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From Clinical Decision Support
to Causal Reasoning and explainable Al
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B Advance Organizer (2/2) @HCAI -

= DXplain = a DSS from the Harvard Medical School, to assist making a diagnosis (clinical
consultation), and also as an instructional instrument (education); provides a
description of diseases, etiology, pathology, prognosis and up to 10 references for each
disease;

= Etiology = in medicine (many) factors coming together to cause an illness (see
causality)

= Explainable Al = Explainability = upcoming fundamental topic within recent Al;
answering e.g. why a decision has been made

= Expert-System = emulates the decision making processes of a human expert to solve
complex problems;

= GAMUTS in Radiology = Computer-Supported list of common/uncommon differential
diagnoses;

= ILIAD = medical expert system, developed by the University of Utah, used as a teaching
and testing tool for medical students in problem solving. Fields include Pediatrics,
Internal Medicine, Oncology, Infectious Diseases, Gynecology, Pulmonology etc.

= Interpretability = there is no formal technical definition yet, but it is considered as a
prerequisite for trust

= MYCIN = one of the early medical expert systems (Shortliffe (1970), Stanford) to
identify bacteria causing severe infections, such as bacteremia and meningitis, and to
recommend antibiotics, with the dosage adjusted for patient's body weight;

= Reasoning = cognitive (thought) processes involved in making medical decisions
(clinical reasoning, medical problem solving, diagnostic reasoning;

= Transparency = opposite of opacity of black-box approaches, and connotes the ability
to understand how a model works (that does not mean that it should always be

understood, but that —in the case of necessity — it can be re-enacted
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B Reflection from last lecture @HCAl A
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B Keywords @HCAIA-

= Decision support system (DSS)

= MYCIN — Rule Based Expert System
= GAMUTS in Radiology

= Reasoning under uncertainty

= Example: Radiotherapy planning

= Example: Case-Based Reasoning

= Explainable Artificial intelligence

= Re-trace > Understand > Explain

= Transparency > Trust > Acceptance
= Fairness > Transparency > Accountability
= Causality > Causability

= (Some) Methods of Explainable Al
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B Agenda @HCAI -

= 00 Reflection — follow-up from last lecture

= 01 Decision Support Systems (DSS)

= 02 History of DSS = History of Al

= 03 Example: Towards Personalized Medicine
= 04 Example: Case Based Reasoning (CBR)

= 05 Causal Reasoning

= 06 Explainability — Causability

= 07 (Some) Methods of Explainable Al
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B How do you explain this ... @HCAI A

a Carcinoma: 135 images
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Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun 2017.
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, (7639), 115-118
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B Advance Organizer (1/2) @HCAI -

* Causality = fundamental relationship between cause and effect

= Causability = similar to the concept of usability the property of a human explanation

®  Case-based reasoning (CBR) = process of solving new problems based on the solutions of similar past
problems;

*  Certainty factor model (CF) = a method for managing uncertainty in rule-based systems;

= CLARION = Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) is a cognitive
architecture that incorporates the distinction between implicit and explicit processes and focuses on
capturing the interaction between these two types of processes. By focusing on this distinction, CLARION
has been used to simulate several tasks in cognitive psychology and social psychology. CLARION has also
been used to implement intelligent systems in artificial intelligence applications.

= Clinical decision support (CDS) = process for enhancing health-related decisions and actions with
pertinent, organized clinical knowledge and patient information to improve health delivery;

= Clinical Decision Support System (CDSS) = expert system that provides support to certain reasoning
tasks, in the context of a clinical decision;

=  Collective Intelligence = shared group (symbolic) intelligence, emerging from cooperation/competition
of many individuals, e.g. for consensus decision making;

= Counterfactual = relating to or expressing what has not happened or is not the case

= Crowdsourcing = a combination of "crowd" and "outsourcing" coined by Jeff Howe (2006), and describes
a distributed problem-solving model; example for crowdsourcing is a public software beta-test;

=  Decision Making = central cognitive process in every medical activity, resulting in the selection of a final
choice of action out of several alternatives;

= Decision Support System (DSS) = is an IS including knowledge based systems to interactively support
decision-making activities, i.e. making data useful;
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7] @HCAI -

00 Reflection
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B Key Challenges @HCAI -

= Remember: Medicine is an complex application domain —
dealing most of the time with probable information!

= Some challenges include:

= (a) defining hospital system architectures in terms of
generic tasks such as diagnosis, therapy planning and
monitoring to be executed for (b) medical reasoning in (a);

= (c) patient information management with (d) minimum
uncertainty.

= Other challenges include: (e) knowledge acquisition and
encoding, (f) human-ai interface and ai-interaction; and
(g) system integration into existing clinical legacy and
proprietary environments, e.g. the enterprise hospital
information system; to mention only a few.
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[7TY] @HCAI -

01 Decision Support
Systems
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B Decision Making is central in any (medical) work @HCAI A=
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B Example: Clinical Guidelines @HCAl -
il
1
rerter :
=
*
ot sommpand e st
[epatet pias et
P { [E———
aenesinecy ST ——
Medlock, S., Opondo, D., [
Eslami, S., Askari, M., - v )
Wierenga, P., de Rooij, S. E. & [rErpT—
Abu-Hanna, A. (2011) LERM
. Claady cancepts s coag o arry
(Logical Elements Rule
Method): A method for
B —————
assessing and formalizing i crag Sefrstions Carmegerding 1o harry CHRCR)
clinical rules for decision - 1
support. International Journal r '| '|
of Medical Informatics, 80, 4, — | e————— S—
e | [ [
human-centered.ai (Holzinger Group) 16 2019 Machine Learning for Health 02

[TY] @HCAI -
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B The Medical Domain and Decision Making @ HCAI %=
= 400 BC Hippocrates (460-370 BC), father of western

medicine:
= A medical record should accurately reflect the course of
a disease
= A medical record should indicate the probable cause of
a disease

= 1890 William Osler (1849-1919), father of modern
western medicine

= Medicine is a science of uncertainty and an art of
probabilistic decision making

= Today

= Prediction models are based on data features, patient
health status is modelled as high-dimensional feature

vectors ...
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B Example: Triangulation to find diagnoses @HCAI A
Gamut F-137
PHRENIC NERVE PARALYSIS OR
DYSFUNCTION

COMMON
1. lstrogendc (eg. surgical injury: chest iwbe: therapeu-
tic avulsion or injection; subclavian vein punciure)
2. Infection (eg, tubercubosis; fungus discae; absoess)
A, Neoplastic invasion or compresskon (esp. cancinoma
of lung)

