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Introduction to
Al/Machine Learning

Mini-Course Syllabus “

= At the end of this mini course you will ...

= .. be fascinated to see our world in data sets;

= .. understand the differences between
data, information and knowledge

= ... be aware of some problems and challenges in
biomedical informatics

= ... understand the importance of the concept of
probabilistic information p(x)

= ... know what Al/Machine Learning can (not) do

= ... have some fundamental insight into medical
information science for decision making
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Agenda “

= 01 What is HCAI ?

= 02 Application Area: Health Informatics

= 03 Probabilistic Information

= 04 Automatic Machine Learning

= 05 Interactive Machine Learning

= 06 Causality, Explainability, Interpretability
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Remark

This is the version for
printing and reading.
The lecture version is
didactically different.

Health Informatics, Andreas Holzinger
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Background Reading

Riscn o Bt J

Biomedical

Holzinger, A. 2014. Biomedical Informatics:
Discovering Knowledge in Big Data, New York,
Springer, doi:10.1007/978-3-319-04528-3.
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Abbreviations “

Al = Artificial Intelligence
ML= Machine Learning
DL =Deep Learning

HC = Human-Centered
HCAI = Human-Centered Al
aML = automatic/autonomous ML
iML = interactive ML, interpretable ML
KDD = Knowledge Discovery from Data
ExAI = explainable Al

Andreas Holzinger, Peter Kieseberg, Edgar Weippl & A Min Tjoa 2018, Trends and Ct B¢ Extraction:
From Machine Learning to Explainable Al. Springer Lecture Notes in Compt 'S 11015. Chs pp. 1-8, doi:10. 1
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Andreas Holzinger: Background

= Austrian Representative in IFIP TC 12 “Artificial Intelligence”
= Ordinary Member of Academia Europea:
https://www.ae-info.org/ae/Member/Holzinger Andreas

= PhD in Cognitive Science 1998

= Habilitation Computer Science 2003

= Lead Human-Centered Al (Holzinger Group)
.

Personal Homepage: https://www.aholzinger.at

= Currently: Visiting Professor for explainable Al,
Alberta Machine Intelligence Institute, Edmonton, CA

= Visiting Professor for Machine Learning
in Health Informatics: TU Vienna, Univ. Verona,
UCL London, RWTH Aachen

= Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell,
2017. What do we need to build explainable Al systems for the medical domain?
arXiv:1712.09923

= Andreas Holzinger, 2018. Explainable Al (ex-Al). Informatik-Spektrum,
do0i:10.1007/500287-018-1102-5

= Andreas Holzinger et al., 2019. Causability and Explainability of Al in Medicine.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

doi:10.1002/widm.1312
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01 What is

@ HCAI £
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= ML is a very practical field -
algorithm development is at the core —

various topics ...

however, //‘ e
successful ML needs a cq,nceyfgp

o

wzinger

Not our Goal: Humanoid Al “

7

This image s in the public domain
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Health is a complex area “

Why is this
application area
complex ?
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01 What is HCAI ?

Privacy 4 — Transparency, Accountability, Ethics
o
9

Andreas Holzinger 2013. Human—-Computer Interaction and Knowledge Discovery (HCI-KDD): What is the benefit of bringing those
two fields to work together? In: Multidisciplinary Research and Practice for Information Systems, Springer Lecture Notes in Computer
Science LNCS 8127. Heidelberg, Berlin, New York: Springer, pp. 319-328, doi:10.1007/978-3-642-40511-2 22

Introduction to Al and Machine Learning 12 Health Informatics, Andreas Holzinger

To reach a level of usable intelligence we need to ... “

= 1) learn from prior data
= 2) extract knowledge

= 3) generalize, i.e. guessing where a
probability mass function concentrates

= 4) fight the curse of dimensionality

= 5) disentangle underlying explanatory
factors of data, i.e.

= 6) understand the data in the context of
an application domain
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In medicine we have two different worlds ...

Our central hypothesis:
Information may bridge this gap

Holzinger, A. & Simonic, K.-M. (eds.) 2011. Information Quality in e-Health. Lecture Notes in Computer
Science LNCS 7058, Heidelberg, Berlin, New York: Sprmger
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Our goal is that human values are aligned
to ensure responsible machine learning

Introduction to Al and Machine Learning 13 Health Informatics, Andreas Holzinger

Introduction to Al and Machine Learning 16 Health Informatics, Andreas Holzinger

This image s if the public domain
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Main problems ...

