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01 Sensitivity
Analysis
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What is Sensitivity Analysis?

= Sensitivity analysis (SA) is a classic, versatile and
broad field with long tradition and can be used
for a variety of different purposes, including:

" Robustness testing (very important for ML)

= Understanding the relationship between input
and output

= Reducing uncertainty

Andrea Saltelli, Stefano Tarantola, Francesca Campolongo & Marco Ratto 2004. Sensitivity analysis in practice: a guide
to assessing scientific models. Chichester, England.
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Overview > review Ch.6, p.167ff of Goodfellow, Bengio, Courville 2016 A HCAI

HAMAN-CINTERED.L

= Remember: NN=nonlinear function approximators using gradient
descent to minimize the error in such a function approximation

= To students this seems to be “new” — but it has a long history:

= Chain rule = back-propagation was invented by Leibniz (1676) and
'Hopital (1696)

= Calculus and Algebra have long been used to solve optimization
problems and gradient descent was introduced by Cauchy (1847)

= This was used to fuel machine learning in the 1940ies > perceptron
— but was limited to linear functions, therefore

= Learning nonlinear functions required the development of a
multilayer perceptron and methods to compute the gradient
through such a model

= This was elaborated by LeCun (1985), Parker (1985), Rummelhart
(1986) and Hinton (1986)
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What are Saliency Maps? s HCAI
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Human Vision : CNNs Visualization
ilnputimage
vi[ee o] XX Edges! acp
Lines :
|
Shapes| 2" CL
|
| 31 CL
Objects!
: |th FLL
b 290 FL
v

Zhuwei Qin, Fuxun Yu, Chenchen Liu & Xiang Chen 2018. How convolutional neural network see the world-A survey of
convolutional neural network visualization methods. arXiv preprint arXiv:1804.11191.
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What are Saliency Maps? /& HCAI

%  HPMIN-CINTEREDM

Karen Simonyan, Andrea Vedaldi & Andrew Zisserman 2013. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034.

(o]
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Problem: How to cope with local non-linearities? £

For vars(xg) = k(xg,xq) = kT (K 4 £)~ 'k, the derivative is given by*
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(a) locally non-linear object (b) locally non-linear model

{€) locally non-linear explanation

(c) Local explanation vectors (d) Direction of explanation vectors

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen & Klaus-Robert Mueller 2010. How to explain individual
classification decisions. Journal of machine learning research (JMLR), 11, (6), 1803-1831.
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Principle of Sensitivity Analysis (SA) LR\

" Let us consider a function f,
= 3datapointx = (x1,...,xd) and the prediction

= f(x1,..,xd)
= Now, SA measures the local variation of the function along
each input dimension:

" Ri = (a—f.lxzx)z

dxi
= With other words, SA produces local explanations for the
prediction of a differentiable function f using the squared
norm of its gradient w.r.t. the inputs x : S(x) / krxfk2.

= The saliency map S produced with this method describes
the extent to which variations in the input would produce
a change in the output S(z) « ||V« f|?

Muriel Gevrey, loannis Dimopoulos & Sovan Lek 2003. Review and comparison of methods to study the contribution of
variables in artificial neural network models. Ecological modelling, 160, (3), 249-264.
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What do we want to know? S HCAI

" Given an image classification (ConvNet), we aim
to answer two questions:

=" What does a class model look like?
" What makes an image belong to a class?

= To this end, we visualise:

= Canonical image of a class
= Class saliency map for a given image and class
= Both visualisations are based on the class score

derivative w.r.t. the input image (computed using
back-prop)
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Simonyan, Vedaldi, Zisserman: Visualizing Saliency Maps /2 HCAI

RN CINTERED.

* We compute a (regularised) image J with a

high class score §_(I): argmax S.(I) — A||1||3
[Erhan et al., 2009] !

