m Science is to test crazy ideas — Engineering is to put these ideas into Business & X HCAI
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B Agenda & HEAl
|

00 Reflection — follow-up from last lecture
01 Explainability, Interpretability, Causability
02 Is xAl new ?

03 Examples for Ante-hoc models

(explainable models, interpretable machine
learning)

04 Examples for Post-hoc models (making the
“black-box” model interpretable)

04a LIME, 04b BETA, 04c LRP, 04d Taylor,
04e Prediction Difference Analysis, 04f TCAV
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@8 syllabus (see separate document) 2 HCAl
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B 2 HEAl

00 Reflection
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B warm-up Quiz e Heal 7Y & Heal
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z 01 Explainability,
Interpretability,

Deduction /r"\ T
Induction ¢ o | o Causability, ...
Abduction
4 3
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B8 Why is explainability so important ? < HCAI B8 Would interpretability be a better term ? < HCAI
= Explainability = motivated by the opaqueness of so = |nterpretability := ability to explain or to provide
called “black-box” ML approaches the meaning in understandable terms to a
= it is the ability to provide an explanation on why a human
machine decision has been reached (e.g. why is it a = Understandability (intelligibility) := characteristic

cat what the deep network recognized).

= Note: Finding an appropriate explanation is difficult,
because this needs understanding the context

= and providing a description of causality and

of a model to make a human understand its
function — how the model works (without any
need for explaining its internal structure).

consequences of a given fact. u Comprehensibility = ablllty of a Iearning

= German: Erklarbarkeit; siehe auch: Verstehbarkeit, algorithm to represent its learned knowledge in
Nachvollziehbarkeit, Zurlickverfolgbarkeit, a human understandable fashion entities.
Tr‘a ns pa renz Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,

Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila & Francisco Herrera 2020. Explainable
Artificial Intelligence (XAl): Concepts, taxonomies, opportunities and challenges toward responsible Al. Information
Fusion, 58, 82-115, doi:10.1016/j.inffus.2019.12.012.
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Why is the question of why so important ? & HCAI

What is Causality ? & HCAI

Judea Pearl & Dana Mackenzie

http://bayes.cs.ucla.edu/LECTURE/lecture secl.htm 2018. The book of why, New
York, Basic Books

http://bayes.cs.ucla.edu/WHY

Judea ;;“

Pearl v \ BOOK OF
WHY

& -

Intelligence

Lex Fridman

https://www.youtube.com/watch?v=pEBIOvF45ic
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So, what is Causability ? & HCAI

Causality:
The art and science of
cause and effect

Judea Pearl 2000. Causality: Models, Reasoning, and Inference,
Cambridge: Cambridge University Press.
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What is the difference between explainability and causability ? < HCAI

Causability:
Mapping machine
explanations with

human understanding

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal & Heimo Mueller 2019.
Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 9, (4), doi:10.1002/widm.1312.
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= Explainability = in a technical sense highlights
decision-relevant parts of the used representations
of the algorithms and active parts in the algorithmic
model, that either contribute to the model accuracy
on the training set, or to a specific prediction for
one particular observation. It does not refer to an
explicit human model.

= Causability = as the extent to which an explanation
of a statement to a human expert achieves a
specified level of causal understanding with
effectiveness, efficiency and satisfaction in a
specified context of use.

Holzinger, A., Carrington, A. & Miller, H. (2020). Measuring the Quality of Explanations: The System Causability Scale (SCS).
Comparing Human and Machine Explanations. Kl - Kiinstliche Intelligenz (German Journal of Artificial intelligence), Special
Issue on Interactive Machine Learning, Ed. Kristian Kersting, TU Darmstadt, 34, (2), doi:10.1007/s13218-020-00636-z.
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Bl How can we build successful future Human-Al interfaces? = HEAl

= Explainability := a property of a system (Computer)
= Causability := a property of a person (Human)

Human sensemaking ..~ Explainable Al

(Cognitive Science)

Andreas Holzinger. On Knowledge Discovery and Interactive Intelligent Visualization of Biomedical Data - Challenges

in Human—Computer Interaction & Biomedical Informatics. In: Helfert, Markus, Fancalanci, Chiara & Filipe, Joaquim,

eds. DATA 2012, International Conference on Data Technologies and Applications, 2012 Rome, Italy. INSTICC, 5-16.

2020 health Al 06

I
l

m How can we measure the quality of explanations ? Py

human-centered.ai (Holzinger Group) 13

Bl Metrics of Al - System Causability Scale (SCS) e HEAI
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Andreas Holzinger, Andre Carrington & Heimo Miiller 2020. Measuring the Quality of Explanations: The System
Causability Scale (SCS). Comparing Human and Machine Explanations. Kl - Kiinstliche Intelligenz (German Journal of
Artificial intelligence), Special Issue on Interactive Machine Learning, Edited by Kristian Kersting, TU Darmstadt, 34,
(2), doi:10.1007/513218-020-00636-z.
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Measuring the quality of
Explanations: The Systems
Causability Scale

Andreas Holzinger, Andre Carrington & Heimo Mdller 2020. Measuring the Quality of Explanations:
The System Causability Scale (SCS). Comparing Human and Machine Explanations. K| - Kiinstliche
Intelligenz (German Journal of Artificial intelligence), Special Issue on Interactive Machine Learning,
Edited by Kristian Kersting, TU Darmstadt, 34, (2), doi:10.1007/s13218-020-00636-z
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@8 What problems do we face in the real (medical) world ? 2

I
l

= 1) ground truth is not always well defined,
especially when making a medical diagnosis;

= 2) although human (scientific) models are often
based on understanding causal mechanisms,
today’s successful machine models or algorithms
are typically based on correlation or related
concepts of similarity and distance!

human-centered.ai (Holzinger Group) 16 2020 health Al 06



m Why is it important to know to whom to explain something ?

¥
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Frederick KIauschen K. R Miiller, Alexander Binder, Michael Bockmayr, M. Hagele, P. Seegerer Stephan Wlenert
Giancarlo Pruneri, S. De Maria & S. Badve 2018. Scoring of tumor-infiltrating lymphocytes: From visual estimation to
machine learning. Seminars in cancer biology, 52, 151-157, doi:10.1016/j.semcancer.2018.07.001.
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m How is Explainability/ Interpretability contrasted to performance ? & HCAI

I
T2

Td

Yy
)

Evaluation

N

Interpretation

Zachary C. Lipton 2018. The mythos of model interpretability. ACM Queue, 16, (3), 31-57, doi:10.1145/3236386.3241340
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Explainability

https://www.darpa.mil/attachments/XAlProgramUpdate.pdf
This is far too naive: Explainability (better: interpretability !)
does not correlate with performance !!
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m What are human friendly explanations? Personalized explanations? ,é CAl

= Explanation is a reasoning process
= Open questions:
= What is a good explanation?
When is it enough (degree of saturation)?
Context dependent (Emergency vs. research)

= How can we measure the degree of comprehensibility of
a given explanation -> (System Causability Scale, SCS)

(obviously the explanation was good when it has been
understood by the human)

What can the system learn from the human?
What can the human learn from the system?
Measuring explanation effectiveness!