UNCOMMON

1. Ancurysm,, softic of other
Corralation of radiographic findings 2. Birth trauma (Erb's palsy)
and Gamut with pasients’ clinical 3, Herpes smter
Aril] S RChpe K ko g i 4, Neuritis, peripheral {eg, diabetic newropathy )
mast likely diagrosis 5. Neurologh disease, (eg. hemiplegi wial
polio: Guillain-Barré 5.
Reeder, M. M. & Felson, B. 2003. 5 Prcurmosis
Reeder and Felson's gamuts in 7. Trauma
radiology: c_omprehens'lve /lst_s of PPy
roentgen differential diagnosis, New 1. Prasadd 5. Athreya BH: Transient parabysis of the phrenic
York, Springer Verlag. nerve associatod with head infury. JAMA, 197023602832
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B Search in an arbitrarily high-dimensional space < 5 min.! @HCAI =%+
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Bl Digression: Clinical Guidelines as DSS & Quality Measure @ HCAI i+

= (Clinical guidelines are systematically developed documents to
assist doctors and patient decisions about appropriate care;

= |n order to build DS, based on a guideline, it is formalized
(transformed from natural language to a logical algorithm), and

= implemented (using the algorithm to program a DSS);

= Toincrease the quality of care, they must be linked to a process
of care, for example:

“80% of diabetic patients should have an HbAlc below 7.0” could be

linked to processes such as:

“All diabetic patients should have an annual HbA1c test” and

“Patients with values over 7.0 should be rechecked within 2 months.”

= Condition-action rules specify one or a few conditions which are
linked to a specific action, in contrast to narrative guidelines
which describe a series of branching or iterative decisions
unfolding over time.

= Narrative guidelines and clinical rules are two ends of a
continuum of clinical care standards.
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B Example - Gamuts in Radiology @HCAI-

RECDER AND FELEON'S
GAMUTS IN RADIOLOGY
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B Example: Triage Tags - International Triage Tags @HCAI -
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Iserson, K. V. & Moskop, J. C. 2007. Triage in
Medicine, Part I: Concept, History, and Types.
Annals of Emergency Medicine, 49, (3), 275-281.

19 Image Source: http://stone.gamaniterh camo:
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B Example: Rheumatology @HCAIA-

Chao, J., Parker, B. A. & Zvaifler, N. J. (2009) Accelerated Cutaneous Nodulosis Associated with
Aromatase Inhibitor Therapy in a Patient with Rheumatoid Arthritis. The Journal of
Rheumatology, 36, 5, 1087-1088.
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@HCAI A

B Gaining out Knowledge of time-series data
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Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, J. (2011). Optimizing Long-Term Treatment
of Rh id Arthritis with S) ic Doc ion. Pervasive Health - 5th International

Conference on Pervasive Computing Techno/ogles for Healthcare, Dublin, IEEE, 550-554.
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@HCAI -

B Example Clinical DSS: Hypothesis-Oriented Algorithm

Schenkman, M., Deutsch, J. E. & Gill-Body, K. M. (2006) An Integrated Framework for Decision
Making in Neurologic Physical Therapist Practice. Physical Therapy, 86, 12, 1681-1702.
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B Bone Changes ... @HCAI -

Ikari, K. & Momohara, S. (2005) Bone Changes in Rheumatoid Arthritis.
New England Journal of Medicine, 353, 15, e13.
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7Y @ HCAI

Can Computers help
doctors to make better
decisions?

For reading and discussion: Michael Duerr-Specht, Randy Goebel & Andreas Holzinger 2015. Medicine and
Health Care as a Data Problem: Will Computers become better medical doctors? In: Holzinger, Andreas, Roecker,
Carsten & Ziefle, Martina (eds.) Smart Health, State-of-the-Art SOTA Lecture Notes in Computer Science LNCS
8700. Heidelberg, Berlin, New York: Springer, pp. 21-40, doi:10.1007/978-3-319-16226-3_2.
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B Example Prediction Models > Feature Generation

@HCAIA-
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B 100+ clinical and functional parameter per Patient

- .

2019 Machine Learning for Health 02

@HCAI -

= 50+ Patients per day ~
5000 data points per

day ...

= Aggregated with specific
scores (Disease Activity

Score, DAS)

= Current patient status is
related to previous data

= = convolution over time

= = time-series data
Simonic, K. M., Holzinger, A., Bloice, M. & Hermann, J. (2011). Optimizing Long-Term Treatment
of Rheumatoid Arthritis with Systematic Documentation. Pervasive Health - 5th International
Conference on Pervasive Computing Technologies for Healthcare, Dublin, IEEE, 550-554.
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B Computers help human doctors to make better decisions? @ HCAI 7

Reasoning Process
Abductive
Hypothesis generation

Human

Computer

Uniquely capable of complex
pattern recognition and
creative thought.

“the whole is greater than the
sum of its pars™

Matches multiple individual
correlations from extensive data
banks based on preconceived
algorithms, Secondary
construction of relationships.
“the whole equals the sum of its
parts”

Inductive
Symptom — Discase

Limited database. Subject to
biases
Anchoring bias

Extensive database. I'lubal:llhlv
based on Bayesian st 5, N0
significant bias. Li

- Confirmation bias based on available data.

- Premature closure
Deductive Llrmled database. Personal Extensive database. Application
Discase — I ition and experience affect | of rules of evidence based
T decision making. medicine with ial biases.

Michael Duerr-Specht, Randy Goebel & Andreas Holzinger 2015. Medicine and Health Care as a Data
Problem: Will Computers become better medical doctors? In: Holzinger, Andreas, Roecker, Carsten &
Ziefle, Martina (eds.) Smart Health, State-of-the-Art SOTA Lecture Notes in Computer Science LNCS
8700. Heidelberg, Berlin, New York: Springer, pp. 21-40, doi:10.1007/978-3-319-16226-3_2.
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B Augmenting Human Capabilities: an old human dream ... @HCAI-
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Superhuman Al for heads-up no-limit
poker: Libratus beats top professionals
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Noam Brown & Tuomas Sandholm 2018. Superhuman
Al for heads-up no-limit poker: Libratus beats top
professionals. Science, 359, (6374), 418-424,
doi:10.1126/science.aa01733.

Source: stanford. I ing
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B Two types of decisions (Diagnosis vs. Therapy) @HCAI -

= Type 1 Decisions: related to the diagnosis, i.e. Al/ML is
used to assist in diagnosing a disease on the basis of the
individual patient data. Questions include:
= What is the probability that this patient has a myocardial
infarction on the basis of given data (patient history, ECG, ...)?
= What is the probability that this patient has acute appendices,
given the signs and symptoms concerning abdominal pain?
= Type 2 Decisions: related to therapy, i.e. Al/ML is used to
select the best therapy on the basis of clinical evidence,

e.g.:

= What is the best therapy for patients of age x and risks y, if an
obstruction of more than z % is seen in the left coronary

artery?

= What amount of insulin should be prescribed for a patient
during the next 5 days, given the blood sugar levels and the
amount of insulin taken during the recent weeks?

