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Abstract. Modern medicine and health care in all parts of our world are facing
formidable challenges: exploding costs, finite resources, aging population as well
as deluge of big complex, high-dimensional data sets produced by modern
biomedical science, which exceeds the absorptive capacity of human minds.
Consequently, the question arises about whether and to what extent the advances
of machine intelligence and computational power may be utilized to mitigate the
consequences. After prevailing over humans in chess and popular game shows,
it is postulated that the biomedical field will be the next domain in which smart
computing systems will outperform their human counterparts. In this overview
we examine this hypothesis by comparing data formats, data access and heuristic
methods used by both humans and computer systems in the medical decision
making process. We conclude that the medical reasoning process can be signifi‐
cantly enhanced using emerging smart computing technologies and so-called
computational intelligence. However, as humans have access to a larger spectrum
of data of higher complexity and continue to perform essential components of the
reasoning process more efficiently, it would be unwise to sacrifice the whole
human practice of medicine to the digital world; hence a major goal is to mutually
exploit the best of the two worlds: We need computational intelligence to deal
with big complex data, but we nevertheless – and more than ever before – need
human intelligence to interpret abstracted data and information and creatively
make decisions.

Keywords: Medical decision support · Medical reasoning · Big data · Data
centric medicine · Medical informatics · Smart health

1 Introduction: The Case of Watson Winning Jeopardy!

“If our brains were simple enough for us to understand them,
we’d be so simple that we couldn’t.”

Ian Stewart, The Collapse of Chaos: Discovering Simplicity in a Complex World
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On January 14th, 2011, the well known game show Jeopardy! offered something
completely new to their large audience. For the first time since its inception in 1964, one
of the participants answering the challenges offered by moderator Alex Trebek was not
human – but a computer.

Watson, an IBM computer system, took the central seat between two human cham‐
pions, Ken Jennings and Brad Rutter. 14 years after the famous victory of “Deep Blue”
over Gary Kasparov in chess, a software system – some would describe it rather as
artificial intelligence, or smart computing device – beat its human counterparts by a
significant margin, though not with a perfect score.

Advances of computer systems have been remarkable since their early beginnings
in the 1950’s. We have advanced far from arrays of soldered transistors on large
circuit boards in air-conditioned rooms shielded with copper plates against interfering
electromagnetic radiation. Capacities in computing power and data storage have
doubled every 18–24 months over the past decades (Moore’s law [1, 2]) and the
computing power today has reached a level that allows systems to compete in the
human field in complex environments. For proponents of computer technology and
artificial intelligence this marks the beginning of a new era in human–computer
interaction; and the next battlefield to be conquered by computer technology is human
medicine and health – smart health [3].

In fact, the challenges in the medical field are enormous [4] and seem to be
increasing daily. Medical knowledge is growing at an exponential rate, far beyond what
an individual medical doctor can be expected to absorb. It is estimated that a family
physician would have to read new medical literature for more than 600 h per month to
stay current [5]. The global availability of information on the press of a button is
tempting, but the cognitive capacity reaches its natural limit. More information does
not lead automatically to better decisions: the US American Institute of medicine (IOM)
estimates that medical errors in the United States alone cost 98,000 lives a year at a
financial cost of $29 billion a year [6]. The financial burden of health care on just the
US economy is staggering and has been steadily increasing over decades raising some
immediate questions:

(1) Are future computer systems going to provide a solution to these issues?
(2) Are we looking at a future where diagnoses and treatment decisions for the

majority of health problems will be rapidly, accurately and efficiently made by
smart Watson-like systems and their offspring?

(3) Or will computer systems, just like technological medical advances in the past,
simply accelerate expenses in the health care arena without significantly impacting
life expectancy or well-being for the average person?

Certainly we first need to understand the limitations of the human decision making
process to understand how to design and build such systems. We also have to face the
challenges of the enormous complexity of the medical domain [7].
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2 Glossary

