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Agenda /& HCA]

= 00 Reflection — follow-up from last lecture
= 01 Basics, Definitions, ...
= 02 Please note: xAl is not new!

= 03 Examples for Ante-hoc models (explainable
models, interpretable machine learning)

" 04 Examples for Post-hoc models (making the
“black-box” model interpretable

= 05 Explanation Interfaces: Future human-Al
interaction

" 06 A few words on metrics of XAl (measuring
causability)
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01 Basics,
Definitions, ...
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Explainability/ Interpretability — contrasted to performance /2 HCAI

()
L9
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Evaluation
Metric

DID
Ny

Interpretation

Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490.

= |nconsistent Definitions: What is the difference
between explainable, interpretable, verifiable,
intelligible, transparent, understandable ... ?

Zachary C. Lipton 2018. The mythos of model interpretability. ACM Queue, 16, (3), 31-57, d0i:10.1145/3236386.3241340
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The expectations of xAl are extremely high /2 HCAI

HAMAN-CINTERED.L

" Trust — interpretability as prerequisite for trust (as propagated
by Ribeiro et al (2016)); how is trust defined? Confidence?

= Causality - inferring causal relationships from pure
observational data has been extensively studied (Pearl, 2009),
however it relies strongly on prior knowledge

" Transferability — humans have a much higher capacity to
generalize, and can transfer learned skills to completely new
situations; compare this with e.g. susceptibility of CNNs to
adversarial data (please remember that we rarely have iid data
in real world

" Informativeness - for example, a diagnosis model might
provide intuition to a human decision-maker by pointing to
similar cases in support of a diagnostic decision

" Fairness and Ethical decision making — interpretations for the
purpose of assessing whether decisions produced
automatically by algorithms conform to ethical standards

Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490.
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Glossar (1/3) /2 HCAI

HAMAN-CINTERED.L

= Ante-hoc Explainability (AHE) = such models are interpretable by design, e.g. glass-box
approaches; typical examples include linear regression, decision trees/lists, random forests, Naive
Bayes and fuzzy inference systems; or GAMs, Stochastic AOGs, and deep symbolic networks; they
have a long tradition and can be designed from expert knowledge or from data and are useful as
framework for the interaction between human knowledge and hidden knowledge in the data.

=  BETA = Black Box Explanation through Transparent Approximation, developed by Lakkarju, Bach &
Leskovec (2016) it learns two-level decision sets, where each rule explains the model behaviour;
this is an increasing problem in daily use of Al/ML, see e.g. http://news.mit.edu/2019/better-fact-
checking-fake-news-1017

=  Bias =inability for a ML method to represent the true relationship; High bias can cause an
algorithm to miss the relevant relations between features and target outputs (underfitting);

=  Causability = is a property of a human (natural intelligence) and a measurement for the degree of
human understanding; we have developed a causability measurement scale (SCS).

= Decomposition = process of resolving relationships into the consituent components (hopefully
representing the relevant interest). Highly theoretical, because in real-world this is hard due to the
complexity (e.g. noise) and untraceable imponderabilities on our observations.

= Deduction = deriving of a conclusion by reasoning

=  Explainability = motivated by the opaqueness of so called “black-box” approaches it is the ability
to provide an explanation on why a machine decision has been reached (e.g. why is it a cat what
the deep network recognized). Finding an appropriate explanation is difficult, because this needs
understanding the context and providing a description of causality and consequences of a given
fact. (German: Erklarbarkeit; siehe auch: Verstehbarkeit, Nachvollziehbarkeit,
Zurlickverfolgbarkeit, Transparenz)

a.holzinger@human-centered.ai 6 Last update: 11-10-2019



Glossar (2/3) /2 HCAI

HAMAN-CINTERED.L

= Explanation = set of statements to describe a given set of facts to clarify causality, context and
consequences thereof and is a core topic of knowledge discovery involving “why” questionss
(“Why is this a cat?”). (German: Erklarung, Begriindung)

= Explanation = set of statements to describe a given set of facts to clarify causality, context and
consequences thereof and is a core topic of knowledge discovery involving “why” questionss
(“Why is this a cat?”). (German: Erklarung, Begriindung)

= Explanatory power = is the ability of a set hypothesis to effectively explain the subject matter it
pertains to (opposite: explanatory impotence).

= Explicit Knowledge = you can easy explain it by articulating it via natural language etc. and share it
with others.

=  European General Data Protection Regulation (EU GDPR) = Regulation EU 2016/679 — see the EUR-
Lex 32016R0679 , will make black-box approaches difficult to use, because they often are not able
to explain why a decision has been made (see explainable Al).

=  Gaussian Process (GP) = collection of stochastic variables indexed by time or space so that each of
them constitute a multidimensional Gaussian distribution; provides a probabilistic approach to
learning in kernel machines (See: Carl Edward Rasmussen & Christopher K.I. Williams 2006.
Gaussian processes for machine learning, Cambridge (MA), MIT Press); this can be used for
explanations. (see also: Visual Exploration Gaussian)

= Gradient = a vector providing the direction of maximum rate of change.

= Ground truth = generally information provided by direct observation (i.e. empirical evidence)
instead of provided by inference. For us it is the gold standard, i.e. the ideal expected result (100
% true);

a.holzinger@human-centered.ai 7 Last update: 11-10-2019



Glossar (3/3) /2 HCAI

HAMAN-CINTERED.L

= Interactive Machine Learning (iML) = machine learning algorithms which can interact with — partly
human — agents and can optimize its learning behaviour trough this interaction. Holzinger, A. 2016.
Interactive Machine Learning for Health Informatics: When do we need the human-in-the-loop? Brain
Informatics (BRIN), 3, (2), 119-131.

= |nverse Probability = an older term for the probability distribution of an unobserved variable, and was
described by De Morgan 1837, in reference to Laplace’s (1774) method of probability.

= |Implicit Knowledge = very hard to articulate, we do it but cannot explain it (also tacit knowlege).

=  Kernel = class of algorithms for pattern analysis e.g. support vector machine (SVM); very useful for
explainable Al

=  Kernel trick = transforming data into another dimension that has a clear dividing margin between the
classes

=  Multi-Agent Systems (MAS) = include collections of several independent agents, could also be a mixture
of computer agents and human agents. An excellent pointer of the later one is: Jennings, N. R., Moreau,
L., Nicholson, D., Ramchurn, S. D., Roberts, S., Rodden, T. & Rogers, A. 2014. On human-agent collectives.
Communications of the ACM, 80-88.