Jan H. Van Bemmel & Mark A. Musen 1997. Handbook of Medical Informatics, Heidelberg, Springer.
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B Helps to make rational decisions (risks vs. success) @HCAI %
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B Augmenting Human Doctors with Artificial Intelligence @ HCAI -

Andreas Holzinger, Bernd Malle, Peter Kieseberg, Peter M. Roth,
Heimo Miller, Robert Reihs & Kurt Zatloukal 2017. Towards the
Augmented Pathologist: Challenges of Explainable-Al in Digital
Pathology. arXiv:1712.06657.
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B Example: Knee Surgery of a Soccer Player @ HCAI %=

= Example of a Decision Problem
= Soccer player considering knee surgery
= Uncertainties:

= Success: recovering full mobility

= Risks: infection in surgery (if so, needs another surgery and may loose
more mobility)

= Survival chances of surgery
Harvard-MIT Division of Health Sciences and Technology

HST.951J: Medical Decision Support, Fall 2005
Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo
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B8 Remember: Expected Utility Theory E (U|d) @HCAI A

For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = d is

E(U | d) = Z P(xy,....: tn | d)U (21
I1,...4Tn

An optimal single decision is the decision D = dmax

whose expected utility is maximal:

tdmax = arg max E(U | d)
dedom( )

John Von Neumann & Oskar Morgenstern 1944. Theory of games and economic behavior,
Princeton, Princeton university press.
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B Pathologist level interpretable whole-slide diagnosis @HCAIA-

interpretable whole-slide cancer diagnosis with deep learning.

Bui, Yuanpu Xie, Manish Sapkota, Lei Cui & Jasreman Dhillon 2019.
Nature Machine Intelligence, 1, (5), 236-245, doi:10.1038/542256-019-0052-1.

Zizhao Zhang, Pingjun Chen, Mason Mcgough, Fuyong Xing, Chunbao Wang,
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Bl Decision Tree (this is known since Hippocrates!) @HCAIE-
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B Clinical Decision Tree (CDT) is still state-of-the-art @HCAI -
Live
Incculate 0.979 <
Die 1o
0.021
—_ Live
Infected 0.854
Di
No inoculation d 0
0.146

Ferrando, A., Pagano, E., Scaglione, L., Petrinco, M., Gregori, D. & Ciccone, G. (2009) A decision-
tree model to estimate the impact on cost-effectiveness of a venous thromboembolism
prophylaxis guideline. Quality and Safety in Health Care, 18, 4, 309-313.
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B Taxonomy of Decision Support Models @HCAI -

Decision Model

Quantitative (statistical)
. . Truth tabl Decision Reasoning
supervised EVESED] ruth tables . models
o 5 q Boolean
unsupervise: uzzy sets LDgiC Non-

Qualitative (heuristic)

Expert
systems
Neural A Partitioning Critiquing
Logistic
network systems

parametric

Extended by A. Holzinger after: Bemmel, J. H. v. & Musen, M. A. (1997) Handbook of Medical
Informatics. Heidelberg, Springer.
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B Example medical data sets openly available @HCAI %=
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B Evolution of Decision Support Systems (Expert Systems) @ HCAI -

1900's
CENDRAL
CONGEN
1970°8
Maota-DENDRAL

SUSK

04 poberancet

L (=) L

L

Shortliffe, E. H. &
Buchanan, B. G. (1984) | [(GOoGH]
Rule-based expert
systems: the MYCIN
experiments of the
Stanford Heuristic 1980°5 MEOMYCIN  OMCOCIN DART
Programming Project.
Addison-Wesley.
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B8 What makes decision support in health different? @HCAI -

= Need for robust algorithms

= Need for trustworthy, fair and accountable
algorithms

= Augmenting the doctor — not replacing them,
but let “Chimpanzee”-Work do by algorithms

= Focus of the doctors to cognitively high-end
demanding, challenging work

= Double-Check (“look at this corner, maybe there
is something relevant)”

= Many of the questions of medical doctors need
causal explanations “the why” !l
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7] @HCAI -

02 History of DSS =
History of Al
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B Early Knowledge Based System Architecture @ HCAI &

Tooks for Building Expert Systems
; Knowledge
of novw case En
USER N
Advice & A 4
Explanations Domain
Expert

Shortliffe, T. & Davis, R. (1975) Some considerations for the implementation of knowledge-based
expert systems ACM SIGART Bulletin, 55, 9-12.

human-centered.ai (Holzinger Group) a 2019 Machine Learning for Health 02

B Big chance for medicine Identifying Unknown Unknowns @ HCAI%-

P \
1 Learning Algorithm |

(Conf. = 0.96)

Himabindu Lakkaraju, Ece Kamar, Rich Caruana & Eric Horvitz. Identifying unknown unknowns in the open world:
Representations and policies for guided exploration. Thirty-First AAAI Conference on Artificial Intelligence, 2017.
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Bl Ultrashort history of Early Al @HCAI -

= 1943 McCulloch, W.S. & Pitts, W. A logical calculus of the
ideas immanent in nervous activity. Bulletin of
Mathematical Biology, 5, (4), 115-133,
doi:10.1007/BF02459570.

= 1950 Turing, A.M. Computing machinery and intelligence.
Mind, 59, (236), 433-460.

= 1958 John McCarthy Advice Taker: programs with
common sense

= 1959 Samuel, A.L. Some studies in machine learning using
the game of checkers. IBM Journal of research and
development, 3, (3), 210-229, doi:10.1147/rd.33.0210.

= 1975 Shortliffe, E.H. & Buchanan, B.G. 1975. A model of
inexact reasoning in medicine. Mathematical biosciences,
23, (3-4), 351-379, d0i:10.1016/0025-5564(75)90047-4.

= 1978 Bellman, R. Can Computers Think? Automation of
Thinking, problem solving, decision-making ...
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B static Knowledge versus dynamic knowledge @HCAI -

Static Knowledge

PRODUCTION RULES

about domaln
DATA BASE
General Factual -
of [ RULE NTERP i
»f U HETER
domain

EXPLANATION
CAPABILITY

Dynamic Knowledge

explanations Facts about

entered by user

I Deductsons |
consultative made by system ™
advice I—._....—J

Shortliffe & Buchanan (1984)
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B Dealing with uncertainty in the real world @HCAI -

= The information available to humans is often
imperfect —imprecise - uncertain.

