Seminar Explainable Al
Module 00

Primer on Probability, Information
and Learning from Data
Andreas Holzinger
Human-Centered Al Lab (Holzinger Group)

Institute for Medical Informatics/Statistics, Medical University Graz, Austria

and
Explainable Al-Lab, Alberta Machine Intelligence Institute, Ed0monton, Canada

/o HCA]

a.holzinger@human-centered.ai 1 Last update: 26-09-2019



/N

Remark s HEA|

This is the version for
printing and reading.
The lecture version is
didactically different.
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Keywords Probability /o HCAl

" Probability Distribution
" Probability Density

" Frequentist/Bayesian

= Continuous/Discrete

" Independent/Dependent
= |dentical/Non-ldentical
= Correlation/Causation

= Joint Probability

= Conditional Probability
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Keywords Information and Learning from Data A

" Information Entropy

= Mutual Information

= Kullback-Leibler Divergence

= Maximum Likelihood Estimation
= Maximum a Posteriori Estimate
= Bayesian Estimate

= Bayesian Learning

" Fisher Information

"= Marginal Likelihood
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Book recommendations (selection)

Christopher M. Bishop
2006. Pattern Recognition
and Machine Learning,
New York, Springer.
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Machine Learning
&, Prebatvistic Perspective

Woarwbn P Mgy

Kevin P. Murphy 2012.
Machine learning: a
probabilistic perspective,
Cambridge (MA), MIT press.

For those students who are interested in decision
making, this is a Standard: Michael W. Kattan (ed.)
2009. Encyclopedia of medical decision making,

London: Sage.

BAYESIAN
REASONING

and algorit

MACHINE
LEARNING

David Barber

David Barber 2012. Bayesian
reasoning and machine
learning, Cambridge,
Cambridge University Press.

lan Goodfellow, Yoshua
Bengio & Aaron Courville
2016. Deep Learning,
Cambridge (MA), MIT Press.

Conuirier oft
MEDICAL
DECISION
MAKING
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Agenda /o HEA]

" 00 Mathematical Notations

= 01 Probability Distribution and Density

= 02 Expectation and Expected Utility Theory
= 03 Joint Probability/Conditional Probability
" 04 Independent, identically distributed (iid)
= 05 Bayes and Laplace

" 06 Information Theory & Entropy
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00 Mathematical
Notations

We denote random and fixed scalars by lower case, random and fixed vectors by bold lower case,
and random and fixed matrices by bold upper case. Occasionally we use non-bold upper case to
denote scalar random variables. Also, we use p() for both discrete and continuous random variables
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Most used — at a glance /A HCAI
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“Calligraphic™ font generally denotes sets or lists, e.g., dataset D = zy, ...,z
x 1s an element of set D

x is not an element of set D

2 union of two sets, i.e., the set containing all elements of D and D
cardinality of set D, i.e., the number of (possibly non-distinct) elements in it
the maximum x value in set D

Domain of variable x

The variable z is in the state x
For a discrete variable x, this denotes the number of states x can take
TasTatls--sLh

not less than; not greater than

not equal to

much less than; much greater than
the derivative with respect to x

M is a subset of N

M contains N/

intersection of M and N/

implies

equivalent to

there exists

for every
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Linear algebra notations /& HCA|

WTEREDLL

We use boldface lower-case to denote vectors, such as &, and boldface upper-case to denote matrices,
such as X. We denote entries in a matrix by non-bold upper case letters, such as X;;.

Vectors are assumed to be column vectors, unless noted otherwise. We use|(zy,--- ,2p) to denote

a column vector created by stacking D scalars. If we write X = (#y.--- .}, ), where the left hand
side is a matrix, we mean to stack the Z; along the columns, creating a matrix.

|Z|| = ||Z||2  Euclidean or ¢, norm , | 3~ 3
j:
d
1] |1 {1 norm » |x;|
j=1

X. J’th column of matrix
X;.. transpose of ¢’th row of matrix (a column vector)

i Element (7, j) of matrix X
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Probability notations (1/3) /& HCAI

X, Y Random variable

P() Probability of a random event

F() Cumulative distribution function(CDF), also called distribution function
p(x) Probability mass function(PMF)

f(x) probability density function(PDF)

F(z,y) Joint CDF

p(x,y) Joint PMF

f(z,y) Joint PDF

p(X|Y) Conditional PMF, also called conditional probability
x|y (zly) Conditional PDF

X 1Y X 1s independent of Y

X 1LY X 1s not independent of Y

X 1Y|Z X 1s conditionally independent of Y given Z

X LY|Z X 1s not conditionally independent of Y given Z
X ~p X 1s distributed according to distribution p

a Parameters of a Beta or Dirichlet distribution
cov|[X] Covariance of X

E[X] Expected value of X

E, [ X] Expected value of X wrt distribution g

H(X) or H(p) Entropy of distribution p(X)

[(X;Y) Mutual information between X and Y

KL(p||q) KL divergence from distribution p to g
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Probability notations (2/3) /& HCAI

10 Log-likelihood function

L(6,a) Loss function for taking action a when true state of nature is
A Precision (inverse variance) A = 1/0?