Holzinger, A., Dehmer, M. & Jurisica, |. 2014. Knowledge Discovery and interactive Data Mining in
Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics, 15, (S6), 11.
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Repetition of Bayes - on the work of Laplace
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Why is this relevant
for medicine?
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03 Probabilistic
Learning

- Maxwell, J. C. (1850). Letter to Lewis Campbell; reproduced
H in L. Campbell and W. Garrett, The Life
of James Clerk Maxwell, Macmillan, 1881.
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Learning representations (g, h) from observed data

~Training data: [} = Tl = ':.l"| s Ly anay By :
Feature Parameter: i or hypothesis h heM
Prior belief » prior probability of hypothesis h:  Ji( 7| pli)
Likelihood = p(x) of the data that h is true pl DN ;.u:'d'l I
Data evidence ~ marginal p(x) that h = true pl( D) ':‘-‘;‘1 plefeh w ()
Posterior = p(x) of h after seen (“learn”) datad  p( | T*) ,I'FI: it | rf]

likelihood * prior

evidence ,|"r Hi]ﬂ ] =

__ p@@h)*p(h)
PRld)= 5 @i )
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(D)) = p(#)
(D)

posterior =

Introduction to Al and Machine Learning

Reasoning under uncertainty: Decision Making

= Take patient information, e.g., observations,
symptoms, test results, -omics data, etc. etc.

= Reach conclusions, and predict into the future,
e.g. how likely will the patient be ...

= Prior = belief before making a particular observation

increlental

plugladple,)

NWEiY) = :
Plzily; 3 plx, yy)p(x)

Introduction to Al and Machine Learning 27 Health Informatics, Andreas Holzinger

The foundation for modern machine learning ...

* 1763: Richard Price publishes post hum
the work of Thomas Bayes (see next
slide)

* 1781: Pierre-Simon Laplace: Probability
theory is nothing, but common sense
reduced to calculation ...

* 1812: Théorie Analytique des
Probabilités, now known as Bayes'
Theorem

* Hypothesis h € H (uncertain quantities (Annahmen)

* Datad € D .. measured quantities (Entitaten)

* Prior probability p(h) ... probability that h is true
Likelihood p(d|h) ... “how probable is the prior”

* Posterior Probability p(h|d) ... probability of h given d

Pierre Simon de Laplace (1749-1827)

pldlh)plh)

plh|d) o pld|h) = p(h) plhld) = .
pld)
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Learning and Probabilistic Inference (Prediction)
d ..data m

H ..{H{, H,, .., H,} Vhd ..
h ... hypotheses
Likelihood / Prior Probability

_ __p(@hin(h)
PRId)= 5, pain) e

Posterior Probability
Problem in R™ — complex
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GP = distribution, observations occur in a cont. domain, e.g. t or space
P possterior Likehihomd GF prsor
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Brochu, E., Cora, V. M. & De Freitas, N. 2010. A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning, arXiv:1012.2599.
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Learning from data

] o v s— maan

Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms.

Advances in neural information processing systems, 2012. 2951-2959.
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04 aML
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... and thousands of i’ndustrial aML applications ...

Seshia, S. A., Juniwal, G., Sadigh, D., Donze, A., Li, W., Jensen, J. C., Jin, X., Deshmukh, 1., Lee, E. & Sastry, S. 2015.
Verification by, for, and of Humans: Formal Methods for Cyber-Physical Systems and Beyond. lllinois ECE Colloguium.
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Scaling to high-dimensions is the holy grail in ML “

Cptimiddty Gaa
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Wang, Z., Hutter, F., Zoghi, M., Matheson, D. & De Feitas, N. 2016. Bayesian optimization in a
billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55,
361-387, doi:10.1613/jair.4806.

Introduction to Al and Machine Learning 30

(LTEEEIRET R

Health Informatics, Andreas Holzinger

Example for aML: Recommender Systems n

Francesco Ricci, Lior Rokach & Bracha Shapira 2015. Recommender Systems: Introduction and Challenges.
Recommender Systems Handbook. New York: Springer, pp. 1-34, doi:10.1007/978-1-4899-7637-6_1.
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Big Data is necessary for aML ! n
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Sonnenburg, S., Ratsch, G., Schafer, C. & Schélkopf, B. 2006. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7, (7), 1531-1565.
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Fully automatic — Goal: Taking the human out of the loop (W]
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Shahrian, B, Swersky, K. Wang, I. Adams, R P & De Freitas, N. 2016
Taking the human out of the loop: A review of Bayesian optimization.
Proceedings of the /EEE, 104, (1}, 148-175, doi10.1109/PROC 2015249421 8,
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Fully automatic autonomous vehicles (“Google car”) n
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10 million 200 x 200 px images downloaded from Web n

r* = argmin f(x; W, H), subject to ||[x

Le, Q. V., Ranzato, M. A, Monga, R., Devin, M., Chen, K., Corrado, G. S., Dean, J. & Ng, A. Y. 2011.
Building high-level features using large scale unsupervised learning. arXiv preprint arXiv:1112.6209.