= This is especially in the medical domain the case.
= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Aistrue THEN A is non-false and
IF B is false THEN B is non-true

= Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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BY MYCIN was no success in the clinical routine @HCAI -
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Real Triage Nurse
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B The Al winter was bitter cold ... @HCAI -

James Hendler 2008. Avoiding another Al winter. EEE
Intelligent Systems, 23, (2), 2-4, doi:10.1109/MIS.2008.20.

human-centered.ai (Holzinger Group) 52 2019 Machine Learning for Health 02

B8 MYCIN - rule based system - certainty factors @HCAI -

= MVYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

= Goal oriented strategy (“Ruckwartsverkettung”)

= To every rule and every entry a certainty factor (CF) is
assigned, which is between 0 und 1

= Two measures are derived:

= MB: measure of belief

= MD: measure of disbelief

= Certainty factor — CF of an element is calculated by:

CF[h] = MB[h] —MDI[h]

= CFis positive, if more evidence is given for a hypothesis,
otherwise CF is negative

= CF[h] =+1->his 100 % true

= CF[h] =-1->his 100% false
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B However, Al was extremely popular in the 1970ies @HCAI A=
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DieGeheimnisse
desRechenautomaten

Image credit to Bernhard Schélkopf
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B From Al summer to Al summer @HCAI -
oo
A {/ AAAI = AAAI Conference on Artificial Intelligence:
I ! / https://aaai.org/Conferences/AAAI-20/
1000
International Joint Conference on Atrtificial Intelligence:
e s https://ijcai20.org/
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Large Conference Attendance
https://www.computer.org/csl/
mags/ex/2003/03/x3018.html
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https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
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B Original Example from MYCIN @HCAIA-

hy = The identity of ORGANISM-1 is streptococcus
hy = PATIENT-1 is febrile
hy; = The name of PATIENT-1 is John Jones
CF[h,E] = .8 ;. There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus
CF[h,E] = —.3 : There is weakly suggestive evidence (.3} that

PATIENT-1 is not febrile
CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones
Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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Bl Cybernetics was praised as the solution for everything ~ @HCAI i+

Image credit to Bernhard Schélkopf
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[TY) @HCAI -

03 Example:
P4-Medicine
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Slide 8-22 Example: Exon Arrays @HCAIA-

(a) Gannic focus 01 1 b

(b) Exon army peobe placernont [
- -

Prabe type
= Core
= Extended
= F

Kapur, K., Xing, Y., Ouyang, Z. & Wong, W. (2007) Exon arrays provide accurate assessments of
gene expression. Genome Biology, 8, 5, R82.
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[8lide 8-25 Computational leukemia cancer detection 3/6 @HCAI +%=

A =acute, C = chronic,

L = lymphocytic, M = myeloid
* ALL = cancer of the blood AND bone
marrow caused by an abnormal
proliferation of lymphocytes.
AML = cancer in the bone marrow
characterized by the proliferation of
myeloblasts, red blood cells or
abnormal platelets.
CLL = cancer characterized by a Prebes
proliferation of lymphocytes in the L] ——
bone marrow.
CML = caused by a proliferation of
white blood cells in the bone marrow.
MDS (Myelodysplastic Syndromes) = a
group of diseases of the blood and
bone marrow in which the bone
marrow does not produce a sufficient
amount of healthy cells.
* NOL (Normal) = No leukemias

Corchado et al. (2009) "
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Computational leukemia cancer detection 6/6 @HCAI A

= The model of Corchado et al. (2009) combines:

= 1) methods to reduce the dimensionality of the
original data set;

2) pre-processing and data filtering techniques;
3) a clustering method to classify patients; and
4) extraction of knowledge techniques

The system reflects how human experts work in a
lab, but

= 1) reduces the time for making predictions;
= 2) reduces the rate of human error; and

= 3) works with high-dimensional data from exon
arrays
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ide 8-23 Computational leukemia cancer detection 1/6 @HCAIA-

- —  — ——— — 1 - Genomic locus
—— T— m— ;. gxon array probe
— — — O
B - - - === P
e m— 3 - 3 array probe

Exon array structure. Probe design of exon arrays. (1) Exon—intron structure of a gene.
Gray boxes represent introns, rest represent exons. Introns are not drawn to scale. (2)
Probe design of exon arrays. Four probes target each putative exon. (3) Probe design of
30expression arrays. Probe target the 30end of mRNA sequence.

Corchado, J. M., De Paz, J. F,, Rodriguez, S. & Bajo, J. (2009) Model of experts for decision
support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine, 46, 3, 179-200.
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26 Computational leukemia cancer detection 4/6 @HCAI -

1855158, pbeeld 125

Further Reading: Breiman, Friedman, Olshen,
& Stone (1984). Classification and Regression
Trees. Wadsworth, Belmont, CA.

IO

e Daene

Corchado et al. (2009)
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TV @HCAI A

04 Example:
Case Based Reasoning
(CBR)
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de 8-24 Computational leukemia cancer detection 2/6 @ HCAI -
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Corchado et al. (2009)
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127 Computational leukemia cancer detection 5/6 @HCAI -

Classification CLL—ALL. Representation of the probes of the decision tree which
classify the CLL and ALL to 1555158_at, 1553279_at and 1552334_at

Corchado et al. (2009)
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Slide 8-29 Thinking — Reasoning — Deciding — Acting @HCAI -

~

Critical
Thinking

Clinical Practice

Critical Thinking,
Clinical Reasoning,
« Clinical Judgment
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Slide 8-30 Case Based Reasoning (CBR) Basic principle ~ @HCAIE-

Problem

Aamodt, A. & Plaza, E. (1994) Case-based
reasoning: Foundational issues,
methodological variations, and system
approaches. Al Communications, 7, 1, 39-59.

Confirmed Suggested
Solution Solution
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ide 8-33 CBR Example: Radiotherapy Planning 2/6 @HCAI A=

1: CT scannin B: Radictherapy treatment 5: Virtual simutation

Tumour localisation !
NP, A

.

Source: Imaging Performance Assessment of CT Scanners Group, http://www.impactscan.org
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B slide 8-36 Membership funct. of fuzzy sets Gleason score 5/@HCAI 5

Gleason score evaluates the grade of prostate
cancer. Values: integer within the range

1.2 Low Medium

Memberst

0 T T 1 T T u T Y T T T T 1
0 I 2 3 4 5 6 7 8 9 0o 1 12 13
Gleason Score
Petrovic, S., Mishra, N. & Sundar, S. (2011) A novel case based reasoning approach to
radiotherapy planning. Expert Systems With Applications, 38, 9, 10759-10769.
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Slide 8-31 The task-method decomposition of CBR @HCAI -
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Aamodt & Plaza (1994)
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Slide 8-34 CBR Example: Radiotherapy Planning 3/6 @HCAI -

Examination of Outline planning
patient target volume
Review of the Dose in 1and 11 Dose volume
dose plan phase histogram

Measures:

1) Clinical Stage = a labelling system

2) Gleason Score = grade of prostate cancer = integer between 1 to 10; and
3) Prostate Specific Antigen (PSA) value between 1 to 40

4) Dose Volume Histogram (DVH) = pot. risk to the rectum (66, 50, 25, 10 %)