A Precision matrix A = X!

mode[ X | Most probable value of X

1L Mean of a scalar distribution

[ Mean of a multivariate distribution

P cdf of standard normal

0} pdf of standard normal

T multinomial parameter vector, Stationary distribution of Markov chain
P Correlation coefficient

sigm(x) Sigmoid (logistic) function, g

o2 Variance

Yy Covariance matrix
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Probability notations (3/3) LR\

E=

var|[z]

:'é
N(u,0°)
O(h(x))
O(h(z))
Q(h(zx))
Hl;p Flz)
p(x = tr)
p(z = fa)
p(zNy)
p(zUy)
p(zly)
(f(#))g(a)

o(x)

erf(x)
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Variance of @

Degrees of freedom parameter

Normalization constant of a probability distribution

has the distribution, e.g., p(z YN (i, 0%)

multidimensional normal or Gaussian distribution with mean p and variance o2
big oh order of h(x)

big theta order of h(z)

big omega order of h(x)

the supremum value of f(2:)-the global maximum of f(x) over all values of z

Probability of variable = being in the state true

Probability of variable x being in the state false

Probability of x and y

Probability of x or y

Probability of = contioned on y

The average of the function f(z) with respect to the distribtioin p(z)
The logistic sigmoid a +ex113{_m)}

The (Gaussian) error function
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Note: parameter O (theta) credit to Zoubin Ghahramani

Weather Prediction

http://mlg.eng.cam.ac.uk/zoubin

Assume that the weather in London is independent and identically distributed across
days. It can either rain (R) or be cloudy (C).

Data: D= (RCCRRCHK .. )

Parameters: § ' Probability of rain

PR3 =@
PO =1-4

Goal: Te infer & from the data and predict future outcomes P R|T).

Polynomial Regression

|
Data: D= {(z"™) ¢} forn=1,... N 1 |
i )
2" e R -1 ) ) 1
y™ e R A
Parameters: @ = (ag..... s )
Model: 5
'™ = ag + a1z™ + agz!™” .+ amzr™ + e
where

e N0, a%)

Goal: To infer 8 from the data and to predict future outputs Ply|D. x.m)

a.holzinger@human-centered.ai

Linear Classification

]
Data: D= {(x" ¢} forn=1,....N X
data points
¥ X
XX
x{rl] e 5.!?]'.;' " }(x
g e {+1,-1} x X,

Parameters: # ¢ HY+!

Fal

1t Y taal) vz 0
d=1

0 otherwise

P(y™ = +1|6,x™) =

Goal: To infer @ from the data and to predict future labels P(y|D, x)

Clustering with Gaussian Mixtures
(Density Estimation)

Data: D= {x""} forn=1,..., ! N

xﬂ nj E Rf.}

Parameters: 8 = ((u'' EV), | (ut™ Em), )

Madel:

™

xS p(x™)

whers
'™ = N (), TN

Goal: To infer 8 from the data and predict the density p(x|D,m)
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Machine learning builds on 3 mathematical pillars 4\ HCAl

= 1) Linear algebra,

= 2) probability/statistics, and
= 3) optimization

= typical data organization is in arrays (matrices),
= rows represent the samples (data items)

= columns represent attributes (features, representations,
covariates), ML = “feature engineering”

= Simplest: each training input x; is a d-dimensional vector
of numbers, but x; could be a complex object (image,
sentence, graph, time series, molecular shape, etc.

Prepare
Data

See a typical ML-pipeline here:
https://www.datasciencecentral.com/profiles/blogs/data-version-control-iterative-machine-learning
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Discussion: What makes a good feature? s HCA|

HEMN-CONTEREDLL

Blue eyes

Brown eyes

This msans thiol one of

Wkt bakes o Good Featisre® - Machine Leaming Recipes
e i e

https://www.youtube.com/watch?v=N9fDIAfICMY

Definition 1 (Relevant to the target). A feature x; is relevant to a target concept c if
there exists a pair of examples A and B in the instance space such that A and B differ

only in their assignment to x; and c(A) # c(B).