= Post-hoc Explainability (PHE) = such models are designed for interpreting black-box models and provide
local explanations for a specific decision and re-enact on request, typical examples include LIME, BETA,
LRP, or Local Gradient Explanation Vectors, prediction decomposition or simply feature selection.

=  Preference learning (PL) = concerns problems in learning to rank, i.e. learning a predictive preference
model from observed preference information, e.g. with label ranking, instance ranking, or object ranking.
Firnkranz, J., Hullermeier, E., Cheng, W. & Park, S.-H. 2012. Preference-based reinforcement learning: a
formal framework and a policy iteration algorithm. Machine Learning, 89, (1-2), 123-156.

=  Saliency map = image showing in a different representation (usually easier for human perception) each
pixel’s quality.

= Tacit Knowledge = Knowledge gained from personal experience that is even more difficult to express
than implicit knowledge.

=  Transfer Learning (TL) = The ability of an algorithm to recognize and apply knowledge and skills learned in
previous tasks to novel tasks or new domains, which share some commonality. Central question: Given a
target task, how do we identify the commonality between the task and previous tasks, and transfer the
knowledge from the previous tasks to the target one? Pan, S. J. & Yang, Q. 2010. A Survey on Transfer
Learning. IEEE Transactions on Knowledge and Data Engineering, 22, (10), 1345-1359,

a.holzing&H@ihlithd OSEkee2009.191. 8 Last update: 11-10-2019
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Expected trends in medical Al /o HCA

# HAMAN-CINTERED

Robert Challen, Joshua Denny, Martin Pitt, Luke Gompels, Tom Edwards
& Krasimira Tsaneva-Atanasova 2019. Artificial intelligence, bias and

clinical safety. BMJ Quality and Safety, 28, (3), 231-237,

doi:10.1136/bmjqgs-2018-008370.

a.holzinger@human-centered.ai
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Interpretable Models vs. Interpreting Models /2 HCAI

= Interpretable Models, the model itself is already
interpretable, e.g.

= Regression

= Naive Bayes

= Random Forests

= Decision Trees/Graphs

" Interpreting Black-Box Models (the model is not
interpretable and needs a post-hoc interpretability
method, e.g.:

= Decomposition
= LIME/BETA
= LRP

a.holzinger@human-centered.ai 10 Last update: 11-10-2019



Example: Rule-Based Models vs Neuro-Symbolic Models /2 HCAI

= Rule-Based Models:

" Easy to interpret, the rules provide clear explanations
" Can learn even from little data sets
" Problems with high-dimensional data, with noise,
and with images (ambiguity)
" Neuro-Symbolic Models:
= Not easy to interpret (“black box”)
= Needs a lot of top-quality training data

® Can well generalize even from high-dimensional data,
with noise and good for images

" Needs previous knowledge

a.holzinger@human-centered.ai 11 Last update: 11-10-2019



Explainability/Interpretability & Explainability vs. Performance /& HCAI

Learning Techniques (today) Explainadility
pglional)
Neural Nets @
Graphical , ®
Model
S odels : =l o
Learning e 21—°
ye: Meti _g| 0o
Belief Nets : [
. SRL & /o
CRFs H orests f=
_— AOGs =
Statistical g
. S De{;isiun/”//ﬁ"
Models M harkov S >
SVMs Models : o Explainability

https://www.darpa.mil/attachments/XAlIProgramUpdate.pdf

This is far too naive: Explainability (better: interpretability !)
does not correlate with performance !!
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DARPA Causal Model Induction (CRA)

o HCAI

HAMAN-CINTERED.L
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Michael D Pacer & Thomas L Griffiths. A rational model of causal induction with continuous causes. Proceedings of the
24th International Conference on Neural Information Processing Systems, 2011. Curran Associates Inc., 2384-2392.
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02 Please note:
XAl is not new !
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= Explainability was the most requested feature of
early medical decision support systems!

Patient Data
CLINICAL
INFORMATION
ENTERED BY
THE PHYSICIAN

Dynamic Data
ONGOING RECORD
OF THE CURRENT

CONSULTATION

Subprogram 1
CONSULTATION
SYSTEM

P

Knowledge
CORPUS OF
DECISION RULES

COMPUTERS AND BIOMEDICAL RESEARCH B, 303-320(1975)

Computer-Based Consultations in Clinical Therapeutics:
Explanation and Rule Acquisition Capabilities of the MYCIN
System*

Epwarp H. SHORTLIFFE,t RANDALL Davis, STANTON G. AXLINE,
BrUCE G. BucHANAN, C. CORDELL GREEN, AND STANLEY N, COHEN

Stanford University, Stanford, California 94305

Received June 24, 1974

Subprogram 2
EXPLANATION
SYSTEM

Subprogram 3
RULE-ACQUISITION
SYSTEM FOR USE

BY EXPERTS

Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce G. Buchanan, C. Cordell Green & Stanley
N. Cohen 1975. Computer-based consultations in clinical therapeutics: explanation and rule
acquisition capabilities of the MYCIN system. Computers and biomedical research, 8, (4), 303-320,
doi:10.1016/0010-4809(75)90009-9.

a.holzinger@human-centered.ai
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Rule monitor analyzes a rule and decides — fully explainable /& HCAI

GATHER THE
NECESSARY
INFORMATION
USING THE FINDOUT
MECHANISM

Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce
G. Buchanan, C. Cordell Green & Stanley N. Cohen 1975.
Computer-based consultations in clinical therapeutics:
explanation and rule acquisition capabilities of the MYCIN
system. Computers and biomedical research, 8, (4), 303-320,
doi:10.1016/0010-4809(75)90009-9.

a.holzinger@human-centered.ai 16

CONSIDER THE
FIRST CONDITION
IN THE PREMISE
OF THE RULE

ALL NECESSARY

INFORMATION BEEN
GATHERED TO DECIDE
IF THE CONDITION

IS TRUE?

IS
THE CONDITION
TRUE?

CONSIDER THE
NEXT CONDITION
IN THE PREMISE

MORE CONDITIONS

no (or unknown)

ARE THERE

TO CHECK?