Abductive Reasoning: a logical inference that leads from an observation to a hypothesis
explaining the observation, seeking to find the simplest and most likely explanation
(allows inferring a as an explanation of b; deduction in reverse) [8].
Big Data: a buzz word to describe growing amounts of large data sets, having strong
relevance from a socio-technical perspective and economy [9] and a recent important
topic in biomedical informatics [10].
Content Analytics: umbrella term for the application of machine intelligence to any
form of digital content.
Deductive Reasoning: logical inference that links premises with conclusions (allows
deriving b from a, where b is a formal logical consequence of a;) [11].
DeepQA: core of the Watson project at IBM on a grand challenge in Computer Science:
to build a computer system, that is able to answer natural language questions over an
open and broad range of knowledge [12].
Evidence Based Medicine (EBM): is about the integration of individual clinical exper‐
tise with the best external evidence [13], originally coming from medical education for
improving decision making strategies [14].
Inductive Reasoning: allows inferring b from a, where b does not necessarily follow
from a; this reasoning is inherently uncertain (e.g. Billo is a boxer, Billo is a dog > all
dogs are boxer)
Machine Learning: field of study and design of algorithms that can learn from data,
operate by building a model based on inputs and using that to make predictions or deci‐
sions, rather than following only explicitly programmed instructions. The more data the
better, hence big data is good for machine learning [15].
Reasoning: associated with thinking, cognition, and intelligence it is core essence in
decision making as it is one of the ways by which thinking comes from one idea to a
related idea (cause-effect, truth-false, good-bad, etc.) [16].
Watson: synonym for a cognitive technology system of IBM, using DeepQA that tries
to process information more like a human than a computer with the goal of understanding
natural language based on hypothesis generation and dynamic learning [17].
Watson Content Analytics: a business solution, based on Watson technology for knowl‐
edge discovery from unstructured information aiming to help enterprises to validate
what is known and reveal what is unknown, having much potential for medicine and
health care [18].

3 What Is This Watson?

In 2007, the IBM Research labs began with the grand challenge of building a computer
system that could eventually compete with human champions at the game quiz show
Jeopardy! In 2011, the open-domain question-answering (QA) system, called Watson
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(in honor of Thomas J. Watson (1874–1956), CEO of IBM from 1914 to 1956), beat the
two highest ranked players in a nationally televised two-game Jeopardy! competition.

Technologically, Watson is the result of a systems integration of many diverse algo‐
rithmic techniques, performed at champion levels [12, 19], and was created to demon‐
strate the capability of so-called DeepQA technology [20]: this architecture was
designed to be massively parallel, with an expectation that low latency response times
could be achieved by doing parallel computation on many distributed computing
systems. A large set of natural-language processing programs were integrated into a
single application, scaled out across hundreds of central processing unit cores, and opti‐
mized to run fast enough to compete in a real-world application [21].

Because Watson cannot hear or see, when the categories and clues were displayed on
the game board, they were inputted manually (as text) to Watson. The program also
monitored signals generated when the buzzer system was activated and when a contestant
successfully rang in. If Watson was confident of its answer, it triggered a solenoid to
depress its buzzer button and used a text-to-speech system to speak out loud its response –
to make the output more appealing. Since it did not hear the host’s judgment, it relied on
changes to the scores and the game flow to infer whether the answer was correct or not.
The Watson interface program had to use what were sometimes conflicting events to
determine the state of the game, without any human intervention [22].

Deep Blue, the computer that played chess and beat world champion Garry Kasparov
in 1996 first, and in 1997 the six-game match [23], was also impressive, but far not as
impressive as Watson [24]. Deep Blue operated in a finite and well specified problem
space. Though the chess problem space is large (estimated to be greater than 10120

positions) making it impossible for computers to calculate every potential outcome [25]
it could certainly calculate the merits of every immediate move and the possible alter‐
natives two or three moves ahead [26]. Combined with some strategic knowledge, it was
able to beat any opponent at chess.

The problem space that Watson took on was much less well defined and required the
interpretation of natural language to form and select an appropriate answer. Exactly this
is the big problem: Whereas chess programs tend towards performing “super-human”,
i.e. perform better than all humans, natural language processing, i.e. word sense disam‐
biguation is traditionally considered an AI-hard problem [27, 28].

For those of us who study both human and artificial intelligence, the question arises
as to what extent to which Watson mimics human intelligence [29, 30]. In the past,
human intelligence researchers and many artificial intelligence researchers have
dismissed the possibility of any strong similarity between artificial and human intelli‐
gence [31]. This was almost certainly correct for any past accomplishment in artificial
intelligence, especially which focused on games and search.

Could Watson be different? It is very likely that Watson would do quite well on many
test items that compose intelligence tests including general information, vocabulary,
similarities, and nearly anything dependent on verbal knowledge. Nevertheless, it is very
likely that Watson would do quite poorly on many other kinds of tests that require
reasoning or insight. In its current state, it would be difficult for Watson to understand
directions for the various and different subtests that usually make up an intelligence test,
something that children as young as three or four do easily.
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Tests of computer intelligence are as old as computers themselves. The most
famous is the Turing test proposed by Alan Turing (1912–1954) more than 60 years
ago. Turing suggested that a machine would be intelligent when an observer would
have a conversation with a computer and a real person and not be able to distinguish
which was which [32].