Definition 3 (Weakly relevant to the sample/distribution). A feature x; is weakly rele-
vant to sample S (or to target ¢ and distribution D) if it is possible to remove a subset

of the features so that x; becomes strongly relevant.

Avrim L. Blum & Pat Langley 1997. Selection of relevant features and
examples in machine learning. Artificial intelligence, 97, (1), 245-271,
doi:10.1016/50004-3702(97)00063-5.

a.holzinger@human-centered.ai
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Thus the high-level features found in primates are not expected to occur
also in simpler animals, such as the fish or frog. Across species, therelore,
we find an enormous spectrum of features, especially if we include those
specialized trigger patterns or “innate releasing mechanisms™ reported by
the ethologists (Thorpe, 1963; Tinbergen, 1951). Given this vast collection,
it might seem unlikely that one could abstract away some principles that
define “what makes a good feature?™ However, here we attempt to do just
that.

Our guiding hypothesis is that “seeing” is the inference of world prop-
erties from image elements —ie. the various patterns of intensities on the
retina. A “feature” is typically viewed as a measurement of image struc-
ture, at the level for example of Marr’s primal sketch (Marr, 1982). Clearly,
many different kinds of measurements or “features” are possible. Intuitively,
however, those most often sought after will point directly and reliably to a
unique, meaningful event in the world. But the criterion that a feature be
meaningful implies that the perceiver has some goal or context in mind. For
example, for a baby gull the significance of a red spot in the image depends
on whether it is seen in the context of a traffic light or as coloration on the
beak of an adult gull (Figure 1). In the context of a beak, its salience is
sufficient to trigger a feeding response. Somehow the gull is primed to imme-
diately make the necessary inference. Hence we propose that “what makes
a good feature”™ should include the property of having a ready explanation
for its appearance (MacKay, 1978: MacKav, 1985].

Allan Jepson & Whitman Richards 1992. What
makes a good feature. Spatial vision in humans
and robots, 89-126.
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Practical Example: Probabilistic Reasoning System

Remark: compare with early Expert Systems (see module 3)

The probabilistic
model expresses
general knowledge ——
about a situation. )

|

The inference
algorithm uses
the modelte ———_

answer queries, T

given evidence.

The answers to P
queries are framed —

as probabilities of

different outcomes.

Avi Pfeffer 2016. Practical probabilistic programming, Shelter Island (NY), Manning Publications.

a.holzinger@human-centered.ai

5%
= | Inference algorithm J

Probabilistic
reasoning system

- ( Probabilistic model )

|

The evidence contains
specific information
about a situation.

\

v

Evidence

Queries

Answer

16

\

The queries express the
things that will help you
make a decision.

Last update: 26-09-2019



Please have a look at the lectures by Frank Wood, UBC, formerly Oxford '& Hﬂ%ul

Inference
Parameters Parameters p(x|y)
Program Program p(y|x)p(x)
Output Observations Y
CS Probabilistic Programming  Statistics

Jan-Willem Van De Meent, Brooks Paige, Hongseok Yang & Frank Wood 2018. An
introduction to probabilistic programming. arXiv preprint arXiv:1809.10756.
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Example for a graphical model /o HEAl

(let [z (sample (bernoulli 0.5))
mu (if (= z 0) -1.0 1.0)
d (normal mu 1.0)

y 0.5]
(observe d y) V =A{z,y},
z)
A= {(an)}?
® (Prorm ¥ 0.5) P = [z — (Pbern 2 0.5),
i Y = (Pnorm ¥y (if (= 20) -1.0 1.0) 1.0)],
@ Y= [y 0.5]
E= 2

B (Ppern 2 (if (= 2 0) -1.0 1.0) 1.0)

o

Jan-Willem Van De Meent, Brooks Paige, Hongseok Yang & Frank Wood 2018. An
introduction to probabilistic programming. arXiv preprint arXiv:1809.10756.
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01 Probability
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What is probability p(x)? Y

* Probability p(x) is the formal study of laws of
chance and managing uncertainty; allows to
measure (many) events

" Frequentist® view: coin toss

= Bayesian™ view: probability as a measure of belief
(this is what made machine learning successful)

" p(x) =1 means that all events occur for certain
" |Information is a measure for the reduction of uncertainty
" |f something is 100 % certain its uncertainty =0

= Uncertainty is max. if all choices are equally probable
(1.I.D = independent and identically distributed)

* Uncertainty (as information) sums up for independent
sources: )., p(x =X) =1

*) Bayesian vs. Frequentist - please watch the excellent video of Kristin Lennox (2016): https://www.youtube.com/watch?v=eDMGDhyDxuY
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Probability Density Function PDF vs. Cumulative Density Function CDF 'A HCAI

