                                                                                                                                                                                                                                              |
| Date of Entry           | 19990101                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Unique ID               | D006973                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

http://www.nlm.nih.gov/mesh/

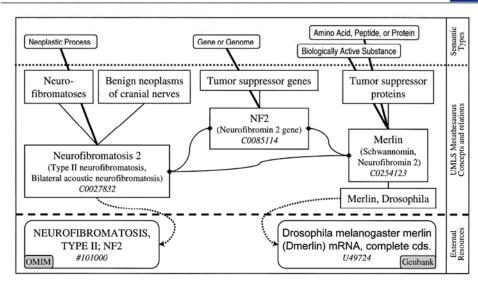
Health Informatics - Andreas Holzinger

82

#### **UMLS - Unified Medical Language System**



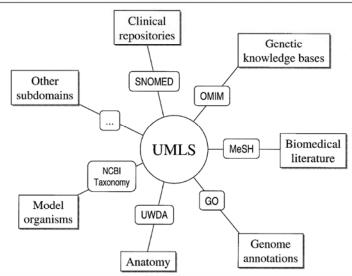



#### http://www.nlm.nih.gov/research/umls/





#### Example of proteins and diseases in the UMLS






Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. *Nucleic Acids Research*, *32*, *D267-D270*.

#### **UMLS Metathesaurus integrates sub-domains**





Bodenreider, O. (2004) The Unified Medical Language System (UMLS): integrating biomedical terminology. *Nucleic Acids Research*, 32, D267-D270.

Health Informatics - Andreas Holzinger

86



## **Conclusion and Future Challenges**

W/

- To find a trade-off between standardization and personalization [1];
- The large amounts of non-standardized data and unstructured information ("free text") [2];
- Low integration of standardized terminologies in the daily clinical practice (Who is using e.g. SNOMED, MeSH, UMLS in daily routine?);
- Low acceptance of classification codes amongst practitioners;
- Holmes, C., Mcdonald, F., Jones, M., Ozdemir, V., Graham, J. E. 2010. Standardization and Omics Science: Technical and Social Dimensions Are Inseparable and Demand Symmetrical Study. Omics-Journal of Integr. Biology, 14, (3), 327-332.
- Holzinger, A., Schantl, J., Schroettner, M., Seifert, C. & Verspoor, K. 2014. Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges. In: LNCS 8401. Berlin Heidelberg: Springer pp. 271-300.

Health Informatics - Andreas Holzinger

89





- Data fusion Data integration in the life sciences
- Self learning stochastic ontologies [1]
- Interactive, integrative machine learning and interactive ontologies - human-in-the-loop
- Never ending learning machines [2] for automatically building knowledge spaces
- Integrating ontologies in daily work
- Knowledge and context awareness

[1] Ongenae, F., Claeys, M., Dupont, T., Kerckhove, W., Verhoeve, P., Dhaene, T. & De Turck, F. 2013. A probabilistic ontology-based platform for self-learning context-aware healthcare applications. Expert Systems with Applications, 40, (18), 7629-7646.

[2] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr, E. R. & Mitchell, T. M. 2010. Toward an Architecture for Never-Ending Language Learning. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta: AAAI. 1306-1313.

Health Informatics - Andreas Holzinger

90



#### **Appendix**



**Between Standardization and Personalization** 



EBM CPG

#### **Standardized Medicine**



GBM GPM

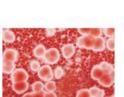
#### **Pervasive Healthcare**

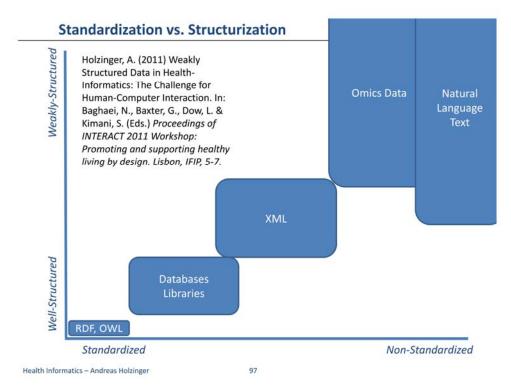
**Preventive Health Integration** 

EBM = Evidence Based Medicine CPG = Clinical Practice Guideline GBM = Genome Based Medicine GPM = Genetic Polymorphism

Tanaka, H. (2010)

# Privacy, Security, Safety, Data Protection, Anonymity, Fair Use, ...


Health Informatics - Andreas Holzinger


94

#### **Omics-data integration**



- Genomics (sequence annotation)
- Transcriptomics (microarray)
- Proteomics (Proteome Databases)
- Metabolomics (enzyme annotation)
- Protein-DNA interactions
- Protein-Protein interactions
- Fluxomics (isotopic tracing, metabolic pathways)
- Phenomics (biomarkers)
- Epigenetics
- Microbiomics
- Lipidomics





#### Example: 1-D data (univariate sequential data objects)



SMILES (Simplified Molecular Input Line Entry Specification)

... is a compact machine and human-readable chemical nomenclature:

e.g. Viagra:

CCc1nn(C)c2c(=O)[nH]c(nc12)c3cc(ccc3OCC)S(=O)(=O)N4CC

N(C)CC4

...is Canonicalizable

...is Comprehensive

...is Well Documented

http://www.daylight.com/dayhtml\_tutorials/languages/smiles/index.html

#### **Data Dimensionality**



- 0-D data = a <u>data point</u> existing isolated from other data, e.g. integers, letters, Booleans, etc.
- 1-D data = consist of a <u>string</u> of 0-D data, e.g.
   Sequences representing nucleotide bases and amino acids, SMILES etc.
- 2-D data = having <u>spatial component</u>, such as images, NMR-spectra etc.
- 2.5-D data = can be stored as a 2-D matrix, but can represent biological entities in three or more dimensions, e.g. <u>PDB records</u>
- 3-D data = having 3-D spatial component, e.g. image voxels, e-density maps, etc.
- H-D Data = data having arbitrarily <u>high dimensions</u>

Health Informatics - Andreas Holzinger

Health Informatics - Andreas Holzinger

98

#### Reflection from last lecture



The Quiz-Slide will be shown during the course