Numerous other approaches have been proposed, including the construction of a
unique battery of tests that would provide an actual IQ score for artificial intelligence
systems, similar to the way human IQ scores are determined [33]. This challenge is
supported by the editorial board of the journal “Intelligence” and members of the Inter‐
national Society for Intelligence Research.

A recent paper by Rachlin [34] speculates on the abilities Watson would need, in
addition to those it has, to emulate true human behaviour: essential human attributes
such as consciousness, the ability to love, to feel, to sense, to perceive, and to imagine.
Most crucially, such a computer may exhibit self-control and may act altruistically.

At this point, the external perception of Watson’s performance in Jeopardy! exposes
only “question in – single answer out” with no detailed explanation of how the answer
was found. However, internally, Watson uses a form of hypothetical reasoning called
“probabilistic abduction”, e.g., see [35], which creates and ranks alternative answers
based on the alternatives that can be inferred from a variety of text resources within the
time limit for a response.

Currently the IBM team is working on a vision for an evidence-based clinical deci‐
sion support system, based on the DeepQA technology, that affords exploration of a
broad range of hypotheses and their associated evidence, as well as uncovers missing
information that can be used in mixed-initiative dialog [17]. Whereas Watson used
simple but broad encyclopaedic knowledge for the Jeopardy! task, the extended medical
Watson uses medical information gleaned from sources also available to the practicing
physician: medical journals and textbooks.

Considering the fact that medicine is turning more and more into a data intensive
science, it is obvious that integrated machine learning approaches for knowledge
discovery and data mining are indispensable [36].

The grand goal of IBM is having the Watson technology ready as a medical doctor’s
assistant (in German: Arzthelfer) available on a mobile computing device by the year
2020 [37]. This is a grand challenge exactly at the intersection of human-computer
interaction (HCI) and knowledge discovery and data mining (KDD) [38].

4 Computers and Medicine

Undeniably, computers offer ever-increasing capabilities in areas where we as humans
have trouble competing. Information entered can be reproduced accurately and without
degradation innumerable times to as many users as desired. Data elements can be
grouped, parsed, abstracted, combined, copied, and displayed in any conceivable way,
offering seemingly infinite options to view even very large sets of data. Numeric values
can be instantly analyzed and participate in complex calculations, the result of which is
immediately available. Network environments allow multiple users to access and share
identical information in real time.
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Not least, advances in natural language processing allow an increasingly accurate
analysis of data contained within unstructured written documents and reports. In fact,
IBM’s Jeopardy! contestant Watson is the first system to show the power of this tech‐
nology in quasi real time [39, 40].

In medicine, electric and electronic devices as well as computerized systems have
an impressive track record. Assistance in diagnosis dates back to 1895 when Conrad
Wilhelm Roentgen (1845–1923) demonstrated that the use of electromagnetic radiation,
invisible to the naked eye was able to penetrate tissues and visualize the bones [41].
Advances in this basic technology combined with the computing power of modern
semiconductors led to the development of sophisticated imaging technology such as
computerized tomography offering 2-D and 3-D images of internal tissues and organs
as well as real time fluoroscopy, providing essential information for tricky medical
interventions. Magnetic resonance imaging provides digital images constructed from
atomic nuclear resonance of body tissues allowing for accurate visual diagnoses of many
pathological conditions. Computer generated images based on the analysis of ultrasound
waves reflected from body tissues have become an indispensable tool in the evaluation
of internal organs and prenatal care.

In the realm of therapy, computers led to significant medical advances. Cardiac
pacemakers generate a cardiac rhythm in cases of failure of the innate sinus node.
Implanted automatic defibrillators continuously analyze the electrical system of the heart
and sophisticated algorithms determine the selection of multiple response modes which
allow the device to save a failing heart and prolong the patient’s life.

The use of electronic medical records has been steadily growing over the past 10
years. Today about 42 % of US hospitals utilize some type of electronic documentation
[42]. In 2011 the US government introduced the concept of “Meaningful Use” initially
offering financial incentives to increase the adoption of computerized record systems.
The advance of electronic documentation has created a fertile basis for diagnostic and
therapeutic decision support systems, which have diversified significantly over time.
Some projects have taken into account newest findings in neurocognitive research
(“cognostics”) for their human–computer interface development, and are adapting
principles and methods to ideally support the human cognitive process with its inter‐
active analytical and constellatory operations [43]. Most recently, the market penetra‐
tion with small computing devices such as smart phones and table computers has
shifted medical referencing from printed media to electronic devices, though the
analysis of accumulated patient data is yet to be abstracted and codified in a manner
that would easily amplify the abilities of the clinical decision maker – but that is
anticipated to come.