HEMN-CONTEREDLL

= Discrete distributions:

1 2 3 4 5 6

ZP[X =z;) =1

Name n K =
— K =
Multinomial x€ {0,1,....n}% Y 2 =n
Multinoulli I = X E I!I_i}*‘.}_:? i Tx = 1 (l-ol- K encoding)
Rinomial - 1 re{0,1,...,n) L
Bernoulli 11 re {01}
Table 2.1 Summary of the multinomial and related distributions
ctagccggtacggea
ttagctgcoaccgea
tcagccoctogagean | |
ctasccgcgaccgean
ttagccgctaagagta :. |
toagcctcgtacgta | [l
ttagccgttacggcc .I \ | |
atatccggtacagta Al [a |
otogcaoagpgtoccgaa Ill-" ! TI-C‘
ccotccgtgocggoan e B ] -
Cmmeew b
(a) .41]

= Continuous: Probability density function (PDF)

vs Cumulative Density Function (CDF):

v

a

Plr < a) -f- f(r)dr

a.holzinger@human-centered.ai
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?..(x)
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Probability Density Function and Probability Distribution /2 HCAI

plx)

-, prob. mass 730/10000 -
binwidth  83.935-83.91

2.829

8
:

=]
f T

B36 B3.8 &40 B4.2 B4.4
Height (inches)
John Kruschke 2014. Doing Bayesian data analysis: A tutorial with R,
JAGS, and Stan, Amsterdam et al., Academic Press.

b
pae @) = [ pa)ds

s388088¢8

P(z) = / plr)dx
o~

G
plz) 20 f plx)dr = 1 https://brilliant.org/wiki/multivariate-normal-distribution

= W
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s HEA|

02 Expectation
and
Expected Utility Theory
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Estimate Confidence Interval: Uncertainty matters ! &\ HCAI

------------------------------------

Image by Katharina Holzinger
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Expected Utility Theory E (U|d)

/o HEA)
For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = d is

http://www.eoht.info/page/Oskar+Morgenstern

E(U |d) = Z PlZ1y ¢+ 5, | I B+ 5 « 1 B B

An optimal single decision is the decision D = dmax
whose expected utility is maximal:

dmax — E-Ll"g Imax E(U | d)
dedom(D)

John Von Neumann & Oskar Morgenstern 1944. Theory of games and economic behavior, Princeton university press.
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03 Joint Probability
Conditional Probability
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Independence and Conditional Independence s HCAI

Please review chapter 2.2.4, page 30 of David Barbers Book, here a summary:

We say that two events are independent if their joint probability equals the product of their individual
probabilities,

p(A, B) = p(A)p(B).

In this case we use the notation A L B. Two random variables are independent if this is true for all values
that the random variables can take.

By using the product, we see that two variables are independent iff
p(A)p(B) = p(A, B) = p(A|B)p(B),

or equivalently that

p(A|B) = p(A).

This means that knowing that B happened tells us nothing about the probability of A happening, and vice
VErsa.

A generalization of independence is conditional independence, where we consider independence given
that we know a third event C occurred,

p(A, B|C) = p(A|C)p(B|C),

and in this case we use the notation A L B | C. Conditional independence is much weaker than marginal
independence, and we often make use of it to model high-dimensional probability distributions.
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When we condition on y: Are x and z independent? & HCAI

X Y 7 .
—T = ﬁo
olle X Y 7z
Y/ O—0O—0
p(z,2ly) = p(m)p(;J(lgp(zly) N p(:ﬂaéj()g)(ZIy) — p(zly)p(zly)

T 1 z|y XY=z pyz)=pyply)pzly)

Please review chapter 10.5., page 325 of David Barbers Book
a.holzinger@human-centered.ai 28 Last update: 26-09-2019
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s HEA|

04 Independent
Identically distributed
(11D, i.i.d.)
data
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Please review chapter 8.6., page 180ff of David Barbers Book, particularly:

Definition 8.32 (Independent and Identically distributed). For a variable z, and a set of i.i.d. observations,

z!, ..., 2", conditioned on @, we assume there is no dependence between the observations
h?
o | N1g) = (™0 8.6.7
p(a',....aV16) = ] pa"|0) (8.6.7)
n=1

Watch these examples: https://www.youtube.com/watch?v=lhzndcgCXeo

= -'PIIITIH inafeperuden idenlicaly diastibiuted dutla i pythed

||' ] d-jrr"'

WD - Data Science

a.holzinger@human-centered.ai 30 Last update: 26-09-2019



/N

s HEA|

05 Bayes and Laplace
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Bayes and Laplace on one single slide s HCA|

.!“{J'} pmhability of = - !.'11'__:_‘]|||r’;“'1{1,rj|} IJID[H} likelihood of #
P(z|0) conditional probability of = given 8  P(0|D) = ~ P(D) P(0) prior probability of ¢
P(x,0) joint probability of = and @ P(0|D) posterior of # given D

P(x,0) = P(x)P(0|x) = P(0)P(x|?)