Petrovic, S., Mishra, N. & Sundar, S. (2011) A novel case based reasoning approach to
radiotherapy planning. Expert Systems With Applications, 38, 9, 10759-10769.
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Slide 8-37 Case Based Reasoning 6/6 @HCAl A
Petrovic et al. (2011)

| Dose plan suggested by Dempster-Shafer rule (62Gy+10Gy ) |

1l

| Dose received by 10% of rectum is 56,02 Gy (maximum dose limit =55 Gy) |

Proposed dose plan [{ Yes Feasible dose plan

Iy

Muodification of dose plan:
New dose plan; 62Gy +8 Gy
Dose received by 10% of rectum is: 54.26 Gy (feasible dose plan)
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Slide 8-32 CBR Example: Radiotherapy Plannin,

g1/6 @HCAI A=
= —

a~,
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Slide 8-35 CBR System Architecture 4/6 @HCAI -
Case Base New Patient

Decision on

000 88~ I
L

©®© Similarity Degree ﬁ

Weight learning
III\.'l.'l'IilTI.I'hIII

Treaument Plan for New

Paticnt

Petrovic, S., Mishra, N. & Sundar, S. (2011) A novel case based reasoning approach to
radiotherapy planning. Expert Systems With Applications, 38, 9, 10759-10769.
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GHCAI}%

05 Causal Reasoning
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Humans can understand the context @HCAI -

= “How do humans generalize

from few examples?”

= Learning relevant representations

= Disentangling the explanatory factors

= Finding the shared underlying explanatory
factors, in particular between P(x) and
P(Y|X), with a causal link between Y — X

Bengio, Y., Courville, A. & Vincent, P. 2013. Representation learning: A review and new perspectives. [EEE
transactions on pattern analysis and machine intelligence, 35, (8), 1798-1828, doi:10.1109/TPAMI.2013.50.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics,
structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.
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Important Definition: Ground truth @HCAI -

= := information provided by direct observation

(empirical evidence) in contrast to information

provided by inference

= Empirical evidence = information acquired by
observation or by experimentation in order to verify
the truth (fit to reality) or falsify (non-fit to reality).

= Empirical inference = drawing conclusions from
empirical data (observations, measurements)

= Causal inference = drawing a conclusion about a
causal connection based on the conditions of the
occurrence of an effect.

= Causal inference is an example of causal reasoning.
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@HCAI

06 Explainability
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Decide if X = Y, or Y — X using only observed data @HCAIA-

n | -0 -0&©

> O~@® &0
o Py =P P
L _ Py |dofz) = Py |z Py s |dofz) # Py e

o o5 1 Jaoly) F Px |y Py boiy) = Px|y

Joris M. Mooij, Jonas 3

Peters, Dominik @ ®
Janzing, Jakob
Zscheischler &
Bernhard Schélkopf
2016. Distinguishing
cause from effect

using observational °
data: methods and

5
benchmarks. The e o
Journal of Machine
P ’

=Py |do(s) = P

=EX |doly) =

Learning Research,
17, (1), 1103-1204.

Px s # Pxdoty)s = Px |y
2019 Machine Learning for Health 02
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Empirical Inference Example @HCAI -
v=Xakixx) +b
y=a*x
¥ -
X

Gottfried W. Leibniz (1646-1716)
Hermann Weyl (1885-1955)
Vladimir Vapnik (1936-)

Alexey Chervonenkis (1938-2014)
Gregory Chaitin (1947-)
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Mastering the game of Go without human knowledge @HCAI A

0:9)=)(5) and 1=(z— ? — =" logp+ <]}

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George Van Den Driessche, Thore Graepel & Demis Hassabis 2017. Mastering the game of go without human
knowledge. Nature, 550, (7676), 354-359, doi:doi:10.1038/nature24270.
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Remember: Reasoning = “Sensemaking” @HCAI =

= Deductive Reasoning = Hypothesis > Observations > Logical
Conclusions
= DANGER: Hypothesis must be correct! DR defines whether the truth
of a conclusion can be determined for that rule, based on the truth
of premises: A=B, B=C, therefore A=C
= [nductive reasoning = makes broad generalizations from
specific observations
= DANGER: allows a conclusion to be false if the premises are true
= generate hypotheses and use DR for answering specific questions
= Abductive reasoning = inference = to get the best explanation
from an incomplete set of preconditions.
= Given a true conclusion and a rule, it attempts to select some
possible premises that, if true also, may support the conclusion,
though not uniquely.
Example: "When it rains, the grass gets wet. The grass is wet.
Therefore, it might have rained." This kind of reasoning can be used
to develop a hypothesis, which in turn can be tested by additional
reasoning or data.
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Remember: hard inference problems @HCAI -

= High dimensionality (curse of dim., many factors contribute)

= Complexity (real-world is non-linear, non-stationary, non-IID *)
= Need of large top-quality data sets

= Little prior data (no mechanistic models of the data)

= *) = Def.: a sequence or collection of random variables is
independent and identically distributed if each random variable has
the same probability distribution as the others and all are mutually
independent

Soren Sonnenburg, Gunnar Ritsch, Christin Schaefer & Bernhard Scholkopf 2006. Large scale multiple kernel learning. Journal of
Machine Learning Research, 7, (7), 1531-1565.
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@HCAI -

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, loannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, llya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis
2016. Mastering the game of Go with deep neural networks and tree
search. Nature, 529, (7587), 484-489, doi:10.1038/nature16961.
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B We need effective tools for Human-Al Interaction @HCAIA-

Why did the algorithm do that? o .
Can | trust these results? @ < Vete'a 9. XA .ﬁ
€8
J N

How can I correct an error?

Input data

A possible solution

Explainable
Model

D

*;“;
Explanation ¢ 03?'
E Interface ¥

]

Input data

The domain expert can understand why ...
The domain expert can learn and correct errors ...
The domain expert can re-enact on demand ...
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B Example for an Explanation Interface - open work © @HCAI A=

oy
e ] [ o/ e—
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=
]
= n
-

Werner Sturm, Till Schaefer, Tobias Schreck, Andeas Holzinger & Torsten Ulirich. Extending the Scaffold Hunter Visualization
Toolkit with Interactive Heatmaps In: Borgo, Rita & Turkay, Cagatay, eds. EG UK Computer Graphics & Visual Computing
CGVC 2015, 2015 University College London (UCL). Euro Graphics (EG), 77-84, doi:10.2312/cgvc.20151247.
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B Kandinsky Patterns: A possible I1Q-Test for machines ...  @HCAI -

8] ®ux B
s e ‘¢ =m @ O

I B B B

Heimo Miiller & Andreas Holzinger 2019. Kandinsky Patterns. arXiv:1906.00657.
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7Y @HCAI -
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B What is understandable, interpretable, intelligible? @HCAI A=

https://www.vis.uni-konstanz.de/en/members/fuchs/
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[TY] @HCAI -