* Optimised using gradient descent, initialised
with the zero image

* Gradient S.(1)/0I is computed using
back-prop

* Maximising soft-max score arg max P,([)
. L I
leads to worse visualisation

* We visualise a ConvNet trained on ImageNet
ILSVRC 2013 (1000 classes)

dumbbell

dalmatian

husky
a.holzinger@human-centered.ai
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Karen Simonyan, Andrea Vedaldi
& Andrew Zisserman 2013. Deep
inside convolutional networks:
Visualising image classification
models and saliency maps.
arXiv:1312.6034.
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Simonyan & Zissserman (2014): L

* Linear approximation of the class score in the

neighbourhood of an image I : * Given an image and a saliency map:
S.(I)~w"I+b —score of c-th class 1. Saliency map is thresholded to obtain
9S.(I) foreground / background masks
w= —; - ted using back- .
T T 2. GraphCut colour segmentation [Boykov
; : and Jolly, 2001] is initialised with the masks
* 1 has the same size as the image [,
* Magnitude of w defines a saliency map for image [, 3. Object localisation: bounding box of the
and class ¢

largest foreground connected component

* GraphCut propagates segmentation from the
most salient areas of the object

* |LSVRC 2013 localisation accuracy: 46.4%

* weak supervision: ground-truth bounding
boxes were not used for training

» saliency maps for top-5 predicted classes

were used to compute five bounding box
* Weakly supervised predictions

Image-Specific Class Saliency Properties:

* computed using classification ConvNet, trained
on image labels

* no additional annotation required (e.g. boxes Karen Simonyan & Andrew Zisserman
or masks) 2014. Very deep convolutional networks
* Highlights discriminative object parts for Iarge-scale image recognition.
* Instant computation — no sliding window, just a arXiv:1409.1556.

single back-prop pass

* Fires on several object instances
a.holzinger@human-centered.ai 13 Last update: 26-09-2019



Relation to de-convolutional networks s HCA|

RN CINTERED.

Forward pass 'DeconvNet [Zeiler & Fergus, 2013]| Back-prop w.r.t. input
Convolution Xnt1 = KXo x K R, = RnuxKn  Of]0Xn = 8f[0Xnt1 % K,
equivalent
Xﬂ‘-l-l — IDELX{X“, D} -R-:u = er.+1 1 {Ru—i-l > D} af,-fax'n — 3f}"axn+l. 1 (Xﬂ z D)
RELU slightly different:
threshold layer output vs input
ax locati

o Xa() = max Xa(0) Bu(s) = Rana(p):—""suici 0f/0Xn(s) = OF/0Xnsa (p)

Max-pooling 1(s = arg max Ru(q)) 1(s = arg max X,(q))
qe2(p) equivatent q€€(p)

X, = ny, layer activity; %, —n,, layer DeconvNet reconstruction; [ — visualised neuron activity
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02 Gradients
General Overview
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Topographical maps, level curves, gradients /2 HCAI

0=0 f(a) = 3.96
L Duffa) = -0.24 ~& @ ——— Diifa)=-024 —n .

u ={1.00, 0.00) a=(0.3,-51) u=(1.00,000) a=(03-51)

https://mathinsight.org/applet/gradient_directional_derivative_mountain
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How to find a local minima? /o HCA|

RN CINTERED.

SG0
Momentum
MAG
Adagrad
Adadelta
Rmsprop
T

J(w) 8 W)

V.] >0
ositive gradient

minimum: V,,] =0

» W
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Example /& HCAI
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Finding the GLOBAL minimum is difficult ! /o HCAI

A Mon-Convex Combination of Gaussian Distnbutions

7 Global
< Maximuns

.

6~ i A Local
Mawirdorm .

4 - : ’

-+ Mlinim

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/partial-derivative-and-gradient-articles/a/the-gradient
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Gradients > Sensitivity Analysis > Heatmapping s HCA|
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dumbbell dalmatian
bell pepper lemon husky

Karen Simonyan, Andrea Vedaldi & Andrew Zisserman 2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv:1312.6034.
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Gradients AN

(€} vutlier explanation

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen & Klaus-Robert Mueller 2010.
How to explain individual classification decisions. Journal of machine learning research (JMLR), 11, (6), 1803-1831.
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03 Gradients:
DeepLIFT
Deep Learning
Important FeaTures
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=

Typical Recommender Systems Scenario Black-Box 4 HCA

i
=

Why?!