Bayes Rule:
, P(x|0)P(0)
P(Olz) = ————
(0}z) P(x)
Marginalization

Piz) = /f’{'.r.ﬂhm

Model Comparison:

P(Dim)P
P(m|D) = LB Pierre Simon de

Note: This is probably

not Bayes, but this P(D) Laplace (1749-1827)
image is heavily in use
P(Dlm) = /f’{T‘W. m)P(60|m) df
Prediction:
P(x|D,m) = [.“{.rlfﬂ D, m)P(8|D,m)df
P(z|D,m) = / P(x|0)P(0|D,m)dfl  (for many models)

Please refer to the excellent Lectures of Zoubin Ghahramani for profound details, http://mlg.eng.cam.ac.uk/zoubin
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/& HEA]
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06 Measuring
Information



Probability > Information > Entropy s HCAI

" |Information is a measure for the reduction of
uncertainty

" |f something is 100 % certain its uncertainty =0

" Uncertainty is max. if all choices are equally
probable (I.1.D)

" Uncertainty (as information) sums up for
independent sources

Andreas Holzinger, Matthias Hortenhuber, Christopher Mayer, Martin Bachler, Siegfried Wassertheurer,
Armando Pinho & David Koslicki 2014. On Entropy-Based Data Mining. In: Lecture Notes in Computer
Science, LNCS 8401. Berlin Heidelberg: Springer, pp. 209-226, doi:10.1007/978-3-662-43968-5 12.
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Entropy as measure for disorder /2 HCAI

oW entropy medium entropy
low complexity - high complexity

high entropy
low complexity

http://www.scottaaronson.com =~ = .
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An overview on the History of Entropy s HCAI

Bernoulli (1713) Maxwell (1859), Boltzmann (1871),
Principle of Insufficient Gibbs (1902) Statistical Modeling
Reason of problems in physics Pearson (1900)
¥ Goodness of Fit
measure
Bayes (1763), Laplace (1770)
How to calculate the state of
a system with a limited
number of expectation values Fisher (1922)
h ’ 4 Maximum Likelihood
Jeffreys, Cox (1939-1948) Shannon (1948)
Statistical Inference Information Theory

2

Bayesian Statistics Entropy Methods Generalized Entropy

v

See next slide

confer also with: Golan, A. (2008) Information and Entropy Econometric: A Review and
Synthesis. Foundations and Trends in Econometrics, 2, 1-2, 1-145.
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Towards a Taxonomy of Entropic Methods S HCAI

Entropic Methods Generalized
Entropy
Jaynes (1957) '
Maximum Entropy (MaxEn) Renyi (1961)
Renyi-Entropy

Topology Entropy (TopEn) Mowshowitz (1968)

[ Adler et al. (1965) } - ~
Graph Entropy (MinEn)

A& J

4 h Tsallis (1980
Rosieniio) [ TsZ?Ii::E(ntro) }

Minimum Entropy (MinEn) > Py

Rubinstein (1997)
Cross Entropy (CE)

Pincus (1991) b
Approximate Entropy (ApEn) [ _ _ }

Richman (2000)
Sample Entropy (SampEn)

Holzinger, A., Hortenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D. 2014. On
Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, |. (eds.) Lecture Notes in Computer Science, LNCS

8401. Berlin Heidelberg: Springer, pp. 209-226.
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Example of the usefulness of ApEn (1/3) S HCAI

7T:16 PM 9:40PM 12:04 AM 2:28 AM 4:52 AM 7:16 AM

Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H. & Fred, A. 2012. On
Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of
Big Sensor Data. In: Huang, R., Ghorbani, A., Pasi, G., Yamaguchi, T., Yen, N. & Jin, B. (eds.)
Active Media Technology, Lecture Notes in Computer Science, LNCS 7669. Berlin Heidelberg:
Springer, pp. 646-657. EU Project EMERGE (2007-2010)
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=

Example of the usefulness of ApEn (2/3) /o H

i
=

Let: {(x,;) = {x1,%5,...,%Xn}

X; = (xi:x(i+1): ---»x(i+m—1))

%%

N k=rlr,1§.).(.,m(‘x(i+k—1) = X(j+k-1)|)

H(m,r) = lim [¢™(r) = ¢™ ()]