07 Methods of
Explainable Al

human-centered.ai (Holzinger Group) 89 2019 Machine Learning for Health 02

B Example for an Explanation Interface @HCAIA-

T [ whpsecimt |

h ascha -:oc hey

stanlay e

AND

i‘.l.lllnlll_uﬂ.-l-.._lll e

Todd Kulesza, Margaret Burnett, Weng-Keen Wong & Simone Stumpf. Principles of explanatory debugging to personalize
interactive machine learning. Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI
2015), 2015 Atlanta. ACM, 126-137, doi:10.1145/2678025.2701399.

human-centered.ai (Holzinger Group) 8 2019 Machine Learning for Health 02

Bl Explainable Al is a huge challenge for visualization @HCAIE-

2019 Machine Learning for Health 02
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B Methods of ex-Al @HCAI A

= 1) Gradients

= 2) Sensitivity Analysis

= 3) Decomposition Relevance Propagation
(Pixel-RP, Layer-RP, Deep Taylor Decomposition, ...)

= 4) Optimization (Local-IME — model agnostic,
BETA transparent approximation, ...)

= 5) Deconvolution and Guided Backpropagation

= 6) Model Understanding
= Feature visualization, Inverting CNN
= Qualitative Testing with Concept Activation Vectors TCAV
= Network Dissection

Andreas Holzinger LV 706.315 From explainable Al to Causability, 3 ECTS course at Graz University of Technology
https://human-centered. ility-2019 (course given since 2016)
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B Note, that these are technical solution @HCAIA-

Explainability :=

a property of a system
(“the Al explanation)
Causability :=

a property of a person
(“the Human explanation)

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, doi:10.1002/widm.1312.

Andreas Holzinger et al. 2019. Causability and Explainability of Al in Medicine. Wiley
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B Gradients @HCAI -
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B LRP Layer-Wise Relevance Propagation @HCAI %

Image x Features

Klauschen, Klaus-Robert Miiller & Wojciech Samek 2015. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance

propagation. PloS one, 10, (7), €0130140,

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
doi:10.1371/journal.pone.0130140.

fix) = ¥ Feature Relevances
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B Our goal is to provide interfaces for effective mapping ~ @HCAI -

= Causability := a property of a person (Human)
= Explainability := a property of a system (Computer)

Human sensemaking

. .- Explainable Al
(Cognitive Science) :

tor Science)
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B Gradients > Sensitivity Analysis > Heatmapping @HCAI A

dumbbell

bell pepper

cup
lemon
Karen Simonyan, Andrea Vedaldi & Andrew Zisserman 2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv:1312.6034.

hissky

human-centered.ai (Holzinger Group) £ 2019 Machine Learning for Health 02

B A NN-classifier during prediction time @ HCAI &

R = f(z)

T
flx) == ZR;"“ :ng‘“ = e = ZR'J"
del+1 del i

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Milller & Wojciech
Samek 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
Plos one, 10, (7), €0130140, doi:10.1371/journal.pone.0130140.
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B Gradients @HCAI -

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh & Dhruv Batra.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. ICCV, 2017. 618-626.
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B Gradients @HCAI -

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen & Klaus-Robert Mueller 2010.
How to explain individual classification decisions. Journal of machine learning research (JMLR), 11, (6), 1803-1831.

human-centered.ai (Holzinger Group) % 2019 Machine Learning for Health 02

B Example Taylor Decomposition @HCAI -
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), €0130140, doi:10.1371/journal.pone.0130140.
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B Heatmap Computation @HCAI -

+— Heatmap Computation

g r— Sieo Tuo S O
/I H LA = T = 05 ‘

1. i

Bow Fomsre Claaitiar Cutput

Ingust Image

Image Classification —

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), €0130140, doi:10.1371/journal.pone.0130140.
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B Sensitivity Analysis vs. Decomposition @HCAIA-
[ R
Tunetion to analyze:

Jiz) = max(0, xy ) + max(l, ry)

sansitivity analysis:
(0f /02, P = 1, 0
(0f fies)? = 1yon |

CECOMPOSItoN;
Ri(z) = max(0, 2}
Ry(z) = max(ih, z2) |

human-centered.ai (Holzinger Group) 103 2019 Machine Learning for Health 02

B Example 1 @HCAI %

Tenngr Sensitivity (CaffeNet ) Dewp Tuylor {CaffeNet) Diewp Taylor |GoogleNet |

e =% i‘.

Semitiviry | CableNe) A

Dheep Taylor (CaffieNen) Deep Taylon {Gioogleten)

o 8
‘E E»
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B Pixel-wise decomposition for bag-of-words features @HCAI -

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), €0130140, doi:10.1371/journal.pone.0130140.
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B Relevance propagation @HCAIA-
input
@
—~O
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B Example 2 Histopathology

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10, (7), €0130140, doi:10.1371/journal.pone.0130140.
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B Deep Taylor Decomposition @HCAIA-

Definition 1. A heatmapping R(x) is conservative if the sum of
assigned relevances in the pixel space corresponds to the total
relevance detected by the model:

Yaxif(x)= 3 Ry(x).
P

Definition 2. A heatmapping R (x) is positive if all values forming the
heatmap are greater or equal to zero, that is:

Vo, pRix) 20

Definition 3. A heatmapping R(x) is consistent if it is conservative
and positive. That is, it is consistent if it complies with Definitions 1
and 2,

Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek & Klaus-Robert Miiller 2017. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 65, 211-222,
doi:10.1016/j.patcog.2016.11.008.
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Bl Relevance Redistribution @HCAI -

redatriron
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B LIME - Local Interpretable Model Agnostic Explanations @ HCAI -

@/ Toreae [P ] explaner (|08
| weight (LIME) | -
02 | haadache %
| no fatigue
|.2e8 I
Model Data and Prediction Explanation Human makes decision

7 L/

Model Dataset and Prodicbons ik step Explanations

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin. Why should i trust you?: Explaining the predictions of
any classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016. ACM, 1135-1144, doi:10.1145/2939672.2939778.
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B Example LIME — Model Agnostic Explanation @HCAI -

axplainer = Lims.liem tabular, LiseTetelartapleloes G tTaln, frataae_mmstreast. Ceatire_mams, ©

ar

2. predlon pédha, nm,_featiitismi)
2in -'.‘.W‘V‘ Feature  Value
- I (e v ey
ed concaity == 001
arvawrrer = &1 o
W LG T Wi, =8 T s Era
pToanates
Ve choes T
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B Example: Interpretable Deep Learning Model @HCAI A=
e
Reconstruction i
Switches ¢
Max Poolil
Max Unpooling @ O—‘W b i
[ Unpooled Maps | | Rectified Feature Maps |
Rectified Linear Rectified Linear
Function Function
l Rectified Unpooled Maps ‘ | Feature Maps l
Convolutional Convolutional
Filtering {F'} Filtering {F}
[ Reconstruction | l Layer Below Pooled Maps ‘
Matthew D. Zeiler & Rob Fergus 2013. Vi g and C i Networks. arXiv:1311.2901.
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B The world is compositional (Yann LeCun) @HCAl A