Bruno Lepri, Nuria Oliver, Emmanuel Letouzé, Alex Pentland & Patrick Vinck 2018. Fair, transparent, and accountable
algorithmic decision-making processes. Philosophy & Technology, 31, (4), 611-627.
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B8 What are the main expectations to xAl ? & HCAI

© e

= Causality - inferring causal relationships from pure
observational data has been extensively studied (Pearl, 2009),
however it relies strongly on prior knowledge

= Transferability — humans have a much higher capacity to
generalize, and can transfer learned skills to completely new
situations; compare this with e.g. susceptibility of CNNs to
adversarial data (please remember that we rarely have iid data
in real world

= Informativeness - for example, a diagnosis model might
provide intuition to a human decision-maker by pointing to
similar cases in support of a diagnostic decision

= Fairness and Ethical decision making — interpretations for the
purpose of assessing whether decisions produced
automatically by algorithms conform to ethical standards

= Trust Al — interpretability as prerequisite for trust (as
propagated by Ribeiro et al (2016)); how is trust defined?
Confidence?

Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490.

human-centered.ai (Holzinger Group) 21 2020 health Al 06

m Advantages/Disadvantages of Rule-based vs. Deep Learning ? s HCAI

© e

B8 Interpretable Models vs. Interpreting Models & HCAl

i ———_

= Rule-Based Models (e.g. decision trees):
= Easy to interpret, the rules provide clear explanations
= Can learn even from little data sets
= Problems with high-dimensional data, with noise,
and with images (ambiguity)
= Neuro-Symbolic Models (e.g. CNN):
= Not easy or even impossible to interpret
= Needs a lot of top-quality training data

= Can well generalize even from high-dimensional data,
with noise and good for images
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= |nterpretable Glass-Box Models, the model itself is
already interpretable, e.g.
= Regression
= Naive Bayes

Random Forests

= Decision Trees/Graphs

= Interpreting Black-Box Models (the model is not
interpretable and needs a post-hoc interpretability
method, e.g.:
= Decomposition
= LIME/BETA
= |RP
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B8 so, is xAl a good name for it?

I
l

e Fairmness Privacy Accoumability

Security &
Safety

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado,
Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila & Francisco Herrera 2020.
Explainable Artificial Intelligence (XAl): Concepts, taxonomies, opportunities and challenges toward responsible Al.
Information Fusion, 58, 82-115, doi:10.1016/j.inffus.2019.12.012.

Ethics Transparcncy
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02 Is XAl new?

David Gunning & David W. Aha 2019. DARPA's Explainable Artificial Intelligence Program. Al Magazine, 40, (2), 44-58.
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8 How did MYCIN enable explainability ? e HEAI

m What was the most requested feature of early medical DSS ? < HE I

IF: 1) THE STAIN OF THE ORGANISM 15 GRAMNEG, AND
3 THE MORFIOLOGY OF THE ORGANISM IS ROD, AND nm:;n
3 THE AEROBICITY OF THE GRGANISM |5 ANAEROBI iy
THEN: THERE IS SUGGESTIVE EVIDENCE (8) THAT THE IDENTITY OF THE AL
OF THE ORGANISM IS BACTERGIDES

Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce m"ﬁx“
G. Buchanan, C. Cordell Green & Stanley N. Cohen 1975. "L“',':r THE RLLE TO THE
Computer-based consultations in clinical therapeutics: wuLE OF Tl CURBINT
explanation and rule acquisition capabilities of the MYCIN SR AT
system. Computers and biomedical research, 8, (4), 303-320, ﬁ *
doi:10.1016/0010-4809(75)90009-9. (e ]
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= Explainability was the most requested feature of
early medical decision support systems!
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Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce G. Buchanan, C. Cordell Green & Stanley N. Cohen
1975. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the
MYCIN system. Computers and biomedical research, 8, (4), 303-320, doi:10.1016/0010-4809(75)90009-9.
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@8 How did MYCIN support WHY questions ?

L e
=
(1]

IF: §f THE STAIN OF THE ORGAMISM 15 GREAMNEG, AND
i THE MORFIKMLGGY OF THE ORGANISM IS ROD, AND
3§ THE AEROEICITY OF THE ORGAMNISM IS ANAEROBI
THEN: THERE IS SUGGESTIVE EVIDENCE (8 THAT THL IDENTITY
OF THE ORGANISS IE RACTEROIDES

** WHAT IS THE [DENTITY OF QRGANISM-1 7

THE IDENTITY OF ORGANISM-1 15 E. COLI (M) PROTEUS .26)
PREUDOMOMAS (.24) KLERSIELLA 1 21)

= HOW DID YOU DECIDE THAT ORGANISM-1 MIGHT BE A
FREUDOMONAST

I USED} RULEDSS TO CONCLUDE THAT THE IDENTITY OF
ORGAMISM.| IS PSEUDOMONAS. THIS GAVE A CUMULATIVE
CERTAINTY FACTOR OF 24

1F: 1] THE STAIN OF THE ORGANESM 15 ORAMNED, AND
I} THE MORPHOLOGY OF THE OROANISM 15 ROD, AND
3 THE PATIENT IS A COMPROMISED HOST
THEN: THERE 15 SUGOESTIVE EVIDENCE (.4) THAT THE IDEN.
TITY OF THE ORGANIEM 15 PSEUDOMONAS

= ) PO/ EVER PRESCRIRE CARBENICILLIN FOR PREVDO-
MONAS INFECTIONS?

RELEVANT RULES: RULESS RULEN® RULEIY
WHICH ONES D40 YOI WISH TO SFEY
= RULEGSd
IF: By IT I8 KROWH WITH CERTAINTY THAT THE IDENTITY
OF THE GROANISM 15 PSEUDOMONAS, AND
11 THE DRUG UNDEE CONSIDERATION 15 GENTAMICTN
THEN: EELORD THE FOLLOWING AS A MOEE AFFROFRIATE
THERAFY : GENTAMICTN-AND-UARBENPCILLI™

Edward H. Shortliffe, Randall Davis, Stanton
G. Axline, Bruce G. Buchanan, C. Cordell
Green & Stanley N. Cohen 1975. Computer-
based consultations in clinical therapeutics:
and rule iliti
of the MYCIN system. Computers and
biomedical research, 8, (4), 303-320,
doi:10.1016/0010-4809(75)90009-9.
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m How was the interactivity for the doctors ensured ?

I
l

L1 SHORTLEFFE ET A1

Tt QUESTHY S ARTWIR MO L

** b ichey chioramphanisol or kanssseyoin okay for treadmesd of whmoncll infaction *
YES,

RULEDS]
¥
THE IENTITY OF THE ORGANISM IS SALMONELLA
THEN
| RECOMMEND (N ORDER OF FREFERENCE):
I-CHLORAMPHERIOOL
T-AMPICILLEN
LCEFHALOTHIN

0 pleew do you kaow o an srgannim oo besterosie?

RULEDI

I
THE CGRAMSTAIM OF THE ORGAMISM 15 GRAMBMEG, AND THE
MORPHOLOGY OF THE ORGANIEM 15 ROD, AND THE
AERCRICITY OF THE GRGANISM 5 AMAERCEILC

THEM
CONCLUDE THAT THE IDENTITY ©F THE ORGANISM IS
BACTERMMDES (MODIFIER: THE CERTAINTY TALLY FOR
THE PREMISE TIMES &)

Edward H Shortliffe, Stanton G Axline, Bruce G Buchanan, Thomas C Merigan & Stanley N Cohen 1973. An artificial intelligence
program to advise physicians regarding antimicrobial therapy. Computers and Biomedical Research, 6, (6), 544-560.
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B8 What caused the end of the hype in early Al DSS ? & HCAI

i ———_

Y] /o HEAI
Digression: History of
DSS = History of Al

= The evaluation demonstrated that the present
form of the program is not sufficiently reliable
for clinical applications.