Probability for not be able
to pay back the loan

i
55% ,
No loan

Sorry,
Why?! the computer

"|||... said no Jllllll.l
| .ﬁ

a.holzinger@human-centered.ai 24 Last update: 26-09-2019



Motivation: The Saturation Problem /2 HCAI

RN CINTERED.M

@ y =(i; +i;) when (i; +i,) < 1
U i

when (i, +i,) >=1

I, +1,

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features through
propagating activation differences. arXiv:1704.02685.
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How can we find the important parts of the input for a given prediction? 'A E“Em&ul

" First idea: perturbation

Examples

1) Zeiler & Fergus, 2013

2) LIME (Ribeiro et al., 2016)
3) Zintgraf etal., 2017

Drawbacks

1) Computational efficiency -
requires one forward prop for
each perturbation

2) Saturation

Yellow = inputs

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features through propagating
activation differences. arXiv:1704.02685.
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Saturation problem illustrated

1 1
y |
L

0 1 2
I, + 1,

Avoiding saturation means perturbing combinations of
inputs =2 increased computational cost

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features through
propagating activation differences. arXiv:1704.02685.
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How can we find the important parts of

the input for a given prediction?
Second idea backpropagate importance

Examples:
- Gradients (Simonyan et al.)
- Deconvolutional Networks (Zeiler & Fergus)
- Guided Backpropagation (Springenberg et al.)
- Layerwise Relevance Propagation (Bach et al.)
- Integrated Gradients (Sundararajan et al.)
- DeeplLIFT (Learning Important FeaTures)
- https://github.com/kundajelab/deepli

ft

Yellow = inputs

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features
through propagating activation differences. arXiv:1704.02685.
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Saturation revisited s HCA|

When (i; +i,) >=1,
gradient is O

|

|1 + |2 Affects:
- Gradients
- Deconvolutional Networks
- Guided Backpropagation
- Layerwise Relevance Propagation

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features
through propagating activation differences. arXiv:1704.02685.
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DeepLIFT 2 H

Reference: i,°=0 & i,%=

y°=0 as (i,° +i,°) = 0 (reference)

1 With (i, +i,) = 2, the
y “difference from
reference” (Ay) is
+1, NOTO
0 1 2
Il + |2 Ai1=1 Ai2=1

CAilAy=0-5=CAi2Ay

See paper for detailed backpropagation rules

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features
through propagating activation differences. arXiv:1704.02685.
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Choice of reference matters!

CIFAR10 model, class = “ship” ] .
DeepLIFT  Suggestions on how to pick a

Original Reference
& scores reference:

u . MNIST: all zeros (background)

Consider using a distribution
Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features

of references
- E.g. multiple references
through propagating activation differences. arXiv:1704.02685.

. generated by shuffling a

genomic sequence
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Example for Interpretation: which features are important? /& HCAI

RN CINTERED.

https://vimeo.com/238275076 https://pypi.org/project/deeplift

P(Y=+1 given X)

https://github.com/kundajelab/deeplift

ol C|AT]|T][Allc]c][c][A][T][A][A

Avanti Shrikumar, Peyton Greenside & Anshul Kundaje 2017. Learning important features through propagating
activation differences. arXiv:1704.02685.
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/o HCAI

%, HEMAN-CINTEREDLL

DeepLIFT: Learning Important Features
Through Propagating Activation

Differences

DeepllFT Part 1: Introduction

https://www.youtube.com/watch?v=v8cxYjNZAXc&Ilist=PLJLjQOkqSRTP3cLB2cO0i_bQFw6KPGKML
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04 Gradients:
Grad-CAM
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This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory, MIT
{bzhou, khosla, agata,oliva, torralba}@ecsail.mit.edu

Abstract

In this work, we revisit the global average pooling layer
proposed in [ |7 ], and shed light on how it explicitly enables
the convolutional neural network (CNN) to have remark-
able localization ability despite being trained on image-
level labels. While this technique was previously proposed
as a means for regularizing training, we find that it actu-
ally builds a generic localizable deep representation that
exposes the implicit attention of CNNs on an image. Despite
the apparent simplicity of global average pooling, we are
able to achieve 37.1% top-5 error for object localization on
ILSVRC 2014 without training on any bounding box anno-
tation.We demonstrate in a variety of experiments that our
network is able to localize the discriminative image regions
despite just being trained for solving classification task'.