REJECT
THE

RULE

ADD THE
CONCLUSION OF
THE RULE TO THE
ONGOING RECORD
OF THE CURRENT
CONSULTATION
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Question Answering Module for medical experts /M

558 SHORTLIFFE ET Al..

THE QUESTION-ANSWERING MODULE

** Is either chloramphenicol or kanamycin okay for treatment of salmonella infections?
YES.

RULE083
1F:
THE IDENTITY OF THE ORGANISM 1S SALMONELLA
THEN:
I RECOMMEND (IN ORDER OF PREFERENCE):
1-CHLORAMPHENICOL
2-AMPICILLIN
3-CEPHALOTHIN

** How do you know if an organism is a bacteroides?

RULEO30
IF:
THE GRAMSTAIN OF THE ORGANISM IS GRAMNEG, AND THE
MORPHOLOGY OF THE ORGANISM IS ROD, AND THE
AEROBICITY OF THE ORGANISM IS ANAEROBIC
THEN:

CONCLUDE THAT THE IDENTITY OF THE ORGANISM IS
BACTEROIDES (MODIFIER: THE CERTAINTY TALLY FOR
THE PREMISE TIMES .6)

Edward H Shortliffe, Stanton G Axline, Bruce G Buchanan, Thomas C Merigan & Stanley N Cohen 1973. An artificial

intelligence program to advise physicians regarding antimicrobial therapy. Computers and Biomedical Research, 6, (6),
544-560.
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INTERNIST was lacking to explain its “thinking” /2 HCAI

The evaluation demonstrated that the present
form of the program is not sufficiently reliable
for clinical applications. Specific deficiencies
that must be overcome include the program'’s
inability to reason anatomically or temporally,
its inability to construct differential diagnoses
spanning multiple areas, its occasional
attribution of findings to improper causes, and
its inability to explain its "thinking".

Howard L Bleich 1971. The computer as a consultant. New

England Journal of Medicine, 284, (3), 141-147.

Randolph A Miller, Harry E Pople Jr & Jack D Myers 1982. Internist-I, an experimental computer-based
diagnostic consultant for general internal medicine. New England Journal of Medicine, 307, (8), 468-476.
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The success of deep learning brought new problems ! /2 HCAI

HAMAN-CINTERED.L

= Al is actually the oldest field of computer science,
aiming at solving task where humans are good (e.g.
speech, vision, problem solving, ...)

= Note that while the first goal was to mimic human
intelligence across tasks, the success today is only
on very narrow Al e.g. solving one specific task,
playing a game, driving a car, classifying objects, ...
due to the advancements in “deep learning” this
works well,

= But the best performing methods remain opaque,
i.e. are considered as so-called “black-box” models

a.holzinger@human-centered.ai 19 Last update: 11-10-2019



Two Types of “Black-Box” Algorithms //,QQ\ HCAI

TERED.M

= Success in deep learning *) resulted in “deep
problems” (e.g. complex and exploding gradients)

= *) Note: “DL” methods are representation learning
methods with multiple layers of representations (see
LeCun, Bengio & Hinton (2015), Nature 521, 7553)

" Problem in our society: “Secret algorithms” make
important decisions about individuals (discussion of
“bias, fairness, see Module 09)

= Black box Type 1 = too complicated for a human to
understand

= Black box Type 2 = proprietary = “secret algorithm”

Cynthia Rudin, Caroline Wang & Beau Coker 2018. The age of secrecy and unfairness in recidivism prediction. arXiv:1811.00731.
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Key issues with explainable machine learning A

i
=

= A black box model could be either

" (1) a function that is too complicated for any human
to comprehend or

= (2) a function that is proprietary

Cynthia Rudin 2019. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1, (5), 206-215, doi:10.1038/s42256-019-0048-x.
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Post-hoc versus Ante-hoc ﬁ& HCAI

= Post-Hoc (latin) = after- this (event), i.e. such
approaches provide an explanation for a specific
solution of a “black-box” approach, e.g. LIME,
BETA, LRP, ... (see module 5)

= Ante-hoc (latin) = before-this (event), i.e. such
methods can be (human) interpreted
immanently in the system, i.e. they are
transparent by nature (glass box), similar to the
"interactive machine Learning" (iML) model.

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build
explainable Al systems for the medical domain? arXiv:1712.09923.
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Explainable Al trees: From local explanations to global understanding 'A HCAI

u " s e TreeExplainer i . " .

(A) Black box” model prediction ' White box” local explanation
Age =65 Age = 65 —f=—=> +2.5
BMI =40 BMI =40 — » +0.5
Blood pressure = 180 Blood pressure = 180 — — 43
Sex = Female Sex = Female — = -2

1
Mortality risk score = 4 Mortality risk score = 4
B) Combining local explanations from many samples... ...can lead to global model insights

Model summarization §27.1
Tree

Explainer Feature dependence

Datasets
(mortality)
(kidney)
(hospital)

Interaction effects

# samples
SHAP values

(local explanations)

Model monitoring

Explanation embeddings 5275

i features i features

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex Degrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha
Bansal & Su-In Lee 2019. Explainable ai for trees: From local explanations to global understanding. arXiv:1905.04610.

a.holzinger@human-centered.ai 23 Last update: 11-10-2019



Explainable Al trees: From local explanations to global understanding A HCAI

RN CINTERED.

Gradient Boosted Trees Linear Model MNewral Netwark
NHANES | Mortality Tl '
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e T -
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Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex Degrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha
Bansal & Su-In Lee 2019. Explainable ai for trees: From local explanations to global understanding. arXiv:1905.04610.
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03 Examples for Ante
Hoc Models
(interpretable Machine
Learning)
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E=

Differences: Post-hoc versus Ante-hoc A

¥
=
o

= Ante-hoc (latin) = before-this (event), i.e. such methods
can be (human) interpreted immanently in the system, i.e.
they are transparent by nature (glass box), similar to the
"interactive machine Learning" (iML) model.

= Note: Many ante-hoc approaches appear to the new
student particularly novel, but these have a long tradition
and were used since the early beginning of Al and applied
in expert systems (see module 3); typical methods
decision trees, linear regression, and Random Forests.