N—o0
o am . ) N-m+1 -
Cr (l)_N—m+1 ¢ (r):N—m+1 z n&-7(0)
t=1

Pincus, S. M. (1991) Approximate Entropy as a measure of system complexity. Proceedings
of the National Academy of Sciences of the United States of America, 88, 6, 2297-2301.
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Example: ApEn (2) e

l
gl )
“)'l‘ﬂmt r: *‘ iy l“\l?!h‘h* "'ﬂ \:\?‘ 4 Avin ‘d ‘ u’;\‘.‘.ﬂf 'Q\

”‘ \; i WM'M N‘:‘,‘ ;\\,’“‘W\" l*,m ':;
1N l‘l\‘hh% m

“‘w | M

\Mk

H | (\ﬁ

4-
_._—’

time t
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ApEn /2 HEA|

0.7

70

sl 06+

al -

a0t

Al
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Holzinger, A., Hortenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A. & Koslicki, D.
2014. On Entropy-Based Data Mining. In: Holzinger, A. & Jurisica, . (eds.) Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics, Lecture Notes in Computer Science, LNCS

8401. Berlin Heidelberg: Springer, pp. 209-226.
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Significance of FuzzyMEn for different nL and nF, N=1000
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Mayer, C., Bachler, M., HorfenhubéFr, M., Sfocker, C., Holzinger, A. & Wassertheurer, S-. 2014. Selection of
entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15,
(Suppl 6), S2, doi:doi:10.1186/1471-2105-15-56-S2.
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Summary: Example Heart Rate Variability L M Au!
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* Heart Rate Variability (HRV) can be used as a marker of
cardiovascular health status.

" Entropy measures represent a family of new methods to
qguantify the variability of the heart rate.

" Promising approach, due to ability to discover certain
patterns and shifts in the "apparent ensemble amount
of randomness" of stochastic processes,

" measure randomness and predictability of processes.

Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and
Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in

the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.
43 Last update: 26-09-2019
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Mayer, C., Bachler, M., Holzinger, A., Stein, P. K. & Wassertheurer, S. 2016. The Effect of Threshold Values and
Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in
the Cardiac Arrhythmia Suppression Trial (CAST). Entropy, 18, (4), 129, doi::10.3390/e18040129.
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Cross-Entropy
Kullback-Leibler
Divergence
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Entropy — KL-Div. — Mutual Information /& HCA|

HAMAN-CINTERED.L

= Entropy:

" Measure for the uncertainty of random
variables

= Kullback-Leibler divergence:
= comparing two distributions
" Mutual Information:

" measuring the correlation of two
random variables

a.holzinger@human-centered.ai 46 Last update: 26-09-2019



Solomon Kullback & Richard Leibler (1951)

ON INFORMATION AND SUFFICIENCY
Br 8. KviLeack avp R. A. LeEmprer
The George Washington University and Washington, D. C,

1. Introduction. This note generalizes to the abstract case Shannon’s definition
of information [15], [16]. Wiener's information (p. 75 of [18]) is essentially the
same as Shannon’s although their motivation was different (cf. footnote 1, p. 95
of [16]) and Shannon apparently has investigated the concept more completely.
R. A. Fisher's definition of information (intrinsic accuracy) is well known (p. 709 . .
of [6]). However, his concept is quite different from that of Shannon and Wiener, Solomon Kullback Richard Leibler
and hence ours, although the two are not unrelated as is shown in paragraph 2. 1907-1994 1914-2003

R. A. Fisher, in his original introduction of the eriterion of sufficiency, re-
quired “that the statistic chosen should summarize the whole of the relevant
information supplied by the sample,” (p. 316 of [5]). Halmos and Savage in a
recent paper, one of the main results of which is a generalization of the well
known Fisher-Neyman theorem on sufficient statistics to the abstract case,
conclude, “We think that confusion has from time to time been thrown on the
subject by ..., and (c) the assumption that a sufficient statistic contains all
the information in only the technical sense of ‘information’ as measured by
variance,” (p. 241 of [8]). It is shown in this note that the information in a .
sample as defined herein, that is, in the Shannon-Wiener sense cannot be in- KuIIback, 5. & Lelbler’ R.A.
crea,se?' hyﬁany statistical upemtiunls a;nid i]; invaria.ntlﬂllnot deurme;i}mif and 1951. On information and
only if sufficient statistics are employed. For a similar property of Fisher's . .
information see p. 717 of [6], Doob [19). sufficiency. The annals of

We are a.lm concerned with the stfmstmal pmhlegn of discrimination ({3],‘[1"?]), mathematical statistics, 22, (1)’
by considering a measure of the “distance” or “divergence” between statistical
populations ([1], [2], [13]) in terms of our measure of information. For the sta- 79-86 ,
tistician two populations differ more or less according as to how difficult it is to :
diseriminate between them with the best test [14]. The particular measure of WWW.) stor.org/ Stable/ 2236703
divergence we use has been considered by Jeffreys ([10], [11]) in another connec-
tion. He is primarily concerned with its use in providing an invariant density
of a priori probability. A special case of this divergence is Mahalanobis’ gen-
eralized distance [13].
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Deep Learning Explainability /o HEAl

W o n —n — e — L — 1 — —_
. .