5 The Digital Challenge

In view of these impressive advances in technology and computing it is not surprising
that a debate has been sparked as to whether the continuation of this development will
lead to a future situation in which computers will eventually outperform human doctors
and consequently assume larger roles in medical diagnostics and therapeutic decisions.
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The venture capitalist Vinod Khosla states in an interview published by Techcrunch on
January 10th, 2012 that

“we cannot expect our doctor to be able to remember everything from medical school twenty
years ago or memorize the whole Physicians Desk Reference (PDR) and to know everything
from the latest research, and so on and so forth. This is why, every time I visit the doctor, I like
to get a second opinion. I do my Internet research and feel much better.” [44].

In order to better understand the issues involved in the potential of computing tech‐
nology and artificial intelligence as it is integrated into medical decision making, it might
be worthwhile to differentiate between three different aspects of the process of delivering
health care to a patient: data formats and relationships amongst those, the accumulation
of large volumes of medical data contained within databases, and the reasoning process
used to interpret and apply those data to benefit a specific patient.

6 Data Formats and Relationships

Here we follow the definitions of Boisot & Canals [45], who describe data as originating
in discernible differences in physical states of the world. Significant regularities in this
data constitute information. This implies that the information gained from data, depends
on the expectations, called: hypotheses. A set of hypotheses is called knowledge and is
constantly modified by new information. This definition fits well to the human infor‐
mation processing model by Wickens [46]: The physical stimuli (cues) are selected by
the attentional resources and the perceived information builds working hypotheses H1,
H2, H3 … etc., which are constantly compared and judged against available hypotheses,
already present in the long-term memory. On this basis the best possible alternative will
be chosen and actions A1, A2, A3, … etc., performed according to likelihoods and
consequences of the outcomes – which can be perceived again via the feedback loop.
Wickens described the input “filter” as the “nebula of uncertainty” and this emphasizes
perfectly a general problem in decision making: we deal always with probable infor‐
mation. Each information chunk, item or whatever you call it, has always a certain
probability aspect (refer to lecture 7 in [10]).

Based on these definitions, the commonly used term “unstructured data” might just
capture random state descriptors – uncertainty – noise [47]. In Informatics, particularly,
it can be considered as unwanted non-relevant data without meaning within a given data
model – or, even worse, with an interpretation assigned in error, hence modelling of
artefacts is a constant danger in medical informatics [48].

The question “what is information?” continues to be an open question in basic
research. Any definition depends on the view taken. For example, the definition given
by Carl-Friedrich von Weizsäcker (1912–2007): “Information is what is understood,”
implies that information has both a sender and a receiver who have a common under‐
standing of the representation within a shared modelling system and the means to
communicate information using some properties of the physical systems. His addendum:
“Information has no absolute meaning; it exists relatively between two semantic levels”
implies the necessity of context [49].
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There is a distinct and insurmountable difference between human and computer data
formats. Computers – at least as current electronic methods of computation on the basis
of Von Neumann machines [50] are concerned – operate exclusively with digital data
formats. Content is stored as strings of binary data elements. Meaning and relationships
between content items are added by method of (human) assignment or (machine) calcu‐
lation, i.e., they are subsequently provided as additional data layer to the original content
data.

All data elements are provided to computer systems by means of human interaction
(e.g., keyboard, touch pad, etc.), technical devices (sensors, microphones, cameras, etc.)
or secondary data generated through calculation of previously available data. As outlined
above, regardless of the original data format, making data available to computer tech‐
nology has an absolute requirement of translating data into a binary format, regardless
of the original complexity. All relationships between data elements are initially stripped
from the occurrence observed, though some may be added back and preserved for future
use (e.g. machine learning) by adding additional documentation. As such, every pixel
of a picture file has no “knowledge” of its neighbor pixel and the composition of the
picture is provided by a separate instruction, providing placement of the pixel within a
defined grid format. This feature provides the power and flexibility of digital image
processing, as individual elements can be altered without affecting the remainder of the
composition.