= Specific deficiencies that must be overcome
include the program's inability

® to reason, its inability to construct differential
diagnoses spanning multiple areas, its occasional
attribution of findings to improper causes, and
its inability to explain its "thinking“ ...

Randolph A Miller, Harry E Pople Jr & Jack D Myers 1982. Internist-I, an experimental computer-based
diagnostic consultant for general internal medicine. New England Journal of Medicine, 307, (8), 468-476.
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B8 A ultrashort history of Early Al - the golden Years N

I
l

= 1943 Warren S. McCulloch & Walter Pitts: A logical
calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biology, 5, (4), 115-133,
doi:10.1007/BF02459570.

= 1950 Alan M. Turing: Computing machinery and
intelligence. Mind, 59, (236), 433-460,
d0i:10.1093/mind/LIX.236.433

= 1959 John McCarthy: Programs with common sense.
Mechanization of thought processes (Advice Taker)

= 1975 Ted Shortliffe & Bruce Buchanan: A model of inexact
reasoning in medicine. Mathematical biosciences, 23, (3-
4), 351-379, doi:10.1016/0025-5564(75)90047-4.

= 1978 Bellman, R. Can Computers Think? Automation of
Thinking, problem solving, decision-making ...
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Towards the renaissance of Al & HCAI

© e

=
L]
=
—_

What about the history of Health Informatics ? 2

i
i

1986 David E. Rumelhart, Geoffrey E. Hinton & Ronald J.
Williams 1986. Learning representations by back-propagating
errors. Nature, 323, (6088), 533-536, doi:10.1038/323533a0.

1988 Judea Pearl: Embracing causality in default reasoning.
Artificial Intelligence, 35, (2), 259-271, doi:10.1016/0004-
3702(88)90015-X.

1997 Deep Blue beats Geri Kasparov
2009 Successful autonomous driving
2011 IBM Watson in Jeopardy

2016 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
loannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, llya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel & Demis Hassabis
2016. Mastering the game of Go with deep neural networks
and tree search. Nature, 529, (7587), 484-489,
doi:10.1038/nature16961.

= 1960+ Medical Informatics (Classic Al Hype)

= Focus on data acquisition, storage, accounting, Expert Systems
= The term was first used in 1968 and the first course was set up 1978 !

= 1985+ Health Telematics (Al winter)
= Health care networks, Telemedicine, CPOE-Systems, ...

= 1995+ Web Era (Al is “forgotten”)
= Web based applications, Services, EPR, distributed systems, ...

= 2005+ Success statistical learning (Al renaissance)
= Pervasive, ubiquitous Computing, Internet of things, ...

= 2010+ Data Era — Big Data (super for Al)

= Massive increase of data — data integration, mapping, ...

= 2020+ Explanation Era — (towards explainable Al)
= Re-traceability, replicability, reenactment, explainability, interpretability,
sensemaking, disentangling the underlying concepts, causality, causability,
human-Al interfaces, ethical responsible machine learning, trust-Al...
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Why was MYCIN central for explainable Al in medicine ? & HCAI
18960°5
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Shortliffe, E. H. & BAOBAB
Buchanan, B. G. (1984)
Rule-based expert
systems: the MYCIN
experiments of the
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Programming Project.
Addison-Wesley.
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How did the human-Al interaction work ? & HCAl
Toots for Bullding Exper Sysbams
EXFERT SYSTEM
ulm-u.l: + : ey TTEATNCH +E‘mm Knowiedge
. o & Analyses Lng o
USER e % $
Mo & E Haw Knowledge
Expilarutons -+ bt & etz licina Domain
R
(=LA Experi

Ted Shortliffe & Randy Davis 1975. Some considerations for the implementation of knowledge-
based expert systems ACM SIGART Bulletin, (55), 9-12.

Find an emulation and a Jupyter notebook here:
http://user.medunigraz.at/marcus.bloice/seminars/dss/g3/g3.htm
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m What was static knowledge versus dynamic knowledge ?

Stalic Knowledgo
Ted H. Shortliffe & Bruce G.

Buchanan 1984. Rule-based PFRODUCTION RULES
expert systems: the MYCIN Judgmental Knowlsdge
experiments of the Stanford about domain
Heuristic Programming
Project, Addison-Wesley.
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Knowledge of _-_II RULE INTERFRETER I
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Diynamic Knowledge

sxplanations Facts aboul
» tha problem
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@l How did MYCIN cope with uncertainties ? e HEAI

= To every rule and every entry a certainty factor (CF)
is assigned, which is between O und 1

= Two measures are derived:
= VIB: measure of belief
= MD: measure of disbelief

= Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] — MDI[h]

= CF is positive, if more evidence is given for a
hypothesis, otherwise CF is negative

= CF[h]=+1->his 100 % true
= CF[h] =-1->his 100% false
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Bl What was the short-coming of the classical logic approach ? = HEAl

®» The information available in medicine is often
imperfect — imprecise - uncertain.

= Human experts can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |F Aistrue THEN A is non-false and
IF B is false THEN B is non-true

= Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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@8 original Example from MYCIN 2 HCAI
h, = The identity of ORGANISM-1 is streptococcus
h, = PATIENT-1 ig febrile
h; = The name of PATIENT-1 is John Jones
CF[h,,E) = B : There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus
CF[h,,E] = =.3 : There is weakly suggeslive evidence (.3) that

PATIENT-1 is not febrile
CF[h,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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Bl Why was MYCIN no success in the clinical routine ? e HEAI
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@8 Why are large neural networks a problem ?

2020 health Al 06

/= HCAI

B8 so, what accelerated the Al renaissance ? e HEA)

§ 5 & wWon the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
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Yann LeCun, Leon Bottou, Yoshua Bengio & Patrick Haffner 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86, (11), 2278-2324.
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B8 Why are such black-box models now a problem ? e HEA)
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B8 What are the two types of “Black-Box” Algorithms ? N

I
l

= Success in deep learning *) resulted in “deep
problems” (e.g. complex and exploding gradients)

= *) Note: “DL” methods are representation learning
methods with multiple layers of representations (see
LeCun, Bengio & Hinton (2015), Nature 521, 7553)

= Problem in our society: “Secret algorithms” make
important decisions about individuals

= Black box Type 1 = too complicated for a human to
understand

= Black box Type 2 = proprietary = “secret algorithm”

Cynthia Rudin, Caroline Wang & Beau Coker 2018. The age of secrecy and unfairness in
recidivism prediction. arXiv:1811.00731.