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build
explainable Al systems for the medical domain? arXiv:1712.09923.
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Example for an Action Influence Graph of a Starcraft agent /o HCAI

State variables:
W - Worker number
S - Supply depot number
B - barracks number
E - enemay location
S A, - Ally unit number
YL Ay - Ally unit health
) A; - Ally unit location
D,, - Destoryed units
Dy, - Destroyed buildings
Actions:
Ag - build supply depot
Ay - build barracks
A,, - train offensive unit
A, - attack

Prashan Madumal, Tim Miller, Liz Sonenberg & Frank Vetere 2019. Explainable Reinforcement Learning Through a
Causal Lens. arXiv preprint arXiv:1905.10958.
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Example for an Action Influence Graph of a Starcraft agent

Algorithm 1 Task Prediction:Action Influence Model

Input: trained regression models £, current state S;

Output: predicted action a

-

Ll b =

9 Rawihe

for every L € £ do

. F, « [] ; vector of predicted difference

P, «+ L - predict(S;.t); predict variable S, at S;4;

B

- end for

return max (P:;) - get Action()

Sy — P,|; difference with actual S, value

Accuracy (%)

Performance (s)

Env - RL

Size. LR DT MLP LR DT MLP
Cartpole-PG 4/2 83.8 81.6 86.0 0.007 0.018 0.03
MountainCar-DQN  3/3 69.7 57.8 69.6 0.020 0.037 0.32
Taxi-SARSA 4/6 68.2 74.2 67.9 0.001 0.001 0.49
LunarLander-DDQN 8/4 684 63.7 72.1 0.0020.002 0.33
BipedalWalker-PPO 14/4 56.9 56.4 56.7 0.010 0.015 0.41
Starcraft-A2C 9/4 94.7 91.8 914 0.144 0.025 3.33

Prashan Madumal, Tim Miller, Liz Sonenberg & Frank Vetere 2019. Explainable Reinforcement Learning Through a

Causal Lens. arXiv prepr

a.holzinger@human-centered.ai

int arXiv:1905.10958.
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Stochastic AND-OR Templates for visual objects /2 HCAI
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Zhangzhang Si & Song-Chun Zhu 2013. Learning and-or templates for object recognition and detection. IEEE
transactions on pattern analysis and machine intelligence, 35, (9), 2189-2205, doi:10.1109/TPAMI.2013.35.

a.holzinger@human-centered.ai 29

00 1.00 {4(\’03? Gl-l 00 0405{330\030 46\0 40 DO\\}DO
L]
19 18 16
I /
oRe ” A A B BN

A A " 3
&, 5 C ) ; U/ i ) 4 ,: ,,.r (N
0.48p.52 Q.00 00 Q.00 00 .00 00‘100 EW\IW }00 00}00¥00 00 (100 US3DI?}WFW\!U{| 00
)
5 3 £} 1 E I | | 5 £} 3 5 4 M

:

Last update: 11-10-2019



Framework for vision: AND-OR Graphs /2 HCAI

O and-node
oo = Algorithm for this
framework
B e A — 5 = Top-down/bottom-up

\ / I computation
= Generalization of
¥ X % VY % small sample

= Use Monte Carlos
- - 40 simulation to synthesis
more configurations

P (Q (R T = Fill semantic gap

Images credit to Zhaoyin Jia (2009)
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Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) /2 HCAI

O und-node
=y Nt

e

» Terminal (leaf) node: I'(pg)

e OF
n leaf node

» And-Or node: 77 (pg), V™™ (pg)

» Set of links: E(pg) @/ AI :

» Switch variable at Or-node: w(?) s
» Attributes of primitives: «(7) LR
1 Er[l: RJSTHEJ 1l

exp(—¢(pg))

7(0) 2
Epe)= Y, AN+ Y Aa®)

vel? (pg) vel ™ (pg)UT(pg)

T Z ﬁ’zj(vi?v_j? .y?py)

(.. J)EE(pg)

p(pg;O,R,A) =
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Stochastic Model on AND-OR graph: Zhaoyin Jia (2009)

v

Terminal (leaf) node: T'(pg)

» And-Or node: 77 (pg).V™ (pg)

Set of links: E(pg)

b

b

v

p(pg:O,R,A) = 2(0)

Epg)= Y. Aw()

vel? (pg)

+

+ ), Auv,.7,.0)

(4, /)EE(pg)

SCFG: weigh the frequency at the children of or-nodes

a.holzinger@human-centered.ai

Attributes of primitives: «(?)

exp(—<(pg))

2

veV ™ (pg)UT (pg)

32

Switch variable at Or-node: w(?)

A, (a(1))

Q and-node

% or-node

Last update: 11-10-2019



Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) /2 HCAI

» Terminal (leaf) node: 7' (pg)
» And-Or node: 77 (pg). V" (pg) O i
» Set of links: £(pg)
» Switch variable at Or-node: Ww(?)

v

Attributes of primitives: «(?)

1
7(0)

Epg)= Y, A4 > Aa@)

veV? (pg) veV ™ (pg)UT (pg)

+ D A0uv.700)

(i.J)EE(pg)

p(pg:0O,R.A)= exp(—<£(pg))

Weigh the local compatibility of primitives (geometric and appearance)
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Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) /2 HCAI

v

Terminal (leaf) node: 7(pg)

And-Or node: 7" (pg).V"™ (pg) O e
Set of links: £(pg) 0 o
Switch variable at Or-node: w() S

Attributes of primitives: «a(7) / _

1
"O,R.A)=
p(pg ) =

v

v v

v

exp(—<(pg))

) G4 | -4

Epg)= D, AWM+ D A@®) | YL &L

vep o (pg) vep ™ (pg) T (pg)

'|" Z )l';j(vi’vj’ yapy) & 2 3 4 Sé 7 8] o @ 11

(i, J)EE(pg)

Spatial and appearance between primitives (parts or objects)
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Stochastic Model on AND-OR graph: Zhaoyin Jia (2009) /2 HCAI

O und-node
=y Nt

e

» Terminal (leaf) node: I'(pg)

e OF
n leaf node

» And-Or node: 77 (pg), V™™ (pg)

» Set of links: E(pg) @/ AI :

» Switch variable at Or-node: w(?) s
» Attributes of primitives: «(7) LR
1 Er[l: RJSTHEJ 1l

exp(—¢(pg))

7(0) 2
Epe)= Y, AN+ Y Aa®)

vel? (pg) vel ™ (pg)UT(pg)

T Z ﬁ’zj(vi?v_j? .y?py)

(.. J)EE(pg)

p(pg;O,R,A) =

a.holzinger@human-centered.ai 35 Last update: 11-10-2019



Stochastic graph grammar/comp. object representation /2 HCAI

HEMN-CONTEREDLL

Input: an input mage I, and a set of constructed And-Or graphs of compositional
object categories,
Oulput.: i |.l:|l:-\.‘|||.;,; g;uph PE. l..lf !||.|.' Ele e} U] |;||:||; COnsists l:rr 1i||;- p.‘ur—ilm F__|':|.]r||..‘- l.lf
detected ohjects.