Humans, on the other hand, have the luxury of a primary experience of their envi‐
ronment. We traditionally speak of our five senses, sight, hearing, taste, smell and touch,
though other senses also provide data, such as temperature, balance, pain, time and
another less well-understood class of senses commonly referred to as “intuition”. As we
experience life, it appears that the input from the individual senses interact and is stored
in a complex fashion with a high degree of connectedness between individual data items.
The human subjective experience overrules the (measurable) objective state and data
content is difficult to differentiate from data interpretation. This has been demonstrated
quite impressively in pictures such as the checker-shadow optical illusion [51, 52]. In
spite of the lack of objectivity, however, the skewed data perception by the human
observer has advantages, as it puts acquired data content into a contextual perspective
thereby allowing the all-important differentiation between relevant and irrelevant items.

This ability differentiates human perception from machine analysis. It is used
effectively to block automated software responses, e.g. with the so-called CAPTCHA
(“Completely Automated Public Turing test to tell Computers and Humans Apart”)
[53–55]. It is also the basis of the human ability to analyze visual motion in general
scenes which – as of now – exceeds the capabilities of even the most sophisticated
computer vision algorithms [56].

7 On Data and Context

Regardless of whether examining a computer system or the human brain, calculations
and conclusions can only be based on data available to the system. For technical systems
this means that the basis of all operations is the availability of binary input data. Though

28 M. Duerr-Specht et al.



large computer systems such as IBM’s Watson have access to databases of many tera‐
bytes and can process data at the rate of more than 500 gigabytes per second, access is
still restricted to data published or digitally available in other formats. This makes these
systems vulnerable to the GIGO (“garbage in, garbage out”) phenomenon, which
plagues large data environments [57].

As in other fields with computerized data entry, medical documentation in health
records is biased by documentation guidelines, template requirements and constraints
on entry formats, as well as reimbursement requirements, etc., and does not accurately
reflect the complete array of signs and symptoms of a patient’s presentation.

The human brain, on the other hand, does not rely on single-bit data streams as its
input method. We have a complex and analog (not binary digital) experience of our
surroundings, which delivers simultaneous perception data from all senses. Acquired
information from one sensory organ is therefore never one-dimensional but experi‐
enced in the multidimensional context of the other senses, thereby adding meaning to
the data. In contrast to technical systems however, the human brain reduces the original
environmental data quantity, according to principles of interest or “meaningfulness,”
led by attentional resources [58] though the exact mechanism of information conden‐
sation and subsequent storage still remains poorly understood.

Some catchy numbers shall highlight the comparison between human and computer
(although the following numbers are theoretical and the exact function of human infor‐
mation processing is not known yet):

The human eye has been estimated to be able to perceive 6 Mbits/s of primary visual
information, however less than estimated 1 % of this information reaches the visual
cortex of the brain for further cognitive processing [59, 60]. By the time information
reaches our consciousness, the rate of information flow has been estimated to shrink to
about 100 bits/s for visual sources, 200 bits/s for all sensory sources combined [61]. At
this rate it would take about 300,000 years for a human to obtain the data utilized by
Watson in the 2011 Jeopardy! contest.

8 Reasoning Process

Reasoning is according to the common definition “the process of thinking about some‐
thing in a logical way in order to form a conclusion or judgment” [62, 63]. In medicine,
we apply reasoning to come to a conclusion about which diagnosis would be appropriate
for a patient presenting with a certain constellation of signs and symptoms. The reasoning
process typically applied by medical doctors has been described to include abductive,
deductive and inductive reasoning elements [35]. Upon presentation of the patient, the
physician will first generate domain-specific hypotheses based on an initial set of obser‐
vations (abduction). These initial hypotheses are confirmed and refined by additional
observations (induction). Textbook knowledge of the disease entity is then employed to
select the appropriate treatment to improve the patient’s health (deduction).

Adopting this concept of the medical reasoning process, it can be argued that man
and machine have complementary strengths and weaknesses (see Table 1). The abduc‐
tive component provides the basis for hypothesizing known causes or diseases that
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imply the observed symptoms. This initiates the diagnostic process and is uniquely
supported by the human high dimensional intrinsically correlated mechanism of
perception which includes concrete observations that can be measured and documented
in the record and is highly supported by soft factors (sense of illness severity and
distress, emotional state, social environment, etc.), typically not documented or even
consciously recognized. The human brain is capable of rapidly associating this overall
picture with known disease patterns and can thereby not only very efficiently postulate
the hypotheses within the abductive process but also intuit measures to manage cases
in which the observed pattern does not sufficiently match known entities. The medical
literature is full of examples of unique presentations in which the treating physician
invoked a creative process of expanding hypotheses beyond what had previously been
known or documented (as an example and fun reading please refer to a recently
published report by Rice et al. [64]).