Le, Q. V. 2013. Building high-level features using large scale unsupervised learning. IEEE Intl. Conference
on Acoustics, Speech and Signal Processing ICASSP. |EEE. 8595-8598, doi:10.1109/ICASSP.2013.6639343.
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When does aML fail ...

= Sometimes we do not have “big data”,
where aML-algorithms benefit.

= Sometimes we have
= Small amount of data sets
= Rare Events — no training samples
= NP-hard problems, e.g.
= Subspace Clustering,
= k-Anonymization,
= Protein-Folding, ...

Holzinger, A. 2016. Interactive Machine Learning for Health Informatics: When do we need the human-
in-the-loop? Springer Brain Informatics (BRIN), 3, (2), 119-131, doi:10.1007/s40708-016-0042-6.
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Definition of iML (Holzinger — 2016)

= iML := algorithms which interact
with agents*) and can optimize
their learning behaviour through
this interaction

*) where the agents can be human

Holzinger, A. 2016. Interactive Machine Learning (iML). Informatik Spektrum,
39, (1), 64-68, doi:10.1007/500287-015-0941-6.
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06 Why
Explainability?
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Consequently ...

Sometimes we
(still) need a
human-in-the-loop
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A crowd of people-in-the-loop
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Deep Convolutional Neural Network Pipeline

Esteva, A., Kuprel, B., Novoa, R. A,, Ko, J., Swetter, S. M., Blau, H. M. & Thrun, . 2017. Dermatologist-level classification of
skin cancer with deep neural networks. Nature, 542, (7639), 115-118, doi:10.1038/nature21056.
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Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In:
Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q., eds. Advances in neural information processing systems
(NIPS 2012), 2012 Lake Tahoe. 1097-1105.
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05iML
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iML: bringing in human intuition

o R R (—;;Qﬁ_(_.g'%'.-
- o

Generalization Error Preprocessing Input data

@< r @R < EE

Preprocessing

Generalization Error Input data

plus human experience

iML = human inspection — bring in human intuition

Andreas Holzinger et al. (2017) A glass-box interactive machine learning approach for solving NP-hard problems
with the human-in-the-loop. arXiv:1708.01104.
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Deep Learning “It's not complicated, it's just a lot of it”

= Non-convex: difficult to set up, to train, to
optimize, needs a lot of expertise, error prone

= Resource intensive (GPU’s, cloud CPUs,

federated learning, ...)

Data intensive, needs often millions of training

samples ...

Transparency lacking, do not foster trust and

acceptance among end-user, legal aspects make

“black box” difficult
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Example: Adversarial examples

+ AHIT = =
o T+
i slgn{V |8, 0, 1)) eskgn|{ Va0 2wl
=panla” “nemalode” “pibhon”
57.7% confidence B2% confidenco 0.3 % confidenco

See also: lan J. Goodfellow, Jonathon Shlens & Christian Szegedy 2014. Explaining and harnessing
adversarial examples. arXiv:1412.6572, and see more examples: https://imgur.com/a/K4RWn
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Benefits ...

Verify that algorithms/classifiers work as expected

-r—,i.?j'?- =
Wrong decisions can be costly and dangerous ... ﬁiﬂ_@:

A

Understanding the weaknesses and errors | _ﬂ
Detection of bias — bring in human intuition
to know the error ... |

Scientific replicability and causality ﬁﬁ#
The “why” is often more important than the prediction ...

Andreas Holzinger 2018, Explainable Al (ex-Al). Informatik-Spektrum, 41, (2), 138-143, doi:10.1007/500287-018-1102-5.
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Explainable Al needs effective concept mapping !!!

= Causability := a property of a person (Human)
= Explainability := a property of a system (Computer)

Human interpretabilit __» Explainable Al
(Cognitive Science)

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal & Heimo Mueller 2019, Causability and Explainability of Al in Medicine.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, doi:10.1002/widm.1312.
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Example: Classifier Errors

= Result of the classifier: This is a horse
= Why is this a horse?

Source: Image s in the public domain
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Conclusion

Health Informatics, Andreas Holzinger
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Thank you!
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Example: (Automatic) Context understanding ...

Image Captions by deep learning:
State-of-the-Art of the Stanford Machine Learning Group

B e ndey B oo i ppiare W sl 9 P e e e L
ey s ol g wepon g o

Andrej Karpathy, Justin Johnson & Li Fei-Fei 2015. Visualizing and understanding recurrent networks. arXiv:1506.02078.
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We need effective Human-Al mapping

Why did the algorithm do that?

W w1
Can I trust these results? Q < e : & r&ﬂfg 4

How can I correct an error? |

Input data

We contribute to ...