Conv filters

Visual explaination

| 1. Forawrd the image to obtain the class ! :
i scores. |
2. Compute the join probabilities. :

3. Compute the gradient between the

! output layer and the ground truth. :
] 4. Normalize. J

Housam Khalifa Bashier Babiker & Randy Goebel 2017. Using KL-divergence to
focus Deep Visual Explanation. arXiv preprint arXiv:1711.06431.
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Housam Khalifa Bashier Babiker & Randy Goebel 2017. An Introduction
to Deep Visual Explanation. arXiv preprint arXiv:1711.09482.
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/A MEAL

pi; = (1 + [1ki = K;11°)~"
7 Dol lku = ko 2)

(1)

Here p;; denotes the joint probabilities, k is the raw class scores before softmax , 7 indexes a neuron
value and ) _ £, combines all the values. For the ground truth we estimate the pairwise affinities

¢

with perplexity. We then compute the KL-divergence gradient i.e. % => z derived here [6]. We also

normalize the gradient to a zero mean and unit variance as follows:

z—
0O = —- (2)
oz

The obtained weights o capture the relevant information in the feature maps acquired by the network.
These weights are applied to every feature map x; € X as to identify the discriminative pixels which
influence the final prediction output as follows:

Eh'[.—dt’ucrgrncc = E § I; * lﬂjl (3)
: J

Housam Khalifa Bashier Babiker & Randy Goebel 2017. Using KL-divergence to
focus Deep Visual Explanation. arXiv preprint arXiv:1711.06431.
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Algorithm 1 Proposed approach

Input: image, ground truth y
Output: Discriminative localization map = E L—divergence
Apply a single forward-pass to estimate = y,
Compute the joint probabilities for both y‘ and y
Compute the gradient and normalize using (2) = o
initialize £ g1 —divergence 10 ZETO
for i = 1 to nFeature Maps do
Initialize temp to zero
for j = 1to sizeofo do
temp + temp + (z; * |a )
end for
EHL-:!'-E'-UETQEH::E — EHL—d'ii.'ergﬂnﬂE + temp
end for

Housam Khalifa Bashier Babiker & Randy Goebel 2017. Using KL-divergence to
focus Deep Visual Explanation. arXiv preprint arXiv:1711.06431.
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E=

Remember Shannon Entropy L\

i
=
=
o

H[z] = — ) p(z)log, p(x)

Shannon, C. E. 1948. A Mathematical Theory of Communication. Bell
System Technical Journal, 27, 379-423.

Important quantity in
e coding theory
e statistical physics
* machine learning

a.holzinger@human-centered.ai 52 Last update: 26-09-2019



Conditional Entropy s HCA|

Hly|x| = /f p(y,x)Inp(y|x)dy dx

Hix,y] = Hly|x| + H|x]
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The Kullback-Leibler Divergence s HCA|

KLlo) = [ pdtnatx)dx— (~ [ 50 npx) dx)
—/p(x) 111{3%} dx

KL(pllq) ~ Z {—1ng(x,]0) + Inp(x,)}

KL(p|lq) = 0

KL-divergence is often used to measure the
distance between two distributions
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Note: KL is not symmetric! /o HCA|

=
=
o

q” = argmin Dxy(p||q) q* = argmin Dxkr,(q||p)

— p(z)
- q(z)

Probability Density
Probability Density

KL(PHQ) Z= KL(q||p)

Goodfellow, I., Bengio, Y. & Courville, A. 2016. Deep Learning, Cambridge (MA), MIT Press.

a.holzinger@human-centered.ai 55 Last update: 26-09-2019



Entropy measures generally ... /o HEAl

= .. are robust against noise;

= ..can be applied to complex time series with
good replication;

= .. is finite for stochastic, noisy, composite
processes;

= .. the values correspond directly to
irregularities — good for detecting anomalies
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s HEA|

Mutual Information
and Point Wise MI
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Mutual Information I(X;Y): Comparing two distributions /2 HCAI

Ix,y]

[[x,y]

|

(p(x,y)]|p(

(x)p(y))

e (2525)

= H|x| —

Hix|y| =

Hly| — Hly|x]