Table 1. Medical Reasoning: Human vs. Computer

Reasoning Process Human Computer
Abductive 
Hypothesis generation 

Uniquely capable of complex 
pattern recognition and 
creative thought. 
“the whole is greater than the 
sum of its parts” 

Matches multiple individual 
correlations from extensive data 
banks based on preconceived 
algorithms. Secondary 
construction of relationships. 
“the whole equals the sum of its 
parts” 

Inductive 
Symptom → Disease 

Limited database. Subject to 
biases - Anchoring bias - Confirmation bias - Premature closure 

Extensive database. Probability 
based on Bayesian statistics, no 
significant bias. Limitation 
based on available data. 

Deductive 
Disease → Symptoms, 
Treatment 

Limited database. Personal 
intuition and experience affect 
decision making. 

Extensive database. Application 
of rules of evidence based 
medicine with potential biases. 

Computerized systems, on the other hand, only can use data supplied as binary code
which is processed in pre-conceived algorithms and have no original perception of
“Gestalt.” Relationships are based on correlations extracted secondarily from extensive
databases, however the whole remains equal to the sum of the parts. What seems elusive
is an information model or structure that emulates the emergence of genuinely novel
concepts and ideas the human mind is capable of, without succumbing to a reductionist
view of acknowledged but unformulated physician insights. At the very least, the infor‐
mation system support would have to consider a wider breadth of feasible hypotheses
guided by the deeper experiences of physicians, which would require a much more
sophisticated and extensive conceptual underpinning of the language in which hypoth‐
eses are expressed.

Human reasoning in the practice of medicine is, however, hampered in the inductive
process of confirming and refining abductive hypotheses due to biases and poor under‐
standing of probability calculations. The tendency of physicians to retain their initial
hypotheses even in the light of contradicting data is a well-described phenomenon [65, 66].
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Multiple concepts of bias are described in this context:

• Anchoring bias: focusing on a single concept before sufficient data is available to
support it,

• Confirmation bias: gathering only information to support an hypothesis, and
• Premature closure: terminating the reasoning process and eliminating evaluation of

alternative explanations prematurely;

Computer systems are not prone to these biases. The computer has no urge to favor
one hypothesis over another but rather uses information from extensive medical data‐
bases as entry data for probability calculations, often along the lines of Bayesian statis‐
tics. Conceptually this approach is supported by the probabilistic nature of information,
and the role of reasoning to calculate and identify the most probable hypotheses. In
contrast to computer algorithms, a recent study reports that most physicians misunder‐
stand the underlying probabilistic logic of significance tests and consequently often
misinterpret their results. The study concludes that a solid understanding of the funda‐
mental concepts of probability theory is becoming essential to the rational interpretation
of medical information per se [48].

One of the earliest software tools in medical reasoning, MYCIN, developed by the
Stanford Medical Center in the 1960’s was based on the concepts of inductive reasoning
[67, 68]. In the same manner, well-designed clinical reasoning software could be of
significant value in alerting physicians about possible bias in their decision process,
assisting in the probability calculations and helping to minimize or avoid clinical error.

Sophisticated access to the knowledge of large medical databases could also assist
in the deductive phase of medical reasoning. In selecting the most likely diagnosis
among a selection of differential diagnostic considerations, specific tests and exams are
necessary. Physicians generally have a very poor track record in selecting the course of
clinical tests that provides for the most efficient information gain. Often studies are
ordered according to individual habits with limited understanding or consideration of
how the test results affect the likelihood of a disease being present or not. Software with
access to extensive data regarding prevalence of disease entities in specific populations
as well as the sensitivity and specificity of diagnostic studies would offer guidance to
an efficient selection of tests to confirm or refute a diagnosis as it relates to a particular
patient presentation.

Once a diagnosis has been established, the decision on therapeutic interventions can
also be assisted by medical software. Unlike their human counterparts, computers have
access to all published information and recommendations and can suggest the interven‐
tion that is most current. In addition, the broader influence of historical data as well as
subtle trends can be considered, which is difficult and time challenging for humans. Since
2011, IBM Watson’s capabilities in assisting in treatment decisions are being studied by
multiple medical facilities, including Columbia University, the Memorial Sloan-
Kettering Cancer Center as well as the Cleveland Clinic [69]. In the German speaking
world progress has been made particularly at Graz University Hospital [18], and Vienna
University Hospital [70] – two of the largest hospitals in Europe.