Bicycle

» Hepeat the following steps

1 Schedule the next node A to visit from the candidate parts.

2 Call Bottom=up{A) to update A's open list,

/ / i
y \ \ _ o
d d i N b ~ = / i Detect terminal instances of A from the image.
i1 Bind noo-terminal instanees of A from its children’s open or closed  lists
3 Call Top-down(A) to update A's open or closed  lists,
Handle 1Handle 2Handle 3 Seat Frame 1 Frame 2 Frame 3  Frame 4 OtherViews SideView i Accept hypotheses from A's open list to its closed  list.
mmm ii Hemove (or disassemble) hypotheses from A's closed  list.
-(- il Update the open lists for particles that overlap with node A,
I I 3 5 ¢ - & Lintil the particles in open list with weights higher than the empirical threshold
are exhausted, Cutput all parsing graphs whose root nodes am reached.

I = P N
{Raa (u.ddle) {ant\ Ellipse '\ {Clmle\ 1 _ . —
I Fram e Rlnssl \Rlnss/ =i Tl e e SR

L -
N T 09 b= 4 & 1
| .-' -
T 08 [
| .
O 07 ¢ o 4
/ ‘

06 L*

Y

|
|
7%

T
Al

o5 | |

04

True posifive rate

03 4
02

——— Grammar method
01 L e HOG 5V

— & HaartAdaboost

0 01 02 03 04 05 06 07 08 09 1
False positive rate

Liang Lin, Tianfu Wu, Jake Porway & Zijian Xu 2009. A stochastic graph grammar for compositional object
representation and recognition. Pattern Recognition, 42, (7), 1297-1307, doi:10.1016/j.patcog.2008.10.033.
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Example: Bayesian Rule Lists

risk 15.8% (12.2%-19.6%)

(12.2%-20.2%)
else if age <= 70 then stroke risk 4.6% (3.9%-5.4%)
else stroke risk 8.7% (7.9%—9.6%)

if hemiplegia and age > 60 then stroke risk 58.9% (53.8%—63.8%)

else if cerebrovascular disorder then stroke risk 47.8% (44.8%-50.7%)

else if transient ischaemic attack then stroke risk 23.8% (19.5%-28.4%)
else if occlusion and stenosis of carotid artery without infarction then stroke

else if altered state of consciousness and age = 60 then stroke risk 16.0%

BRL C5.0
Mean accuracy 1.00 0.94
Standard deviation (.00 0.

5VM RF BCART

0.99 0,99 0.71
0.01 0 0.04

1.0
0.8 ¢
3
o
5 0.6}
=
g
=
0.4
0.2 | — BRL-point
/ -  CHADS,
wem  CHA2DS2-VASe
0.0 — = -
(1.0 0.4 0.6 0.8

False positive rate

1.0

Benjamin Letham, Cynthia Rudin, Tyler H McCormick & David Madigan 2015. Interpretable classifiers using rules
and Bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9, (3), 1350-

1371, d0i:10.1214/15-A0AS848.
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Example: Interpretable Decision Sets

A HMAN-CENTEREDLL

If Respiratory-1liness=Yes and Smoker=Yes and Age> 50 then Lung Cancer
If Risk-LungCancer=""es and Blood-Pressure > 0.3 then Lung Cancer

If Risk-Depression="cs and Past-Depression="Yes then Depression

If BMI= 0.3 and Insurance=None and Blood-Pressure> (0.2 then Depression
If Smoker=Yes and BMI> (0.2 and Age> 60 then Diabetes

If Risk-Diabetes="Yes and BMI> (0.4 and Prob-Infections> (1.2 then Diabeles

If Doctor-Visits 2 (.4 and Childhood-Obesity="Yes then Diabetes

If Respiratory-1liness="Yes and Smoker="Yes and Age> 50 then Lung Cancer
Else if Risk-Depression="es then Depression
Else if BMI > 0.2 and Age> 60 then Diabetes
Else if Headaches=Yes and Dizziness="Yes, then Depression
Else if Doctor-Visits > 0.3 then Diabetes
Else if Disposition-Tiredness="Yes then Depression

Else Diabetes

Himabindu Lakkaraju, Stephen H Bach &
Jure Leskovec. Interpretable decision sets:
A joint framework for description and
prediction. Proceedings of the 22nd ACM
SIGKDD international conference on
knowledge discovery and data mining,
2016. ACM, 1675-1684.

a.holzinger@human-centered.ai
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Algorithm 1 Smooth Local Search (SLS) [1+]
I: Input: Objective f, domain X = & x C, parameters 4 and &’

2

3: A= ‘.ﬂ

4: oPT = f(dx(X,0))

5: for each element » € X do

6:  Estimate E[f(®x(A,8) U)] — E[f(Px(A,8) \ )] within an
error of I'-""i'llcz QOPT

f Call this estimate @ 4 5(x)
8: end for )
9: for ecach element x € X \ A suchthat @ 4 5(x) > |ﬁ§| OFT do

10: A=Auzx

11: Goto Line 5

12: end for

13: for cach element & € A such that w4 5(x) < ﬁ?’_rDPT do
14: A=A '\_ T

15: Gota Line 3

16: end for

17: return ®x (A, §')
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04 Examples for Post
Hoc Models
(e.g. LIME, BETA, LRP)
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Differences: Post-hoc versus Ante-hoc A HCAI

HAMAN-CINTERED.L

= Post-Hoc (latin) = after- this (event), i.e. such approaches
provide an explanation for a specific solution of a “black-
box” approach, e.g. LIME, BETA, LRP, ... (see module 5)

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build
explainable Al systems for the medical domain? arXiv:1712.09923.
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Caveat — Post hoc explanation can be misleading ! A

PERSPECTIVE

S SR machine intelligence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin ™

Black box machine learning models are currently being used for high-stakes decision making throughout society, causing prob-
lems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-
pretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward
is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and
using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-
stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where
interpretable models could potentially replace black box models in eriminal justice, healthcare and computer vision.

black box machine learning models for

high stakes decisions and use
Machine Intelligence, 1, (5), 206-215,

interpretable models instead. Nature
doi:10.1038/s42256-019-0048-x.