" Measures how much reduction in uncertainty of
X given the information about Y

= Measures correlation between Xand Y
= Related to the “channel capacity” in the original

Shannon information theory

a.holzinger@human-cen

tere

d.ai
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Bishop, C. M. 2007. Pattern
Recognition and Machine Learning,
Heidelberg, Springer.
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Example: Disease-Disease Relationship /o HECAI

Let two words, w; and w, have probabilities P(w;) and P(Wj).
Then their mutual information PMI (w,w,) is defined as:

PMI (Wf,wj) = lﬂg(

P(w;,w;)
P(w;) P(w ))

For w, denoting rheumatoid arthritis and w;representing diffuse scleritis the following
simple calculation yields:

P(w;) = 94,834 ( ) Gout
w;i) = Wi
I 20,033,079 J 20,033,079
1800
¥ 20
P(wi,wy) = 5 PMI(w;,w;) = 7,7. 1200 |
800
600 -
l ] | i
"ngl B Freguency
I SR ST S 5
{QS‘% 45& 5“& & & ‘F'b'& ﬁt.“q' t"t ‘Fﬁ’e’ (,0')
LA *o‘*@*q}*@**
Q b Q“-*F‘ .} {.\f‘. & (5‘
L0 6@ o & o & ¥
e:b #E-

Holzinger, A., Simonic, K. M. & Yildirim, P. Disease-Disease Relationships for Rheumatic Diseases: Web-Based Biomedical
Textmining an Knowledge Discovery to Assist Medical Decision Making. 36th Annual IEEE Computer Software and
Applications Conference (COMPSAC), 16-20 July 2012 2012 Izmir. IEEE, 573-580, d0i:10.1109/COMPSAC.2012.77.
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A HCAI

%  HPMIN-CINTEREDM

SCP(x,y) = p(x]ly) -p(y|x) =

p(x.y) pxy) _ p(xy)’
p(y) pk) pk)-pky)

156 A. Holzinger et al.

Table 4 Comparison of FACTAs ranking of related concepts from the category Symptom
for the query “rheumatoid arthritis™ created by the methods co-occurrence frequency, PMI,
and SCP

Frequency PMI sSCp

pain 5667 impaired body balance 7.8 | swollen joints 0.002
Arthralgia 661 ASPIRIN INTOLER ANCE 7.8 | pain 0.001
fatigue 429 Epitrochlear 7.8 Arthralgia 0.001

lymphadenopathy

diarrhea 301 swollen joints 7.4 fatigue 0.000
swollen joints 299 Joint tenderness 7 erythema 0.000
erythema 255 Occipital headache 6.2 | splenomegaly 0.000
Back Pain 254 Neuromuscular excitation 6,2 Back Pain 0.000
headache 239 Restless sleep 5.8 | polymyalgia 0.000
splenomegaly 228 joint crepitus 5.7 | joint stiffness 0.000
Anesthesia 221 joint symptom 5.5 | Joint tenderness 0.000
dyspnea 218 Painful feet 5.5 hip pain 0.000
weakness 210 feeling of malaise 5.5 melatarsal gia 0.000
nausea 199 Homan's sign 54 Skin Manifestations 0.000
Recovery of Function 193 Diffuse pain 5.2 | neck pain 0.000
low back pain 167 Palmar erythema 5.2 Eve Manifestations 0.000
abdominal pain 141 Abnormal sensation 5.2 low back pain 0.000

Holzinger, A., Yildirim, P., Geier, M. & Simonic, K.-M. 2013. Quality-Based Knowledge Discovery from Medical Text on the
Web. In: Pasi, G., Bordogna, G. & Jain, L. C. (eds.) Quality Issues in the Management of Web Information, Intelligent
Systems Reference Library, ISRL 50. Berlin Heidelberg: Springer, pp. 145-158, doi:10.1007/978-3-642-37688-7 7.
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Open Questions, future outlook, hot topics, challenges /2 HCAI

= 1) Challenges include —omics data analysis, where
KL divergence and related concepts could provide
important measures for discovering biomarkers.

= 2) Hot topics are new entropy measures suitable for
computations in the context of complex/uncertain
data for ML algorithms.

" |nspiring is the abstract geometrical setting
underlying ML main problems, e.g. Kernel functions
can be completely understood in this perspective.
Future work may include entropic concepts and
geometrical settings.
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Limitations and Open Problems S HCAI

" The case of higher order statistical structure in
the data — nonlinear and hierarchical ?

= Qutliers in the data — noise models?

D(D+1)
2
Gaussian model — what happens if D > ?

dimensionality reduction

" There are parameters in a multi-variate
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