Computerized assistance in medical treatments are based on the principles of
“evidence based medicine,” an approach that is led by the idea that the best treatment
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is one based on the results of published trials and applies findings to the individual
patient. While this treatment philosophy represents an understandable ideal, it is subject
to significant limitations, among others: selection of study population, publication bias,
bias based on financial incentives and errors in study results due to incomplete under‐
standing of the biological system (e.g., Simpsons paradox [71]). In addition, computer
generated treatment recommendations exclude the personal experience and intuition of
the treating physician. Recent research further elaborates on the dual processing theory
of human cognition [72] and a recent study reports that reasoning and decision-making
can be described as a function of both an intuitive, experiential and affective system
(system 1) and/or an analytical, deliberative processing system (system 2) [73].

9 Future Challenges

Faced with unsustainable costs and enormous volumes of under-utilized data, health
care needs more efficient practices, research, and tools. It is our opinion that there is
tremendous potential in harnessing the power of modern information technology and
applying it to the medical sciences.

We believe that the challenges and future work needed to support medicine, health
and well-being with software products can be categorized in three distinct areas: organ‐
izational (including administrative and political), technological and educational:

Area 1: Organizational/administrative/political

• data access and data ownership issues;
• balancing legitimate privacy concerns with the benefits of access to large amounts

of anonymized open clinical data for public and personal health assessment;

Area 2: Technological

• building new software products based on existing technology and using available
digitally stored data elements, with a special focus on visual representation of
complex clinical data, trending of individual health parameters and weak signal
detection;

• developing intuitive medical record systems to allow for improved documentation
of the process of care and medical reasoning and promoting continuity of care during
the hand-off process between health care providers

• enhancing digital data capture through newly designed intelligent user interfaces and/
or secondary processing by means of natural language processing and content tagging

• developing new hardware products to automatically capture relevant physiological
data, e.g. along the lines of the quantified self movement

• promoting preventative care by analyzing large amount of high quality clinical data
to detect weak signals that serve to risk stratify for future health events

• continuing research in artificial intelligence and machine learning and testing
concepts of software systems acting as legitimate sparring partners in sophisticated
medical decision making, which is still the core area of biomedical informatics [56].
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Area 3: Educational

• promoting and supporting interdisciplinary events in which software engineers and
medical professionals exchange ideas and concepts and develop a common language
in describing domain specific needs.

We envision a future where medical doctors can ask questions to the available data
and have an integrative overview of both the clinical patient data and -omics data (e.g.
genomics, proteomics, metabolomics, etc.) [74]. Software support in personal and global
health data would allow the expert to find and diagnose diseases in advance, before
symptomatically apparent. In this form of data-centric medicine, prevention could really
become efficient, and the dream of a personalized medicine approach can become true
[75]. Although both science and engineering are making significant progress, a lot of
work remains to be done within the coming years for this vision to become a reality.

The integration of technology into clinical medicine includes at least three broad
classes of challenges. In our discussion regarding the role of Artificial Intelligence, it is
clear that there are a large variety of technologies that can begin by augmenting and
amplifying the value of clinical practioners:

(1) improvements in diagnostic sensing and imaging; capture and rapid deployment of
new medical knowledge,

(2) logistics and management improvements in both small clinics and hospitals, and
(3) improvement in the capture, security, and use of medical data.

Not all of these challenges are technical. In fact 2 and 3 are largely organizational
challenges, partly due to educational lag and the pace with which modern medical
management adopts technologies that are already available. These include not just
actionable medical knowledge and technology, but operational management and tech‐
nology procurement. Challenge 3 is largely about the development and exploitation of
patient data, where two major impediments exist. One is simply the evolutionary adop‐
tion of standards of data capture and use, partly at capture time, where capture, storage
and open access must be addressed. Subsequent to that, medical ontology systems, which
provide the foundation for aggregating data, and using analytics (machine learning) to
find trends and help improve clinical practice.

A more serious challenge is the development and deployment of medical data gover‐
nance models, into which public, government, and medical organizations can collaborate
to develop the trust to actually use medical data. Many jurisdictions are recognizing that
data security methods have never been better, so that the governance of medical data,
and building public trust for its value is the key.