m Which two top-level explainable Al methodologies do we have ? s HCAI

i ———_
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8 Combination of Deep Learning with Ontologies /& HCAI
(1)Explaining Deep Tensar Output both inference result and reasons
the reasons N {inference factors)
for judgment oy - . '
I : o Inference result nferance factors
nput utput N —
TIaE ; 7 —
~~~~~ iR — % ot Bl
i Inference factor identification 4
: ;
E Knowledge Graph E
: i LT i
H = ] - ' = :
i - E- _..-'! @: g !
- - - -
7 L r
B ey 2 e Knowledge graph generates a logical path
= [ ] ) :
(2)Explaining e *: from input to the inference result
the basis (evidence) —
for judgment == . ._,.:5.'

Explainable Al with Deep Tensor and Knowledge Graph

http://www.fujitsu.com/jp/Images/artificial-intelligence-en_tcm102-3781779.png
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= Post-Hoc (latin) = after- this (event), i.e. such
approaches provide an explanation for a specific
solution of a “black-box” approach, e.g. LIME,
BETA, LRP, ...

= Ante-hoc (latin) = before-this (event), i.e. such
methods can be (human) interpreted
immanently in the system, i.e. they are
transparent by nature (glass box), similar to the
"interactive machine Learning" (iML) model.

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build
explainable Al systems for the medical domain? arXiv:1712.09923.
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I
l

03 Examples for Ante
Hoc Models
(interpretable Machine
Learning)
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8 Are ante-hoc approaches new ?

¥
=
o

m How does an action Influence graph support explainability ?

¥
=
o

State variables:

W - Worker number

S = Supply depot number
B - barracks mumber

E - enemay location

Ay = Ally unit number

= Ante-hoc (latin) = before-this (event), i.e. such methods
can be (human) interpreted immanently in the system, i.e.
they are transparent by nature (glass box), similar to the

" . . s Hewmrds 1 44 - Ally unit health
interactive machine Learning" (iML) model. A - Ally unit location
13, = Destorved units
= Note: Many ante-hoc approaches appear to the new D - Dhestroyed Buildings
student particularly novel, but these have a long tradition Actions:
d d si th lv beginni f Al d lied Ay - build supply depot
and were used since the early beginning of Al and applie A Hiaild Tarracke
in expert systems; typical methods decision trees, linear Ay, - train offensive unit
regression, Random Forests, ... Aq - attack

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build

explainable Al systems for the medical domain? arXiv:1712.09923. Prashan Madumal, Tim Miller, Liz Sonenberg & Frank Vetere 2019. Explainable Reinforcement Learning Through a

Causal Lens. arXiv:1905.10958
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@8 What are Stochastic AND-OR graphs ? e HEAI @l Example: Bayesian Rule Lists e HEA)

£ W hemiplepia amd ape > 60 thew srrobe rick 5505 (33 8%-63 5% )
'l"t whwe il cercbernancular disceder them arrede risk 47.8% (4H4.8%-50.7% )
- - B else I transieni ischacmic attack then srsde niok 2LE% { 19.5%-28.4% ) - -
Iegrut imsges 1-"' N whar i oxcchenion and icsosis of carodid ariery without infarcison then cimde R L e AL e A N
Je itk 158 {1 2.2%-19.6%) [rep—— i T oy - . e o Fl
y whwe I akiered wtade of consciosnes and age = 6 then coke o 16O il L s

(IE2%-D02% )

whse iF ape = T ihen sirmde ook 46% (1 FE-54%)

Mg =y ‘Jh -‘J.,, aM . dlse siroky sk B 7% (7.9%-9.6%)
L L LTl ."."‘a PPy 2
Siochastic il B w1 ALY ¥ by T T |;||.
N R T é
Bk bl !‘":'.* f P eblikikk g
T2l 4|'§'iﬁ 17 (18 |19 | gil.l
NPT g
Pat dictiomary i Wi ® 03 — ERL-point
{lermmins] podies — CHAIE,
= CHALDS; VASe
Valid A “1:|“ o3 o (L] s L.
confgumtsons

False positive mte

Benjamin Letham, Cynthia Rudin, Tyler H McCormick & David Madigan 2015. Interpretable classifiers using rules
and Bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9, (3), 1350-
1371, doi:10.1214/15-A0AS848.
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Zhangzhang Si & Song-Chun Zhu 2013. Learning and-or templates for object recognition and detection. IEEE
transactions on pattern analysis and machine intelligence, 35, (9), 2189-2205, doi:10.1109/TPAMI.2013.35.
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il Differences: Post-hoc versus Ante-hoc e HCAI

i ———_

04 Examples for Post
Hoc Models
(e.g. LIME, BETA, LRP)
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il caveat - Post hoc explanation can be misleading ! = HEAl

= Post-Hoc (latin) = after- this (event), i.e. such approaches
provide an explanation for a specific solution of a “black-
box” approach, e.g. LIME, BETA, LRP, ...

Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build
explainable Al systems for the medical domain? arXiv:1712.09923.
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Bl What are typical post-hoc approaches e HEA)

P_EEI:EE[E_H_, I.'I.';I.l.l.'l'lrl we intelligence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynihia Budn

Wl e S b ey Fuinilidn | ATy “ﬂhﬁrﬂﬂm-ﬂbl:ﬁﬂmt-i:r:

Cynthia Rudin 2019. Stop explaining
black box machine learning models for
high stakes decisions and use
interpretable models instead. Nature
Machine Intelligence, 1, (5), 206-215,
doi:10.1038/542256-019-0048-x.

ik L S 1 R T LTS R ekl R e BT B Pl e P RSt
i s i - s — o i, Rt i

Tl e L vabiows b et b & et by T L el
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= 1) Gradients
= 2) Sensitivity Analysis
= 3) Decomposition Relevance Propagation
(Pixel-RP, Layer-RP, Deep Taylor Decomposition, ...)
= 4) Optimization (Local-IME — model agnostic,
BETA transparent approximation, ...)
= 5) Deconvolution and Guided Backpropagation
* 6) Model Understanding
= Feature visualization, Inverting CNN
= Qualitative Testing with Concept Activation Vectors TCAV
= Network Dissection

Andreas Holzinger LV 706.315 From explainable Al to Causability, 3 ECTS course at Graz University of Technology
https://human-centered.ai/explainable-ai-causability-2019 (course given since 2016)
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B8 What s the general principle of LIME ? 2 HCAl

04a LIME - Local
Interpretable Model
Agnostic Explanations
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Bl What are explanations in the sense of LIME ? e HEAI

' sneeza |FM | Explainer

Yo weight (LIME)
'- ol headache
Y Y no fatigue

Explanation Human makes decision

=l
=

Human makes

Moctel Dataset and Predictions Pick slep Explanations decisian

Maosdal Data and Prediction

(@ — [T — [
’ S (S

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin. Why should i trust you?: Explaining the predictions of
any classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016. ACM, 1135-1144, doi:10.1145/2939672.2939778.
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@3 How is the explanation produced by LIME ? e HEA)

= Explanation :=local linear approximation of the model's behaviour. While the
model may be very complex globally, it is easier to approximate it around the
vicinity of a particular instance.

:‘ Algorithim 1 Sparse Linear Explanations wsing LIME
. ] Require: Classifer f, Numbser of samples 8
L Require: Instanee r, and its interpeotabde sermion '
i . Require: Shinilarity kernel =, , Lengih of explawntion K
2 +{]
A . foric (L33  N) do

-l-f . L ‘ ;= sy wundiz')
1 .-. Z 4 I L (xg Flaa ) walzi))

I onid for

I - ur +— K-LasalZ, K) & with o] as fentures, f{z] a8 target

T L. return w

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin. Why should i trust you?: Explaining the predictions of
any classifier. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016. ACM, 1135-1144, doi:10.1145/2939672.2939778. https://github.com/marcotcr/lime
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s(x) = arnglGn L(f,g,m ) + Q(9)

Fidelity score Complexity score
(for local fidelity) (for interpretability)