':T.Il:'::m 1 h.mh‘mr- ]
inpait lnyer

hiclden Tager 3

Networks. arXiv:1311.2901

Matthew D. Zeiler & Rob Fergus 2013. Vi

human-centered.ai (Holzinger Group)
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B Remember: there are myriads of classifiers ... @HCAIA-

Statistical Structural

=" e
- ! ~
) Naive Bayesian
\ Regression | il o e

(Dishnoe based) @auml Ne!wodcs)

==

(Functional ) (" Nearest Neighbor )
0N PN
N . -
Spectral Learning
Wavelet NN o Vector

< ions/271247/machine-learning-statistical-vs-structural-classifiers
human-centered.ai (Holzinger Group) 110 2019 Machine Learning for Health 02

B Visualizing a Conv Net with a De-Conv Net @HCAI A=

3 1
- 84 *"\i‘" w3

o ¢

= = K-
—_Leq J 256

Layer3  Layers Layer & Layers Layer?  Output

% Pooled Maps
[3 Pooling

Max Locations
“Switches™

Unpooled
Maps Feanure

Matthew D. Zeiler & Rob Fergus 2014. Visualizing and i networks. In: D., Fleet, T, Pajdla,
8., Schiele & T., Tuytelaars (eds.) ECCV, Lecture Notes in Computer Science LNCS 8689. Cham: Springer, pp. 818-833,
d0i:10.1007/978-3-319-10590-1_53.
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B The world is compositional (Yann LeCun) @HCAl A

B Black Box Explanations through Transparent Approximations @ HCAI %=

If Age <50 and Male =1

IF Past-Depression =Yes and Insomnia =No and Melancholy =No, then Healthy

If Pust-Depression =Yes and Insomnia =Yes and Melancholy =Yes and Tiredness =Yes, then Depression

I Age = 50 and Male =No:

IF Family-Depression =7es and Insomnia =No and Melancholy =Ves and Tiredness =Yes, then Depreasion

I Family-Depression =50 and Insomnia =Ho and Melancholy =40 and Tiredmess =ho, then Healthy

Default:
I Past-Depression =Ves and Tiredness =Xo and Exercise =0 and Insomnis =Ves, then Depression
I Past-Deprescbon =No and Weight-Gain =Yec and Tiredness =Yes and Melancholy =Yes, then Depression

If Famsily-Depression =Yes and Insomnia =Yes and Melancholy S¥es and Tiredness =Yes, then Depressson

Himabindu Lakkaraju, Ece Kamar, Rich Caruana & Jure Leskovec 2017. Interpretable and
Explorable Approximations of Black Box Models. arXiv:1707.01154.
2019 Machine Learning for Health 02
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Networks. arXiv:1311.2901.

Matthew D. Zeiler & Rob Fergus 2013. Vi ing and L ing Ct .
2019 Machine Learning for Health 02
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[TY] @HCAI -
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Y] @HCAIE-
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7Y @HCAI -

inpaat bayer

‘E.‘ﬁt‘.‘: myer | Iu-!-lruthwr 2 |...1.m.ﬁf
¥

human-centered.ai (Holzinger Group) 121 2019 Machine Learning for Health 02
B Framework for vision: AND-OR Graphs @HCAI %
© and-node
L3 orneds = Algorithm for this
B tear node
framework
______ = Top-down/bottom-up
computation
= Generalization of
¥ small sample
= Use Monte Carlos
simulation to synthesis
more configurations
= Fill semantic gap
Images credit to Zhaoyin Jia (2009)
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7] @HCAIL-

‘;:rf.‘-'l»u 1l

gt ayer
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B TCAV Testing with Concept Activation Vectors @ HCAI %=
Testing with C Activation Vectars (TCAV)

MElLEE, I - I H s
Yoesiud "

® & '

mwan§ © ©

Scud"¥y)
W (i) - v

Figure 1, Testing with Concept Activation Vectors: Given o user-defined set of examples for o concept (e.g-. “striped”), and random
examples (1), labeled iraining-data examples for the studied class (sehes) ), and & trained network (), TCAY can guastify the model's
sensitivity 1 the comcept for that class. CAVs are kearned by Isaining a linear chassifier o distinguish betwoen the sctivations produced by
8 concept’s cxamples and examgles in any Exyer (. The CAY is the vector orthogonal to the classification boundary {1}, red arrc). For
the chass of i beas), TCAY uses the directional d Sealz)og piual sensitivity (€.

https://github.com/tensorflow/tcav

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler & Fernanda Viegas. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV). International Conference on Machine Learning
(ICML), 2018. 2673-2682.
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B Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) @HCAI:-

» Terminal (leaf) node: 7'( pg)

» And-Or node: 1 (pg). V™ (pe)

» Set of links: E(pg)

» Switch variable at Or-node: w(r)
» Attributes of primitives: «(r)

.. - 1 —F
Plpg:O,.RA) = Z(Q)exp( £(pg))

E(pg)= A+ Y Aa@)

vel ™ (pg) vEF ™ pg ) T(pE) B
PV
+ E AV 7e Py)
(LA=E(pg)
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[TV @HCAI -

‘IIT?-‘.‘M": IuL!mtI-,u: |.u.|..'1.,./,,‘

gt ayer
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ﬂ Stochastic AND-OR Templates for visual objects @HCAI -

_ AEEEEE S
= A

e

AOT

art dictionary
(rermizul nodes)
Valid configurations

Zhangzhang Si & Song-Chun Zhu 2013. Learning and-or templates for object recognition and detection. IEEE
transactions on pattern analysis and machine intelligence, 35, (9), 2189-2205, doi:10.1109/TPAMI.2013.35.
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B Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) @ HCAI -

» Terminal (leaf) node: T(pg)

» And-Or node: 1" (pg).V ™ (pg)

» Set of links: E(pg)

» Switch variable at Or-node: w(r)
» Attributes of primitives: «(r)

P(pE:0.R.A) = —— exp(-£(pe))

Z(@)
s(pg)= A(w())+ Ala(D))
=lpg " 4
vel™ () vel™ (pg)uT(pg)
T Z }‘w(r-‘v.f‘yv‘py)
(.EE pg)
SCFG: weigh the freq y at the children of o
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Bl Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) @ HCAI -

» Terminal (leaf) node: 7'(pg)
+ And-Or node: ¥ (pg).l"™ (pg) 0 miws
» Set of links: £(pg)

» Switch variable at Or-node: w(7)
» Attributes of primitives: a(1)

1
10,R,A) = ———exp(-&
pipg )= 210y P e)

)= 2 AGODA X Ala)

e (pg) veb ™ (pe T ipg)

+ Y AWvuren)

(kL eE ()

Weigh the local compatibility of primitives (geometric and appearance)
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BY Stochastic graph grammar/comp. object representation @ HCAI -

Liang Lin, Tianfu Wu, Jake Porway & Zijian Xu 2009. A stochastic graph grammar for compositional object
p ion and ition. Pattern ition, 42, (7), 1297-1307, doi:10.1016/j. patcog.2008.10.033.
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B Seemingly trivial questions ... ? @HCAI %

= What is a good explanation?