Thus, in the effort to achieve superior and cost-effective medical care by virtue of
integration of physician expertise and computerized clinical decision support systems
(CDSS), the following issues need to be addressed:

Issue 1. Negotiating the contradiction between structured digital data capture and the
expressive narrative in clinical documentation: Whereas downstream use and reuse of
clinical data in decision support systems requires data that is highly structured and
standardized, practicing clinicians demand documentation systems that afford flexibility
and efficiency and easily integrates into busy and hectic workflows [76]. In order to
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successfully implement computerized clinical support systems, EHR solutions will have
to be developed in a way that satisfy the needs for clinical workflow support, documen‐
tation of unsuspected circumstances, machine readability and structured data capture.

Issue 2. Development and adoption of a standardized biomedical “language”. Auto‐
mated data capture processes and electronic health records are producing data sets too
large to be manually analyzed or processed. Therefore it is important that clinical data
can be tagged according to a common biomedical ontology to allow for widespread
international data sharing and analysis [77].

Currently several competing ontologies are being used, serving various interests in
the biomedical domain (e.g. UMLS, MeSH, GALEN, SNOMED, ICD), however, all
these are difficult to use and rather impossible to map to each other due to inconsistent
representation.

Issue 3. Regulatory and legal framework. Legal exposure to practicing physicians can
result from errors due to flawed design or functionality of computerized clinical support
systems, or their improper use. Currently there exist few standards for the design and
development of automated decision support systems and there have been calls to enhance
current functionalities and create tools to avoid automation associated errors [78].
Changes to the regulatory framework have been recommended [79]. Furthermore, as
recommendations based on computerized algorithms and decision support systems
become part of the practice reality in the medical field, legal structures need to be adapted
to allow physicians to base diagnostic and treatment decisions on their individual
acumen and expertise, even if in disagreement with machine recommendations, without
immediate legal exposure.

Issue 4. Inhibitory medical data protection regulations. While patients have a valid
interest in protecting confidential medical data, overly protective limitation to access
community health care data thwarts medical research and knowledge development and
can harm general public health interests. In the interest of advancing medical knowledge
and quality of care it will be necessary to increase access to biomedical information
whilst at the same time protecting legitimate individual privacy interests.

Issue 5. Creating a dynamic educational system. It is shocking that the average transfer
time for medical knowledge from initial research to widespread implementation in
medical practice has been estimated to be between 12 and 17 years [80]. As we increase
our ability to fuel computerized clinical decision support systems with real time date,
processes need to be developed to extract knowledge regarding diagnoses and optimal
treatment and make this available to the medical practitioners. Adjusting to this dynamic
decision environment will require a new mind set in programmers, policy makers and
practitioners.

10 Summary

Since their early beginnings, more than half a century ago, computer systems have
evolved into highly complex data environments that are able to rapidly deliver vast
amounts of information. It has been postulated that the computing power of advanced
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systems will be able to provide medical care to patients in the near future that will be
more efficient and of higher quality and lower cost than currently offered by physicians.
While this is probably overly enthusiastic, current developments in medical software
promise an exciting future for physicians. Needed information will be delivered to our
fingertips without delay. Intelligent selection algorithms will allow us to rapidly review
case-relevant studies and protocols.

Unusual constellations of signs and symptoms will be screened for rare diseases and
suggested for consideration. Our electronic medical records will be smart in prompting
us to answer only the questions that are relevant for case-specific decision-making.
Graphical user interfaces will make it easy to detect and review even subtle trends and
compare symptom constellations of the differential diagnoses under consideration.

Software capabilities have graduated to the professional league of medical care. As
the pilots in the diagnostic and therapeutic process, we as physicians are now called to
step up to the plate and engage in active conversations with software developers and IT
departments. Mustering this initiative will allow us to leverage the unique strengths and
capabilities of both information technologies and medical sciences into powerful and
effective health care services of the future in which doctors will be able to navigate the
complex landscape of a patient’s health information similar to how an airline pilot
manages a complex flying machine with the assistance of a the sophisticated flight data
display of a computerized glass cockpit.

Computers cannot become better medical doctors. Medical doctors can become
better medical doctors with the support of smart hospital systems [3]. Information tech‐
nology and medical sciences are not battling for territory in a zero sum game. If we
approach it correctly, everyone wins, most importantly: our patients!

11 Epilogue

As for the triumph of IBM Watson in the Jeopardy! game show: the amazing observa‐
tion, one may argue, is not that Watson won, employing its database of four terabytes,
cluster of 90 IBM Power 750 serves each using a 3.5 GHz Power7 eight core processor
and able to push the response button within 5 ms, 20 times the human response time.
The amazing thing is that the human contestants scored. Just imagine what the two forces
combined could achieve [38].
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