a.holzinger@human-centered.ai

Brushing teeth Cutting trees

Figure 1. A simple modification of the global average pool-
ing layer combined with our class activation mapping (CAM)
technique allows the classification-trained CNN to both classify
the image and localize class-specific image regions in a single
forward-pass e.g., the toothbrush for brushing reeth and the chain-
saw for cutting trees.
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Class Activation Mapping (CAM) /2 HCAI

= CAM relies on heatmaps highlighting image pixels for a particular
class, and uses global average pooling (GAP) in CNNs.

= A class activation map for a particular category indicates the
discriminative image regions used by the CNN to identify that exact
category (see figure below and see next slide for the procedure).

=  GAP outputs the spatial average of the feature map of each unit at the
last layer of the CNN. A weighted sum of these values is used to
generate the final output. Similarly, a weighted sum of the feature
maps of the last convolutional layer to obtain the class activation

maps is computed.
T

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva & Antonio Torralba 2016. Learning deep features for

discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition, 2921-2929.
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Class Activation Mapping (CAM) /& HCAI
71 Ok
< Australian
& C C C O W. // terrier
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Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva & Antonio Torralba 2016. Learning deep features for

discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition, 2921-2929.
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Class Activation Mapping (CAM)

Se —Zw* Zfa (z,y) = D> > wi fu(z,y)

r,y k

monastery
0.05

Thus, S. = Z ey Me c(,y), and hence M (xz,y) directly
indicates the importance of the activation at spatial grid
(x,y) leading to the classification of an image to class c.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva & Antonio Torralba 2016. Learning deep features for

discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition, 2921-2929.
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Disadvantages /& HCAl

" The drawback of CAM is that it requires changing the
network structure and then retraining it. This also implies
that current architectures which don’t have the final
convolutional layer — global average pooling layer —
linear dense layer — structure, can’t be directly employed
for this heat map technique. The technique is constrained
to visualization of the latter stages of image classification
or the final convolutional layers.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva & Antonio Torralba. Learning deep features for discriminative localization.
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. 2921-2929.

http://cnnlocalization.csail.mit.edu

https://jacobgil.github.io/deeplearning/class-activation-maps

https://www.youtube.com/watch?v=COjUB9lzk6E
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More information (additional material for the interested student)

Uni¥ersity
B elsd O 2

Lecture 12 | Visualizing and Understanding

T21.540 Aufrufe » 11002007 jilp 738 il 4 TRLEN + SPEICHERM

https://www.youtube.com/watch?v=6wcs6sz]WMY
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Grad-CAM (first paper) s HCAI

RN CINTERED.

Guided Backpropagation

Rectified Conv FC Layer
Guided Backpropagation Feature Maps Activations

Guided Grad-CAM

c | Tiger Cat

Grad-CAM

Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh & Dhruv
Batra 2016. Grad-CAM: Why did you say that? arXiv:1611.07450.
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Grad-CAM big picture /2 HCAI

RN CINTERED.

) Gaided Backgrop Ca’

dc) Orml-CaM T i PCoded Gead CAM 'Cai’ () Oochasion map fr 'Ca” (1) Reshie Gral-CAM T

AT

————————————————————

' : ; ] € |Tiger Cat
: g . ? !| ﬁ Image Classification
.': Layers Y
r < 1 (or)

:
|

Guided Backprop Feature Maps

fgt

Image Captioning

(or)

Visual
Answering

(or)

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh & Dhruv Batra.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. ICCV, 2017. 618-626.
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Grad-CAM is a generalization of CAM L M

global average pooling -
global average pooling

. 1 — ayc - e A
%= 7 Z ‘; A}, §°=) % 2.2, 4
i g

\Il_v-l A+
gradients via backprop S~ ——
class feature weights feature map

. 1 .
5= 233 Y upal
1 o k

Grad-cam = ReLU Z a§ A"

k _ﬂ
%\ i r L o
linear combination CAM

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh & Dhruv Batra.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. ICCV, 2017. 618-626.
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05 Integrated
Gradients