T[x (Z) Distance metric (in feature space!)
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Bl How does a typical LIME example look like ? % HCAI

enplaiir = [is, Lime_betsled. LiseTabularEaplslne (3 _10sln. Pralurs_ tessschisadt, [oetars_peses, olase_hasssrreail. . Latm
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map = ssplaisey, eaplais Sewtapcs (X tect (0], candom foreet preticy probs, oo fsatsoeesd]
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uealigiaad 1
P pref - ' Feature Value

maigrare (A3 ] i
berign BT 5
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i LIME Example L HCAI
Y ]

i LIME Example % HCAI
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o 0.00001
Original Image

Pitree frog) =0.54
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@8 What are the LIME Pros and Cons ?

¥
=
o

= +very popular,

= + many applications and contributors

= + model agnostic

= - |ocal model behaviour can be unrealistic

® - unclear coverage

- ambiguity (how to select the kernel width ?)
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Bl Remember: there are myriads of classifiers ... e HEAI @l Whatis the difference to the Follow-up: Anchor e HEA)
+ il N—
Classifiers - [ This directon i sheayy bat
: - This mawin m not rice
- E- ] T s n—
. ? - = l Thin wlst i fasd Dt |
Statistical Structural " ; T
LI e plasasw T Pi% walio dy 3 Dl
‘d.., H l""--._ | o 1 [ wraw| i vt sl
- 1 - e 2] -—— B Al e ] i | This iniitags i mel bael 1
. Naive Bayesian [RIF Yo A —— s e
Regression Bayes Networks () D and T(.JA) (b} Twos toy visualizations
r
(Rule based) (Dislanoe hased) @sura! Nehﬂurks)
Production Decision
Rules Trees -
Functional (SRR SR S— 35 s whmory by pmheris 17 baragle | L
TN PP RSN - byl - I £
Teaming B o lntre i s ptanr® g Wham e thas e [ IR
Linear fvm"' KNN Vector bl o eyl e o o My S
avelet e
Quantization
Tl VIR A e 1Bnaded) sl s Froes. [ L1} wr i WRA L e rnasmpie oy (im bl

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin. Anchors: High-precision model-agnostic explanations. Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018 New Orleans. Association for the Advancement of

https://stats.stackexchange.com/questions/271247/machine-learning-statistical-vs-structural-classifiers Artificial Intelligence, 1527-1535.
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B Whatis GraphLIME ? 2 HEAl 7Y 2 HEAl
A cmmmmnman A emmmmnman

@ Explained node
(D Sampling node
Feature

AT 04b BETA (Black Box
Explanation through
g(l-’) — al‘gmin g{ f , Xn} ;;ﬁ:'%ﬂ&l:;%?;?lm;:r':::::t:u::r:i:::'( Tra nsp a re nt
qeEG

Inpui: ihe graph 7, the node = being explained
Chutpui: A explanation fealunes
1 Xy = N hopneighlor somple(r]

20 Approximation)

'
& wo= fim)
Qiang Huang, Makoto Yamada, Yuan L Z = E Uz, m)
Tian, Dinesh Singh, Dawei Yin & Yi Chang & end for
2020. GraphLIME: Local Interpretable 1 A+ HSIC Lassol Z) £ with r, as features, jr; as kabel
Model Explanations for Graph Neural & Selevs vop- K Teatures as explonstbons based on 3

Networks. arxiV 2001.06216v1.
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il BETAataglance < HEAl

¥
=
o

m Black Box Explanations through Transparent Approximations

= BETA is a model agnostic approach to explain the
behaviour of an (arbitrary) black box classifier
(i.e. a function that maps a feature space to a set
of classes) by simultaneously optimizing the
accuracy of the original model and
interpretability of the explanation for a human.

= Note: Interpretability and accuracy at the same
time are difficult to achieve.

= Consequently, users are interactively integrated
into the model and can thus explore the areas of
black box models that interest them (most).
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¥
=
o

m How does the Optimization Process generally work ?

If Age <50 and Male =Yes;
If Past-Depression =Yes and Insomnia =Mo and Melancholy =xo. then Healthy

If Past-Depression =Yes and Insamnia =Yes and Melancholy =Yes and Tiredness =Yes, then Depression

If Age = 50 and Male =No:
If Family-Depression =Yes and Insomnia =No and Melancholy =Yes and Tiredness =Yes, then Depression

Il Famiily-Depeession Mo and Insomnia =No and Melancholy Mo and Tredness sMo, lhen Healthy

Default:
If Past-Diepression =Yes and Tiredmess mNo and Exercise mNo and Insommnda =es, them Depression
If Past-Depression =50 and Weight-Gain =Yes and Tiredness =Yes and Melancholy =Yes, then Depression

Il Family-Depression =Yes and Insomnia =Yes and Melancholy =%Yes and Tiredsess =Yes, then Depression

Himabindu Lakkaraju, Ece Kamar, Rich Caruana & Jure Leskovec 2017. Interpretable and
Explorable Approximations of Black Box Models. arXiv:1707.01154.
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m What are the Measures of Fidelity, Interpretability, Unambiguity ? < HE I

>

arg max AifilR)
REND=D Ll ;

st osize(R) = g, maxwidth(R) < e;, numdsets(R) < &

Algorithm 1 Optimization Procedure [5]

1: Dnputs Olgective |1, domain & T2 % I2.0 % C, paramscter 8, nambser of constealmts &
L V=NDxDLx(

B leriw (1,2:--k&1)da
d4: XaVinw | X|,5;=0

5 Let o be the clement with the meoemum vaboe for [ and st 5; = ©

i wihille there exisls & delete/update operation which inoreases ihe value ol 5 Iy a fsctor of

atleast (1 + %) da
L]
Delete Operation: 1 e € 5 such that iS5\ {e]) =1+ f; IS then 5 = S)\e

= Approaimsation lecal seanch procedune

Exchange Operation H o & X\5; and g ESforl £ ) < k) wiach thal
(5iej)ud {d} tor 1 £ f 5 k) satisfies all the & constraints and

TSz e I [ =00+ ;'!'F_ﬂ.\'i ) them 5y = 5\ [eg epe o= omg J U

=l ]

[d])
i2 enil while
13: Vier = Vi\5;
14: end for
15: returm the sobution corvespanding to max 15 N33k <« MT%g.q 1]

Himabindu Lakkaraju, Ece Kamar, Rich Caruana & Jure Leskovec 2017. Interpretable and
Explorable Approximations of Black Box Models. arXiv:1707.01154.
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M
Fidelity disagreementiR)= Y |{x | x € I, x satisfies gy A 55, Blx)# ¢y}
i=1
M A
rulecverlapiR)= ¥ T overlapig; A 54,95 A 54)
Unambiguity i=1 j=1i#f

cover(R) = |{x | x € I, x satisfies q; A 5 where i € {1---M}}]
ETE eﬁh: number of rules I:Iri]:l|rx of the form g, 5, el)in '’

maxwidth(R) = max widthie)
M
"Eju ranlei ]
=]

Interpretability M
numpredsi®) = ¥ widthi(s;) + width(qy)
i=1

M
numdsets(K) = |dset(K)| where dzet(R) = | ) g4
i=1

M
featureoverlap(R) = ¥ ¥, featureoverlapiag, 5;)
gqedset{R)i=1
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@8 What are for BETA Pros and Cons ? N

I
l

8 BETA: Example of interpretable Decision set e HEAI
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Himabindu Lakkaraju, Stephen H Bach & Jure Leskovec. Interpretable
decision sets: A joint framework for description and prediction.
Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016. ACM, 1675-1684.
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I
l

* + model agnostic
= + |earns a compact two-level decision set
® + unambiguously

= - not so popular
= - unclear coverage
" - needs care
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Bl How can we describe LRP at a glance ? e HEA)

04c LRP (Layer-wise
Relevance Propagation)

human-centered.ai (Holzinger Group)

75 2020 health Al 06

= LRP is general solution for understanding classification
decisions by pixel-by-pixel (or layer-by-layer) decomposition of
nonlinear classifiers (hence the name).

= |n a highly simplified way, LRP allows the "thinking processes"
of neural networks to run backwards.

= Thereby it becomes comprehensible (for a human) which input
had which influence on the respective result,

= e.g.inindividual cases how the neural network came to a
classification result, i.e. which input contributed most to the
gained output.

= Example: If genetic data is entered into a network, it is not
only possible to analyze the probability of a patient having a
certain genetic disease, but with LRP also the characteristics of