Cynthia Rudin 2019. Stop explaining

Testimage Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

Explanations using
attention maps
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Example LRP Layer-Wise Relevance Propagation

Y
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A NN-classifier during prediction time

—
e

j —
|

. — R{Hl]: R“}:-“: R{”
Z d Z d Zd: d

del+1 del

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech
Samek 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
PloS one, 10, (7), 0130140, doi:10.1371/journal.pone.0130140.
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Example Taylor Decomposition
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,

(7), e0130140, doi:10.1371/journal.pone.0130140.

a.holzinger@human-centered.ai
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Heatmap Computation

<4— Heatmap Computation

/

et

Heatmap

Input Layer

Intermediate Layer

/ Rf;”

Step Three

i g
= EfEL{q} [area(l)

Step Two
(2) _ v (3)
Ef Rf s Zd:] Rd

Step One
Vv 3
Y i1 BY = f(z)

Output Layer

Input Image

Local Features

BoW Feature

f(z) = +1.56
Classifier Qutput

Image Classification

—

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), e0130140, doi:10.1371/journal.pone.0130140.
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Pixel-wise decomposition for bag-of-words features /2 HCAI

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), e0130140, doi:10.1371/journal.pone.0130140.
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Deep Taylor Decomposition %*\ HCA]

Definition 1. A heatmapping R(x) is conservative if the sum of
assigned relevances in the pixel space corresponds to the total
relevance detected by the model:

V x: (x)—z (x).

Definition 2. A heatmapping R (x) is positive if all values forming the
heatmap are greater or equal to zero, that is:

Vx,p:R,(x) >0

Definition 3. A heatmapping R (x) is consistent if it is conservative

and positive. That is, it is consistent if it complies with Definitions 1
and 2.

Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek & Klaus-Robert Miller 2017. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 65, 211-222,
doi:10.1016/j.patcog.2016.11.008.
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Sensitivity Analysis vs. Decomposition /2 HCAI

RN CINTERED.

g
function to analyze:

f(z) = max(0, z1) + max(0, z2)
Iy $2
$ 4 4 4 4
1
[ S S S N |
O
e 7
R Pl
sensitivity analysis: oo
(8f/81)2 = 14,50 ::::::
>
(af/amg)z = 11?2>0 — s =t
T2
4 4 4 & 'y
P
T T T T
) I
>| = —»
decomposition: - o4 =
R (z) = max(0, z;) | T8
e > - —»
Ry(z) = max(0, z5) Jd L
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Relevance propagation /2 HCAI

. forward pass
input > output
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Relevance Redistribution

/A MEAL

input

{xp]

deep neural network

s

-

local
feature

extractar

local
feature
extractor

local
feature
extractor

local
feature
extractor

¥

mid-level
feature
extractor

forward
propagation

mid-level
featura
extractor

CO0QO0

B T

relevance
redistribution

global
feature
extractor

output

a.holzinger@human-centered.ai
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1. min-max

relevance model

2. training-free
relevance model
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Example 1 /2 HCAI

HEMN-CONTEREDLL

Image Sensitivity (CaffeNet) Deep Tayvlor (CaffeNet) Deep Taylor (GoogleNet)

-

Image Sensitivity (CaffeNet) ¢
i #
=
: i

& Y i ]

Deep Taylor (CaffeNet) Deep Taylor (GoogleNet)
[ - “g 5
N

=]
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Example 2 Histopathology

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10, (7), e0130140, doi:10.1371/journal.pone.0130140.
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/ :f// sneeze Flu EKD'EiHEf R |
i . F .
- ; weight (LIME) . e
\ — Reouons - headache |
' no fatigue no fatigue
age /

Model Data and Prediction

o % ks @ =

Explanation Human makes decision

i

¥

—‘IJJ"—IJI-- lel[lJl
| ‘JITl Jl ﬁj El Human makes

Model Dataset and Predictions Pick step Explanations decision

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin. Why should i trust you?: Explaining the predictions of
any classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016. ACM, 1135-1144, doi:10.1145/2939672.2939778.
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Example LIME — Model Agnostic Explanation

/A MEAL

In

[1B8]2

explainer = lime.lime tabular.LimeTabularExplainer (X train, feature names=breast.feature names, class names=breast.targe

< | 1 |

¢

Here we will take a sample from the test set (in this case the sample at index 76) and create an explainer instance for this sample. This will let us see why the

algorithm made its prediction visually.

# For this demconstration, let's take the same sample each time, in this case sample index 86
i =76

# For a random samplse uncomment out the following line

# i = np.random.randint (0, X test.shape[0])

exp = explainer.explain instance(X test[i], random forest.predict proba, num features=4)

exXp.show in notebook(show table=True, show all=False)

Prediction probabilities malignant benign
83.68 < worst perimet...

malignant 009

Feature Value

. i worst perimeter
benign ' 0.64 v.;oorﬁst concave points ... pe
'worst concavity <= 0.11 worst concave points
0.04

area error > 47.72 worst concavity
0.04

area error

As you can see, the random forest algorithm has predicted with a probability of 0.64 that the sample at index 76 in the test set is malignant.

When using the explainer, we set the num featuresparameter to 4, meaning the explainer shows the top 4 features that contributed to the prediction

prababilities.

We chose 76 as it was a borderline decision. For example sample 86 is much more clear (this will we will set the num features parameter to include all features

so that we see each feature's contribution to the probability):

a.holzinger@human-centered.ai 54
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Remember: there are myriads of classifiers ... /2 HCAI

RN CINTERED.