Integrated Gradients /2 HCAI

HAMAN-CINTERED.L

= combines the Implementation Invariance of Gradients along with the
Sensitivity of techniques e.g. LRP, or DeeplLift

= Formally, suppose we have a function F : R™— [0; 1] that represents a
deep network. Specifically, let x € R™ be the input at hand, and
x' € R" be the baseline input. For image networks, the baseline could be
the black image, while for text models it could be the zero embedding
vector.

= \We consider the straight line path (in Rn) from the baseline x’ to the
input x, and compute the gradients at all points along the path.
Integrated gradients are obtained by cumulating these gradients.
Specifically, integrated gradients are defined as the path integral of the
gradients along the straight line path from the baseline to the input x.

1
IntegratedGrads; (z) ::= (z; — ;) x/ ShE +§‘;{$ ) doy

a=0
(1)

Mukund Sundararajan, Ankur Taly & Qiqi Yan. Axiomatic attribution for deep networks. Proceedings of the
34th International Conference on Machine Learning, 2017. JMLR, 3319-3328.
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Gradients of counterfactuals /A HCAI

HAMAN-CINTERED.L

Let us start by investigating the performance of gradients as a measure of feature importance. We
use an object recognition network built using the GoogleNet architecture (Szegedy
a running example; we refer to this network by its codename Inception. (We present applications
of our techniques to other networks in Section [31) The network has been trained on the ImageNet
object recognition dataset (Russakovsky et al | (2015)). Itis is 22 layers deep with a softmax layer on
top for classifying images into one of the 1000 ImageNet object classes. The input to the network is
a 224 = 224 sized RGB image.

Score: 0.993755

Original image . . . . . . . .
o _ G Before evaluating the use of gradients for feature importance, we introduce some basic notation that
THL M (U e is used throughout the paper.
Score: 0.996577 i i ) e I e
We represent a 224 x 224 sized RGB image as a vector in RZ21%224x3 T gt Incp™ : R221x224x3
[0, 1] be the function represented by the Inception network that computes the softmax score for the
object class labeled .. Let vlncpi‘{img] be the gradients of |m:|:|"r‘ at the input image img. Thus,
the vector 7Incp” (img) is the same size as the image and lies in R#24%224%3_ A5 3 shorthand, we
O Ablasid i write vlncpf_‘ ;.c(img) for the gradient of a specific pixel (i, j) and color channel ¢ € {1, G, B}.

We compute the gradients of Incp” (with respect to the image) for the highest-scoring object class,

and then aggregate the gradients 7lncp” (img) along the color dimension to obtain pixel importance
scores

j: Pk ;(img) o= x;-e{n,r;.nﬂW'”EPE,‘..-“""EH ()

Next, we visualize pixel importance scores by scaling the intensities of the pixels in the original
image in proportion to their respective scores; thus, higher the score brighter would be the pixel.
Figure [[a) shows a visualization for an image for which the highest scoring object class is “reflex
camera” with a soflmax score of 0.9938.

In theory, it is easy to see that the gradients may not reflect feature importance if the prediction
function fattens in the vicinity of the input, or equivalently, the gradient of the prediction function
with respect to the input is tiny in the vicinity of the input vector. This is what we call saturation,
which has also been reported in previous work (Shrikumar et al](2016). Glorot & Bengio (2010)).

We analyze how widespread saturation is in the Inception network by inspecting the behavior of
the network on counterfactual images obtained by uniformly scaling pixel intensities from zero
to their values in an actual image. Formally, given an input image img € R##4%224%3_the set of
counterfactual images is

Mukund Sundararajan, Ankur Taly &

Qiqi Yan 2016. Gradients of
counterfactuals. arXiv:1611.02639.

farimg |0 < e < 1} (2)

a.holzinger@human-centered.ai 46 Last update: 26-09-2019



k you!

a.holzinger@human-centered.ai 47 Last update: 26-09-2019