the decision.

= Such an approach is a step towards personalised medicine
(remember the concept of PM - to provide an individual
cancer therapy that is tailored to the particular patient).
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B8 How does LRP work in principle ? % HCAI
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Miller & Wojciech Samek 2015. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one, 10, (7), 0130140,

doi:10.1371/journal.pone.0130140.

m How does a NN-classifier during prediction time look like ? 2 HC I

8 Example Taylor Decomposition e HEAI
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Muller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), €0130140, doi:10.1371/journal.pone.0130140.
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Ry
Sy == 3R =D RS == 3 RS
del+1 del d

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miller & Wojciech
Samek 2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation.
PloS one, 10, (7), 0130140, doi:10.1371/journal.pone.0130140.
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Bl Whatis the output of the LRP ? e HEA)
#— Healmap Caompulation
L Li
g Thres Stap Two Btep Ore
.-'f ' =¥, Eiwi ..'.r:-;.l.'s'.: 3 B El-: L/ E-Ir.—l ”:“ = fx}

-“HI Jiz]} = +1.56

Local Featuren BoiW Fawurn Clasafies Dotpul

Image Classification —

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,
(7), 0130140, doi:10.1371/journal.pone.0130140.
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Pixel-wise decomposition for bag-of-words features

What is relevant in a text document?

F
<. HCAI
A

hi

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Muller & Wojciech Samek
2015. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10,

(7), €0130140, doi:10.1371/journal.pone.0130140.

Example: What is relevant in a text document?

entered.ai (Holzi Group)
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Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Miiller & Wojciech Samek 2017. " What is relevant in a text document?": An
interpretable machine learning approach. PloS one, 12, (8), 0181142, doi:10.1371/journal.pone.0181142.
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PCA-Projection of the summary vectors
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Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Miiller & Wojciech Samek 2017. " What is relevant in a text document?": An

interpretable machine learning approach. PloS one, 12, (8), 0181142,
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doi:10.1371/journal.pone.0181142.
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Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Miiller &

Wojciech Samek 2017. " What is relevant in a text document?": An
interpretable machine learning approach. PloS one, 12, (8), e0181142,

doi:10.1371/journal.pone.0181142.
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< HCA

What are Taylor series ?

04d Deep Taylor
Decomposition

human-centered.ai (Holzinger Group)

What is Taylor decomposition at a glance ?
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< HCA

https://www.youtube.com/watch?v=3d6DsjlBzJ4 m,.:-
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https://en.wikipedia.org/wiki/Brook Taylor
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Why must a heatmap be conservative, positive, and consistent ? = HCAI
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Definition 1. A heatmapping R(x) is conservative if the sum of
assigned relevances in the pixel space corresponds to the total
relevance detected by the model:

HI:_I{X] = E R,l:':x.]-

P
Definition 2. A heatmapping R (x) is positive if all values forming the
heatmap are greater or equal to zero, that is:

Yx p: R;,{.r,'l =0

Definition 3. A heatmapping R(x) is consistent if it is conservative
and positive. That is, it is consistent if it complies with Definitions |
and 2.

Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek & Klaus-Robert Miller 2017. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 65, 211-222,
doi:10.1016/j.patcog.2016.11.008.
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Bl What about Sensitivity Analysis vs. Decomposition ?
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function io analyze:
Jie) = max{l, ry] + max{l, ry)
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Bl How does the Relevance Redistribution work ?
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How is the computational flow of deep Taylor decomp. in detail ? . < HE I
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Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek & Klaus-Robert Muller 2017. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 65, 211-222,

doi:10.1016/j.patcog.2016.11.008.
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decisions with deep taylor decomposition. Pattern Recognition, 65, 211-

Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech
222, doi:10.1016/j.patcog.2016.11.008.

Samek & Klaus-Robert Miller 2017. Explaining nonlinear classification
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m Example 2 Histopathology

Miriam Hégele, Philipp Seegerer, Sebastian Lapuschkin, Michael Bockmayr, Wojciech Samek, Frederick Klauschen, Klaus-Robert Miiller & Alexander Binder
2019. Resolving challenges in deep learning-based analyses of histopathological images using explanation methods. arXiv:1908.06943.

Alexander Binder, Michael Bockmayr, Miriam Héagele, Stephan Wienert, Daniel Heim, Katharina Hellweg, Albrecht Stenzinger, Laura Parlow, Jan
Budczies & Benjamin Goeppert 2018. Towards computational fluorescence microscopy: Machine learning-based integrated prediction of
morphological and molecular tumor profiles. arXiv:1805.11178vl.

Maximilian Kohlbrenner, Alexander Bauer, Shinichi Nakajima, Alexander Binder, Wojciech Samek & Sebastian Lapuschkin 2019. Towards best practice in
explaining neural network decisions with LRP. arXiv:7970.09840.

human-centered.ai (Holzinger Group) 93 2020 health Al 06

§>
=
o
!

m -

Od4e Prediction
Difference Analysis
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‘2 HCAI
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m Example: Deep Learning from histopatho images explainable
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m How can the relevance of a feature be measured ?

plepey) =) plailxy)plelxi, ;)

plelxy) = > plai)ple|xy, 2:)

Iy

WE, (c|x) = log, (odds(c|x)) — log, (odds(c|xy;))

Marko Robnik-Sikonja & Igor Kononenko 2008. Explaining Classifications For Individual Instances. IEEE Transactions on Knowledge and Data
Engineering, 20, (5), 589-600, doi:10.1109/TKDE.2007.190734.

Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel & Max Welling 2017. Visualizing deep neural network decisions:
Prediction difference analysis. arXiv:1702.04595.

https://github.com/Imzintgraf/DeepVis-PredDiff/blob/master/README.md

https://openreview.net/forum?id=BJ5UeU9xx
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B8 How to evaluate the prediction difference ?

L e
=
(1]

" - — - T e— =
! input x . -

'_[ 'f'

B

Algorithm 1 Evaluating ibe prodsction difference using condithonal and multivanate sampling

Input: classafier widl outpals piclx )k, imput mmage X of swee 1= on, inmer patch siee k. ouler paich
size | =k, class of imterest o, probabilistic madel over palches of suae | = {, number of samples 5
Initinlization: WE = serosin®n), counis = sémsi n®nj
for cvery paich x, of size k = Fin x da

x' = oopy{x)

sam, = {i

define patch %, of siee | = | that contnins x.,

Tor s = | o & do

K, += My, sampled from pix. X\, )

Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel & Max
Welling 2017. Visualizing deep neural network decisions:
Prediction difference analysis. arXiv:1702.04595.

slEm,, 4= pelx’) = pvalume classifier
end for
Pl = wmg (85