Wl
Explanation Jff Explainable E !3_';
Q E Interface Model e ¥

Input data

The domain expert can understand why ...
The domain expert can learn and correct errors ...
The domain expert can re-enact on demand ...
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Appendix
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What is biomedical informatics? (W]
FORMATICS LEADVMSMG THE WAY.

= Biomedical informatics (BMI) is the
interdisciplinary field that studies and
pursues the effective use of biomedical
data, information, and knowledge for
scientific problem solving, and decision
making, motivated by efforts to improve
human health

Shortliffe, E. H. (2011). Biomedical Informatics: Defining the Science and its Role in Health Professional
Education. In A. Holzinger & K.-M. Simonic (Eds.), Information Quality in e-Health. Lecture Notes in Computer
Science LNCS 7058 (pp. 711-714). Heidelberg, New York: Springer.
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Technological Performance / Digital Power “

Gordon E. Moore (1965, 1989, 1997)
Digital Powser =
communication « computing « storage -« content

fibar law"

Moore's law” JAisk laws  community law”
U i i I
doubles every  doubles every  doubles every  2"wherinn is
9 manths 18 manths 12 manths  the ¥ of people
Holzinger, A. 2002. Basiswissen IT/Informatik Band 1: Informati hnik. Das iswi fiir

die Informationsgesellschaft des 21. Jahrhunderts, Wuerzburg, Vogel Buchverlag.
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From mainframe to Ubiquitous Computing n

= .. using technology to augment human
capabilities for structuring, retrieving and
managing information

Harper, R., Rodden, T., Rogers, Y. & Sellen, A. (2008) Being Human: Human-Computer
Interaction in the Year 2020. Cambridge, Microsoft Research.
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Computational Sciences meet Life Sciences (W]

http://www.bioinformaticslaboratory.nl/twiki/bin/view/BioLab/EducationMIK1-2
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Computer cost/size versus Performance n
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Cf. with Moore (1965), Holzinger (2002), Scholtz & Consolvo (2004), Intel (2007)
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Ubiquitous Computing — Smart Objects n
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Holzinger, A., Nischelwitzer, A., Friedl, S. & Hu, B. (2010) Towards life - =

long learning: three models for ubiquitous applications. Wireless =

Communications and Mobile Computing, 10, 10, 1350-1365. ot it
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Computer: Von-Neumann Architecture n

External Memory Vo

Long term: Pgnltor

HDD, CD, Stick etc. rinter

Modem

I Network
: ! ] etc.

OUTPUT
Internal Memory!
» Short term: RAM
Long term: ROM

Internal Memory

1 1 [

Keyboard
Mouse
Graphic Pad
Microphone
Controller Modem
(BIOS, OS, AP) Network
etc.

108582014
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Beyond Moore’s Law -> biological computing n
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Cavin, R., Lugli, P. & Zhirnoy, V. 2012. Science and Engineering Beyond Moore's Law. Proc. of the
IEEE, 100, 1720-49 (L=Logic-Protein; S=Sensor-Protein; C=Signaling-Molecule, E=Glucose-Energy)
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Slide 1-34 Example: Pervasive Health Computing n

Holzinger, A., Schaupp, K. & Eder-Halbed|, W. (2008) An Investigation on Acceptance of
Ubiquitous Devices for the Elderly in an Geriatric Hospital Environment: using the Example of
Person Tracking In: Lecture Notes in Computer Science (LNCS 5105). Heidelberg, Springer, 22-29.
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Ambient Assisted Living - pHealth

Example Pervasive Computing in the Hospital

Smart Objects in the pathology

(O
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Alagoez, F,, Valdez, A. C., Wilkowska, W., Ziefle, M., Dorner, S. & Holzinger, A. (2010) From

cloud computing to mobile Internet, from user focus to culture and hedonism: The crucible Holzi.nger, A, Schwaberger,.K. & Weitlaner, M. (200_5) Ubiquitous Computing for Hospital 3
of mobile health care and Wellness applications. 5th International Conference on Pervasive Applications: RFID-Applications to enable research in Real-Life environments 29th Annual ) B
Computing and Applications (ICPCA). IEEE, 38-45. IEEE International Computer Software & Applications Conference (IEEE COMPSAC), 19-20. Images taken by Andreas Holzinger (2005)
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The medical world is mobile (Mocomed) 1970 Turning Knowledge into Data

Holzinger, A., Kosec, P., Schwantzer, G., Debevc, M., Hofmann-Wellenhof, R. & Friihauf, J. 2011. Design and
Development of a Mobile Computer Application to Reengineer Workflows in the Hospital and the
Methodol to evaluate its i Journal of Bi dical Informatics, 44, 968-977.
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