( Classifiers )

/\

( Statistical ) ( Structural )

- = -
- Ll [ T -
o= = 1 T
. MNaive Bayesian
Regression Baves Networks
Rule based (Drslann:ae has&d) @au ral HEMﬂka)
- s -7 I "'-"'.
Production Decision Multi-Layer
Rules Trees Parceplron
( Fum:m-::nal Haamst Neighbor )
_.."""# et -"'H' H"‘n._
Leaming
Linear iﬂ:; KNN Vector
— Quantization

https://stats.stackexchange.com/questions/271247/machine-learning-statistical-vs-structural-classifiers
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Black Box Explanations through Transparent Approximations A H

If Age <50 and Male =Yes:
If Past-Depression =Yes and Insomnia =No and Melancholy =No, then Healthy

If Past-Diepression =Yes and Insomnia =Yes and Melancholy =Yes and Tiredness =Yes, then Depression

If Age = 50 and Male =No:
If Family-Depression =Yes and Insomnia =No and Melancholy =Yes and Tiredness =Yes, then Depression

If Family-Depression =No and Insomnia =No and Melancholy =No and Tiredness =No, then Healthy

Default:
If Past-Depression =Yes and Tiredness =No and Exercise =No and Insomnia =Yes, then Depression
If Past-Depression =No and Weight-Gain =Yes and Tiredness =Yes and Melancholy =Yes, then Depression

If Family-Depression =Yes and Insomnia =Yes and Melancholy =Yes and Tiredness =Yes, then Depression

Himabindu Lakkaraju, Ece Kamar, Rich Caruana & Jure Leskovec 2017. Interpretable and
Explorable Approximations of Black Box Models. arXiv:1707.01154.

a.holzinger@human-centered.ai 56 Last update: 11-10-2019



/N

s HEA|

05 Principles of Making
Neural Networks
transparent
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Example: Interpretable Deep Learning Model /;;\ H..,.I
Layer Above
Reconstruction Pooled Maps

Switches

Max Poolin
Max Unpooling | ‘ O w 8

Rectified Feature Maps

Unpooled Maps

Rectified Linear

Rectified Linear
Function

Function

Feature Maps

Rectified Unpooled Maps

Convolutional

Convolutional
Filtering {F}

Filtering {F'}

Layer Below Pooled Maps

Reconstruction

Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901.
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Visualizing a Conv Net with a De-Conv Net /2 HCAI

image size 224 110 13 13 13 _ _
filter size 7 @3 BE]
| 1 w384 | W1 w384 \256 M
stride 2 96 3x3 max C
3x_3dma2x pool pool 4096 4096 class
stride stride 2 units| | units| | softmax
\i 55 -
| 6 256
nput Image ~ -
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
Layer Above
ye : Pooled Maps
Reconstruction

Pnnhng

Max Locations

“Switches”
Unpooled Rectified
Maps Feature Maps

Matthew D. Zeiler & Rob Fergus 2014. Visualizing and understanding convolutional networks. In: D., Fleet, T., Pajdla,
B., Schiele & T., Tuytelaars (eds.) ECCV, Lecture Notes in Computer Science LNCS 8689. Cham: Springer, pp. 818-833,
doi:10.1007/978-3-319-10590-1_53.
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901.
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The world is compositional (Yann LeCun) /2 HCAI

hidden layer 1 hidden layer 2 hidden layer 3
)

input layer

output laver

Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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The world is compositional (Yann LeCun) /2 HCAI

ing

N Y g
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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/b HEA]

hiiddir:nt layer 2  hidden laver 3

hidden laver 1

output layer

input layer
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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t

hidden layer 1 hidden layver 2 hidden layver 3

input layer

Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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hidden layer 1 hidden layer 2 hidden layer 3

input layver
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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06 Explanation
Interfaces: Future
Human-Al Interaction
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Human friendly explanations — personalized explanations A

E=

¥
=
o

= Explanation is a reasoning process

= Open questions:
= What is a good explanation?
= When is it enough (degree of saturation)?
= Context dependent (Emergency vs. research)

= How can we measure the degree of comprehensibility of
a given explanation

= (obviously the explanation was good when it has been
understood by the human)

= What can the system learn from the human?
= What can the human learn from the system?
= Measuring explanation effectiveness!

Bruno Lepri, Nuria Oliver, Emmanuel Letouzé, Alex Pentland & Patrick Vinck 2018. Fair, transparent, and accountable
algorithmic decision-making processes. Philosophy & Technology, 31, (4), 611-627.
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Note, that these are technical solution L8\ KI!“"[:“AI

Explainability :=

a property of a system
(“the Al explanation)
Causability :=

a property of a person
(“the Human explanatlon)
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Our goal is to provide effective mapping /2 HCAI

= Causability := a property of a person (Human)
= Explainability := a property of a system (Computer)

_ .- Explainable Al
(Qomp;g“at%f Ls%ence)

Human sensemaking
(Cognitive Science)

©0g
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Combination of Deep Learning with Ontologies /& HCAI

RN CINTERED.

(1)Explaining Deep Tensor Output both inference result and reasons
the reasons E— (inference factors)
for judgment O, SR , .
1 ;,&i:----;— ﬁ% o Inference result nference factors
r-= e e Output
gl S k Y
i B gver  (wey B[l + i

Inference fdr.r.ﬂr identification

I'En leedge Era |:|h

--------*

Knowledge graph generates a logical path
from input to the inference result

(2)Explaining
the basis (evidence) =
for judgment

Batis farmation

Explainable Al with Deep Tensor and Knowledge Graph

http://www.fujitsu.com/jp/Images/artificial-intelligence-en_tcm102-3781779.png
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Seemingly trivial questions ... ? /2 HCAI

" What is a good explanation?

" (obviously if the other did understand it)

= Experiments needed!

= What is explainable/understandable/intelligible?

" When is it enough (Sattigungsgrad — you don’t
need more explanations — enough is enough)

= But how muchis it ...
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Explanations in Artificial Intelligence will be necessary /2 HCAI

= Justification, Explanation and Causality
" Trust > scaffolded by justification of actions
(why)

= Please always take into account the inherent
uncertainty and incompleteness of medical datal

Alex John London 2019. Artificial Intelligence and Black-Box Medical Decisions:
Accuracy versus Explainability. Hastings Center Report, 49, (1), 15-21,
doi:10.1002/hast.973.
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IBM is doing it now: teaching meaningful explanations

Ramamurthy, Murray Campbell, Amit Dhurandhar, Kush R.
Varshney, Dennis Wei & Aleksandra Mojsilovic 2018. Teaching
Meaningful Explanations. arXiv:1805.11648.

Noel C.F. Codella, Michael Hind, Karthikeyan Natesan
1v:1805.11648v1 [cs.Al] 29 May 2018

a.holzinger@human-centered.ai

Teaching Meaningful Explanations

Noel C. F. Codella,* Michael Hind,* Karthikeyan Natesan Ramamurthy,*
Murray Campbell, Amit Dhurandhar, Kush R. Varshney, Dennis Wei,
Aleksandra Mojsilovié
* These authors contributed equally.