WE[conrdinmes of x| 4= hgg{odds(clx )} = loggloddse|xx, 1)
counts|coordinates of x| 4= |
end far u _ Yi Wei, Ming-Ching Chang, Yiming Ying, Ser Nam Lim & Siwei Lyu. Explain Black-box Image Classifications Using Superpixel-based Interpretation.
(ratput: WE / counis & point-wise division 2018 24th International Conference on Pattern Recognition (ICPR), 2018. IEEE, 1640-1645.
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Esteva, A., Kuprel, B., Novoa, R. A,, Ko, J., Swetter, S. M., Blau, H. M. & Thrun, S. 2017. Dermatologist-level
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Bl How to get insight into a deep neural network ?

= HEAl
L e S
Switches 7 .
Max Unpooling @ Oﬁw Max Pooling
Unpooled Maps Rectified Feature Maps
Rectified Linear 4 Rectified Linear
Function T Function
Rectified Unpooled Maps Feature Maps
Convalutional ¥ Convolutional
Filtering {F"} R Filtering {F}
Reconstruction Layer Below Pooled Maps
R r i

Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901.
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Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.29

01.
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i Visualizing a Conv Net with a De-Conv Net

s HEAL
-.{SE
C
clansg
o it saftmaz

Layer & Layer 7 Output

Pooded Maps

Pooling

Max Locations
“Switches™

Unpooled Rectificd W
Maps Festure Mags

Matthew D. Zeiler & Rob Fergus 2014. Visualizing and understanding convolutional networks. In: D., Fleet, T., Pajdla,

B., Schiele & T., Tuytelaars (eds.) ECCV, Lecture Notes in Computer Science LNCS 8689. Cham: Springer, pp. 818-833,
doi:10.1007/978-3-319-10590-1_53.
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8 s the world compositional ?

!

lleklem lagws | lduldden Bager 2 bildelen Do 0
imgmt layer

Matthew D. Zeiler & Rob Fergus 2013. Visualizing and Understanding Convolutional Networks. arXiv:1311.2901
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04f Testing with Concept
Activation Vectors
(TCAV)
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m When does an image belong to the class concept of doctors ? s HCAI

ﬁmcp- Rarpmanr {Thongse L 0TH)

i A s TR i sanm

https://www.youtube.com/watch?v=lyRPyRKHO8M&t=3408s
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8 f1say this, my students do not believe it, therefore ... & HCAl

" “It’s not enough
to know if a
model works, we
need to know
how it works”

... if Sundar Pichai is S
saying this ... =22

L AT 1
mamber of g Lespi™
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@l TcAvataglance & HCAl

i ———_

= ML models work on low-level features (edges,
dots, lines, pixel, circles, ...)

= Humans are working on high-level concepts
(shape, size, color, Gestalt-principles, ...)

= Every pixel of an image is a input feature and are
just numbers, which do not make sense to
humans.

= TCAV enables to provide an explanation that is
generally true for a class of interest, beyond one
image (global explanation).

= The goal of TCAV is to learn ‘concepts’ from
examples.
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Bl How does a Concept Activation Vector (CAV) work ?

Yann Lecun, Yoshua Bengio & Geoffrey
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3.4, Testing with CA
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8 How can TCAV applied in the medical domain ? e HEAI
Prediction Prediction Bicovile
class accuracy L TCAV scores TCAY shows the
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Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler & Fernanda Viegas. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV). International Conference on Machine Learning
(ICML), 2018. 2673-2682.
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Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler & Fernanda Viegas. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV). International Conference on Machine Learning
(ICML), 2018. 2673-2682. https://github.com/tensorflow/tcav
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Bl What s Sensitivity Analysis?

I
l

= Sensitivity analysis (SA) is a classic, versatile and
broad field with long tradition and can be used
for a variety of different purposes, including:

= Robustness testing (very important for ML)

= Understanding the relationship between input

and output

= Studying and reducing uncertainty

Andrea Saltelli, Stefano Tarantola, Francesca Campolongo & Marco Ratto 2004. Sensitivity analysis in practice: a guide

to assessing scientific models. Chichester, England.
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Bl What are Saliency Maps?
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I
l

m Overview > review Ch.6, p.167ff of Goodfellow, Bengio, Courville 2016 s HCAI
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Zhuwei Qin, Fuxun Yu, Chenchen Liu & Xiang Chen 2018. How convolutional neural network see the world-A survey of
convolutional neural network visualization methods. arXiv preprint arXiv:1804.11191.
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= Remember: NN=nonlinear function approximators using gradient
descent to minimize the error in such a function approximation

= To students this seems to be “new” — but it has a long history:
= Chain rule = back-propagation was invented by Leibniz (1676) and
L'Hopital (1696)
= Calculus and Algebra have long been used to solve optimization
problems and gradient descent was introduced by Cauchy (1847)
= This was used to fuel machine learning in the 1940ies > perceptron
— but was limited to linear functions, therefore

= Learning nonlinear functions required the development of a
multilayer perceptron and methods to compute the gradient
through such a model

= This was elaborated by LeCun (1985), Parker (1985), Rumelhart
(1986) and Hinton (1986)

human-centered.ai (Holzinger Group) 114 2020 health Al 06
B8 What are Saliency Maps? e HEA)
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Niels J. S. Morch, Ulrik Kjems, Lars Kai Hansen, Claus
Svarer, lan Law, Benny Lautrup, Steve Strother & Kelly
Rehm. Visualization of neural networks using saliency
maps. Proceedings of ICNN'95-International
Conference on Neural Networks, 1995 Perth
(Australia). IEEE, 2085-2090,
doi:10.1109/1CNN.1995.488997.

Karen Simonyan, Andrea Vedaldi & Andrew Zisserman 2013.

Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv:1372.6034.
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@8 What is the main principle of Sensitivity Analysis ? N

@8 What do we want to know? N

= Let us consider a function f,
» adatapointx = (x1,...,xd) and the prediction
= f(x1,...,xd)

= Now, SA measures the local variation of the function along
each input dimension:

« Ri=(|x= )2
Ri= (6xi |X - X
= With other words, SA produces local explanations for the

prediction of a differentiable function f using the squared
norm of its gradient w.r.t. the inputs x : S(x) / krxfk2.

* The saliency map S produced with this method describes
the extent to which variations in the input would produce
a change in the output S(=) ~« || V.. f|*

Muriel Gevrey, loannis Dimopoulos & Sovan Lek 2003. Review and comparison of methods to study the contribution of
variables in artificial neural network models. Ecological modelling, 160, (3), 249-264.
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Thank you!
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= Given an image classification (ConvNet), we aim
to answer two questions:
= What does a class model look like?
= What makes an image belong to a class?
= To this end, we visualise:
= Canonical image of a class
= Class saliency map for a given image and class
= Both visualisations are based on the class score

derivative w.r.t. the input image (computed using
back-prop)

human-centered.ai (Holzinger Group) 118 2020 health Al 06
Bl Glossar (1/3) = HCAI

= Ante-hoc Explainability (AHE) = such models are interpretable by design, e.g. glass-box