= (obviously if the other did understand it)

= Experiments needed!

= What is explainable/understandable/intelligible?

= When is it enough (Sattigungsgrad — you don’t
need more explanations — enough is enough)

= But how muchisit ...
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B Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) @ HCAI -

» Terminal (leaf) node: T(pg)

» And-Or node: 7" (pg).V™ (pg)

» Set of links: £(pg)

» Switch variable at Or-node: W(f)
» Attributes of primitives: «(r)

1
18, R.A)= ——exp(—&
plpg ) Z((_))cxp'[ Slpgh

fp)= Y AN+ 3 Afa)
vel ™ [ po) vel ™ {pg . Tipg)

A0 7.0)

(L EE{ pg)

Spatial and appearance between primitives (parts or abjects)
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7] @HCAI-

Future Work
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B Explanations in Artificial Intelligence will be necessary ~ @HCAI -

= Justification, Explanation and Causality

= Trust > scaffolded by justification of actions
(why)

= Please always take into account the inherent
uncertainty and incompleteness of medical data!

Alex John London 2019. Artificial Intelligence and Black-Box Medical Decisions:
Accuracy versus Explainability. Hastings Center Report, 49, (1), 15-21,
do0i:10.1002/hast.973.
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Bl Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) @HCAI %=

» Terminal (leaf) node: 7'(pg)

» And-Or node: 1" (pe). "™ (pg)

» Set of links: E(pg)

» Switch variable at Or-node: w(r)
» Attributes of primitives: «(r)

1
JO,RA) = exp(—£
plpg e ©) p(=¢(pe))
pe)= Y, AN+ Y Ala) ¥,
vel ™ {pg) vel™ (pg 1 T(pg) %0
+ Y A0v,.7.8)
(L1eE(pr)
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B combination of Deep Learning with Ontologies @HCAI -
(1)Explaining Deep Tensor Output both inference resultand reasons
the reasons I e, (inference factors)
for judgment 7 -
g o Inference result nference factors
(==Y % apl 4+
: H
H H
H H
— ;
Knowledge graph generates a logical path
(2]E’(D|_a|mm_] fram input to the inference result
the basis (evidence) =y
for judgment 2

Explainable Al with Deep Tensor and Knowledge Graph

http://www.fujitsu.com/jp/Images/artificial-intelligence-en_tcm102-3781779.png
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B I1BM is doing it now: teaching meaningful explanations ~ @HCAI 7

Sowd €. F. Coella,® 3 “ .
Murruy Camplell, Amit Durandiar, Kush K. Vardoes, Densbs Wel.
Adekandra Mnjsiber i
* Thewe asthers corribnsod eoually
B Beseare
Yerkurwn Heights, XY 10598
{nccadell hinds katesa,moan, adiuras, Ervarahs. dvel alsksand}Sus., ite, con

Abstract

The adhoysim uf machine kcarming im hiph-siahes applications wach an heabicars
aral L s laggesl is it bevmne peralicsaom ser i sompumicn by explariss

mer. ¥
sox desisions anh outcomes. B thin paper, we progous an approah in poaerate
e o e, i sclitirs s

Seatures asel Labeh, eaplanations elcited feom deotisin wer A joust mealel i, e
b Label This sim-

e

dinsnien kauwlodpe of e comunes. Evaluation spam sultsple siodag ioch-
i o o il g datinct, s fage datwect. seed 8 chemical ik ilatanct,
b g Bt o ppeciach b, gemerabuable semas domains ssel slgorshon Rer

Varshney, Dennis Wei & Aleksandra Mojsilovic 2018. Teaching

Noel C.F. Codella, Michael Hind, Karthikeyan Natesan
Ramamurthy, Murray Campbell, Amit Dhurandhar, Kush R.
Meaningful Explanations. arXiv:1805.11648.

iv:1805.11648v] [cs.Al]l 29 May 2018

k. Jgoritans, snd
1 lIntroduction
Siew pegulations call for sstomated decussn making sysiens & provide “meingful informaon™
T-4], Slbet and Powies ot od el
infotmation” 1 seformatus that [rrm——y
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The underlying architecture: Multi-Agent System @HCAI -

This image is in the Public Domain
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The second wave of Al (1975 - ): Statistical Learning @ HCAI -

Image credit to John Launchbury

= Engineers create learning models for specific tasks
and train them with “big data” (e.g. Deep Learning)

= Advantage: works well for standard classification
tasks and has prediction capabilities

= Disadvantage: No contextual capabilities and
minimal reasoning abilities
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R f’w fs @HCAI %
% "np.i § S A

This is compatible to interactive machine learning

@HCAI %

=Computational approaches can find in R™
what no human is able to see

=However, still there are many hard problems
where a human expert in R? can understand
the context and bring in experience,
expertise, knowledge, intuition, ...

=Black box approaches can not explain
WHY a decision has been made ...

human-centered.ai (Holzinger Group)

The third wave of Al (? ): Adaptive Context Understanding @ HCAI ==

137
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Perceiving
Learning

Abstracting
Reasoning

Image credit to John Launchbury

= A contextual model can perceive, learn and
understand and abstract and reason

= Advantage: can use transfer learning for
adaptation on unknown unknowns

= Disadvantage: Superintelligence ...
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The fist wave of Al (1943-1975): Handcrafted Knowledge @ HCAIE-

Image credit to John Launchbury

= Engineers create a set of logical rules to represent
knowledge (Rule based Expert Systems)

= Advantage: works well in narrowly defined problems
of well-defined domains

= Disadvantage: No adaptive learning behaviour and
poor handling of p(x)
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Three (selected) dangers and myths about Al generally @ HCAI 3+

= Myth 1a: Superintelligence by 2100 is inevitable!
= Myth 1b: Superintelligence by 2100 is impossible!
= Fact: We simply don’t know it! =

= Myth 2: Robots are our main concern '

Fact: Cyberthreats are the main concern:
it needs no body — only an Internet connection

= Myth 3: Al can never control us humans
Fact: Intelligence is an enabler for control:
We control tigers by being smarter ...
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