IBM Research
Yorktown Heights, NY 10598

{nccodell,hindm,knatesa,mcam,adhuran, krvarshn,dwei,aleksand}@us.ibm.

Abstract

The adoption of machine learning in high-stakes applications such as healthcare
and law has lagged in part because predictions are not accompanied by explana-
tions comprehensible to the domain user, who often holds ultimate responsibility
for decisions and outcomes. In this paper, we propose an approach to generate
such explanations in which training data is augmented to include, in addition to
features and labels, explanations elicited from domain users. A joint model is then
learned to produce both labels and explanations from the input features. This sim-
ple idea ensures that explanations are tailored to the complexity expectations and
domain knowledge of the consumer. Ewaluation spans multiple modeling tech-
nigues on a simple game dataset, an image dataset, and a chemical odor dataset,
showing that our approach is generalizable across domains and algorithms, Re-
sults demonstrate that meaningful explanations can be reliably taught to machine
learning algorithms, and in some cases, improve modeling accuracy.

1 Introduction

com

MNew regulations call for automated decision making systems to provide “meaningful information™
on the logic used to reach conclusions [1-4]]. Selbst and Powles interpret the concept of “meaningtul
information™ as information that should be understandable to the audience (potentiallv individuals
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07 Metrics of xAl
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Metrics for Explainable Al /2 HCAI

= Central question: How can we measure whether and
to what extent an “explanation” given by a machine
has been understood by a human?

" Therefore we need to know:

1) the “goodness” of explanations,
2) the “satisfaction” of the user

3) the “understandability”

4) the “trustability”

= (5) the “human-Al interaction”

= Please note that the terms are in “qguotation marks”
because it is extremely difficult to measure!

Robert R. Hoffman, Shane T. Mueller, Gary Klein & Jordan Litman 2018. Metrics for Explainable Al:
Challenges and Prospects. arXiv:1812.04608.
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Conceptual Model of explaining by Hoffman et al. (2018) A
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Robert R. Hoffman, Shane T. Mueller, Gary Klein & Jordan Litman 2018. Metrics for Explainable Al:
Challenges and Prospects. arXiv:1812.04608.
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A HCAI

i FEMAN-CINTERED.L

Shane T. Mueller, Robert R. Hoffman, William Clancey, Abigail Emrey & Gary Klein 2019. Explanation in human-Al
systems: A literature meta-review, synopsis of key ideas and publications, and bibliography for explainable Al.
arXiv:1902.01876.
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/> HCAI

i FEMAN-CINTERED.L

Tim Miller 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38,
doi:10.1016/j.artint.2018.07.007.
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Bias and Fairness: Is Al more objective than Humans? s HCA|

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold & Richard Zemel. Fairness through awareness.
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, 2012 Cambridge, Massachusetts.
Association for Computing Machinery, 214-226, doi:10.1145/2090236.2090255.

For equal odds, result lies For equal opportunity, resulis lie
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Moritz Hardt, Eric Price & Nati Srebro. Equality of opportunity in supervised learning. Advances in neural
information processing systems (NIPS 2016), 2016. 3315-3323.
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Bias is the real Al Danger !

No matter how we try to fit the line, it

will never curve...

>

Weight

https://www.youtube.com/watch?v=EuBBz3bl-aA

“There are errors in these systems
which propagate very quickly.
Because of their scale of their
action space - they can be hitting a
billion or two billion users per day -
that means the costs of getting it
wrong are very very high."

-Mustafa Suleyman
co-founder DeepMind
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https://www.youtube.com/watch?v=fMym_BKWQzk

Artificial Intelligence / Robols

Forget Killer Robots —
Bias Is the Real Al Danger

John Glannandrea, who leads Al at Google, is worried about
intefligent systems kearming human prejudices.

by Wil Knight et 3, 2017

Google's Al chief ian't fretting about super-intelligent killer robots. Instead,
John Giannandrea is concerned about the danger that may be lurking inside

the machine-learning algorithms used to make millions of decisions every
minule.
“The real safety question. il you want to call it that, is that if we give these

systems biased data, they will be biased.” Giannandrea said before a recent
Google conference on the relationship between humans and Al systems.
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How to measure “trust”?

Mean Trust Measurement
Items in the Cognitive Effort | Organized List view ’
construct view with “why” F 351 327
P . A = I;
I casily L['ound the information I ’ 47 307 g e
was looking for (reverse scale); @ B List View with "why"
2 i
Selecting a product using this §
; ; b 2.61 3.14 <
interface required too much effort. N
, Yir o= Percaeved Reaturn infention Perceived
Cronbach’s alpha = 0.73 s Bbtbssigr
IPerceived  [Intentionto |C ognitive  |Completion
Competence [Return IE (Tort Time
Perceived ) TTR** -.826 ** -018
Competence (.000) (.000) (.830)
Intention to J78%* l - 6T 5** -.042
Return (.000) (.000) (.619)
Cognitive - 826 ** - 675%* | 069
Effort (.000) (.000) (414)
Completion -018 -.042 069 |
[Time (.830) (.619) (.414)

** (Correlation is significant at the 0.01 level (2-tailed).

Pearl Pu & Li Chen. Trust building with explanation interfaces. Proceedings of the 11th international conference on
Intelligent user interfaces, 2006. ACM, 93-100.
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Measuring Causability:
Mapping machine
explanations with

human understanding
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The process of explanations (System Causability Scale) /2 HCAI

. |
(M) PO ORON
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MODEL GROUND TRUTH UNKNOWN REPRESENTATION ~ "TOWLEPCF  STATEMENT — EXPLANATION USER

Andreas Holzinger, Andre Carrington & Heimo Miller 2020. Measuring the Quality of Explanations: The System
Causability Scale (SCS). Comparing Human and Machine Explanations. Kl - Kiinstliche Intelligenz (German Journal of
Artificial intelligence), Special Issue on Interactive Machine Learning, Edited by Kristian Kersting, TU Darmstadt, 34,
(2), doi:10.1007/s13218-020-00636-z.
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This is compatible to interactive machine learning /2 HCAI

= Computational approaches can find in R™
what no human is able to see

"However, still there are many hard problems
where a human expert in R can understand
the context and bring in experience,
expertise, knowledge, intuition, ...

mBlack box approaches can not explain
WHY a decision has been made ...
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