approaches; typical examples include linear regression, decision trees/lists, random forests, Naive
Bayes and fuzzy inference systems; or GAMs, Stochastic AOGs, and deep symbolic networks; they
have a long tradition and can be designed from expert knowledge or from data and are useful as
framework for the interaction between human knowledge and hidden knowledge in the data.

= BETA = Black Box Explanation through Transparent Approximation, developed by Lakkarju, Bach &
Leskovec (2016) it learns two-level decision sets, where each rule explains the model behaviour;
this is an increasing problem in daily use of Al/ML, see e.g. http://news.mit.edu/2019/better-fact-
checking-fake-news-1017

=  Bias = inability for a ML method to represent the true relationship; High bias can cause an
algorithm to miss the relevant relations between features and target outputs (underfitting);

= Causability = is a property of a human (natural intelligence) and a measurement for the degree of
human understanding; we have developed a causability measurement scale (SCS).

= Decomposition = process of resolving relationships into the consituent components (hopefully
representing the relevant interest). Highly theoretical, because in real-world this is hard due to the
complexity (e.g. noise) and untraceable imponderabilities on our observations.

= Deduction = deriving of a conclusion by reasoning

= Explainability = motivated by the opaqueness of so called “black-box” approaches it is the ability
to provide an explanation on why a machine decision has been reached (e.g. why is it a cat what
the deep network recognized). Finding an appropriate explanation is difficult, because this needs
understanding the context and providing a description of causality and consequences of a given
fact. (German: Erklarbarkeit; siehe auch: Verstehbarkeit, Nachvollziehbarkeit,
Zuruckverfolgbarkeit, Transparenz)
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Bl Glossar (2/3) % HCAI

Bl Glossar (3/3) % HCAI

= Explanation = set of statements to describe a given set of facts to clarify causality, context and
consequences thereof and is a core topic of knowledge discovery involving “why” questionss
(“Why is this a cat?”). (German: Erkldrung, Begriindung)

= Explanation = set of statements to describe a given set of facts to clarify causality, context and
consequences thereof and is a core topic of knowledge discovery involving “why” questionss
(“Why is this a cat?”). (German: Erklarung, Begriindung)

= Explanatory power = is the ability of a set hypothesis to effectively explain the subject matter it
pertains to (opposite: explanatory impotence).

= Explicit Knowledge = you can easy explain it by articulating it via natural language etc. and share it
with others.

= European General Data Protection Regulation (EU GDPR) = Regulation EU 2016/679 — see the EUR-
Lex 32016R0679 , will make black-box approaches difficult to use, because they often are not able
to explain why a decision has been made (see explainable Al).

= Gaussian Process (GP) = collection of stochastic variables indexed by time or space so that each of
them constitute a multidimensional Gaussian distribution; provides a probabilistic approach to
learning in kernel machines (See: Carl Edward Rasmussen & Christopher K.I. Williams 2006.
Gaussian processes for machine learning, Cambridge (MA), MIT Press); this can be used for
explanations. (see also: Visual Exploration Gaussian)

= Gradient = a vector providing the direction of maximum rate of change.

= Ground truth = generally information provided by direct observation (i.e. empirical evidence)
instead of provided by inference. For us it is the gold standard, i.e. the ideal expected result (100
% true);
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8 DARPA Causal Model Induction (CRA) % HCAI

= Interactive Machine Learning (iML) = machine learning algorithms which can interact with — partly
human — agents and can optimize its learning behaviour trough this interaction. Holzinger, A. 2016.
Interactive Machine Learning for Health Informatics: When do we need the human-in-the-loop? Brain
Informatics (BRIN), 3, (2), 119-131.

= Inverse Probability = an older term for the probability distribution of an unobserved variable, and was
described by De Morgan 1837, in reference to Laplace’s (1774) method of probability.

= |mplicit Knowledge = very hard to articulate, we do it but cannot explain it (also tacit knowlege).

= Kernel = class of algorithms for pattern analysis e.g. support vector machine (SVM); very useful for
explainable Al

= Kernel trick = transforming data into another dimension that has a clear dividing margin between the
classes

= Multi-Agent Systems (MAS) = include collections of several independent agents, could also be a mixture
of computer agents and human agents. An excellent pointer of the later one is: Jennings, N. R., Moreau,
L., Nicholson, D., Ramchurn, S. D., Roberts, S., Rodden, T. & Rogers, A. 2014. On human-agent collectives.
Communications of the ACM, 80-88.

= Post-hoc Explainability (PHE) = such models are designed for interpreting black-box models and provide
local explanations for a specific decision and re-enact on request, typical examples include LIME, BETA,
LRP, or Local Gradient Explanation Vectors, prediction decomposition or simply feature selection.

= Preference learning (PL) = concerns problems in learning to rank, i.e. learning a predictive preference
model from observed preference information, e.g. with label ranking, instance ranking, or object ranking.
Furnkranz, J., Hiillermeier, E., Cheng, W. & Park, S.-H. 2012. Preference-based reinforcement learning: a
formal framework and a policy iteration algorithm. Machine Learning, 89, (1-2), 123-156.

= Saliency map = image showing in a different representation (usually easier for human perception) each
pixel’s quality.

= Tacit Knowledge = Knowledge gained from personal experience that is even more difficult to express
than implicit knowledge.

= Transfer Learning (TL) = The ability of an algorithm to recognize and apply knowledge and skills learned in
previous tasks to novel tasks or new domains, which share some commonality. Central question: Given a
target task, how do we identify the commonality between the task and previous tasks, and transfer the
knowledge from the previous tasks to the target one? Pan, S. J. & Yang, Q. 2010. A Survey on Transfer
Learning. IEEE Transactions on Knowledge and Data Engineering, 22, (10), 1345-1359,
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B8 LRPon GitHub
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https://www.darpa.mil/attachments/XAIProgramUpdate.pdf
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Michael D Pacer & Thomas L Griffiths. A rational model of causal induction with continuous causes. Proceedings of the
24th International Conference on Neural Information Processing Systems, 2011. Curran Associates Inc., 2384-2392.
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https://github.com/albermax/innvestigate

https://github.com/sebastian-lapuschkin/Irp _toolbox

https://github.com/ArrasL/LRP for LSTM

Also Explore:
https://innvestigate.readthedocs.io/en/latest/modules/analyzer.html#module-innvestigate.analyzer.relevance based.relevance analyzer
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i Alernatively: (SHapley Additive exPlanations)
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Scott M. Lundberg & Su-In Lee. A unified approach to interpreting model predictions. In: Guyon, Isabelle, Luxburg, Ulrike Von, Bengio, Samy, Wallach, Hanna,
Fergus, Rob, Viswanathan, Svn & Garnett, Roman, eds. Advances in Neural Information Processing Systems, 2017 Montreal. NIPS, 4765-4774.

https://github.com/OpenXAlIProject/PyConKorea2019-Tutorials
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