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Overview /A HCA|

HUMAN-CENTERED.AI

Primer on Probability & Information
Part 1 Theory Part 2 Practice

01 Introduction to Medical Al and

h f Explainable Al
Machine Learning for Health 05 Methods of Explainable

02 Data, Information 06 Social, Ethical and

and Knowledge Legal Aspects of Medical Al

03 Human Decision Making and Al 07 Project: Bringing Al into
Decision Support medical workflows

04 Causal Reasoning and 08 Presentation of the
Interpretable Al developed concepts

Written Exam
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Agenda /2 HEAI

= 00 Reflection — follow-up from last lecture
= 01 History of DSS = History of Al

= 02 Causality and Decision Making

" 03 Medical Communication

= 04 Causal Reasoning

= 05 Interpretability
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Reflection from last lectures
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Noise likelihood
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01 History of DSS =
History of Al
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What was the cradle of early Al ? /2 HCAI

= 1943 McCulloch, W.S. & Pitts, W. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical
Biology, 5, (4), 115-133, doi:10.1007/BF02459570.

= 1950 Turing, A.M. Computing machinery and intelligence.
Mind, 59, (236), 433-460.

= 1958 John McCarthy Advice Taker: programs with common
sense

= 1959 Samuel, A.L. Some studies in machine learning using the
game of checkers. IBM Journal of research and development,
3, (3), 210-229, doi:10.1147/rd.33.0210.

= 1975 Shortliffe, E.H. & Buchanan, B.G. 1975. A model of
inexact reasoning in medicine. Mathematical biosciences, 23,
(3-4), 351-379, doi:10.1016/0025-5564(75)90047-4.

= 1978 Bellman, R. Can Computers Think? Automation of
Thinking, problem solving, decision-making ...
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Five decades of Health Informatics /2 HCAI

= 1960+ Medical Informatics (Al Hype)

= Focus on data acquisition, storage, accounting (typ. “EDV”), Expert Systems
= The term was first used in 1968 and the first course was set up 1978 |

= 1985+ Health Telematics (Al winter)

= Health care networks, Telemedicine, CPOE-Systems, ...

"= 1995+ Web Era (Al is “forgotten”)

= Web based applications, Services, EPR, distributed system:s, ...

= 2005+ Success statistical learning (Al renaissance)

= Pervasive, ubiquitous Computing, Internet of things, ...

= 2010+ Data Era — Big Data (super for Al)

= Massive increase of data — data integration, mapping, ...

= 2020+ Information Era — (towards explainable Al)

= Sensemaking, disentangling the underlying concepts, causality, ...
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What is the prototypical DSS (“Expert System”) A HCAI
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Shortliffe, E. H. &
Buchanan, B. G. (1984)
Rule-based expert
systems: the MYCIN
experiments of the
Stanford Heuristic
Programming Project.
Addison-Wesley.
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What is the architecture of a typical DSS ? /A HCAI
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Tools for Building Expert Systems
EXPERT SYSTEM
Description User Explanation “\
of new case inte P Inference . . fronledae
a inter- a
! Engine & Analyses Engineer
ace
USER < T >
Advice & New Knowledge
_ éﬂ Knowlfedge 9 Domai
Explanations < Base -é—- & Moditications omain
to KB ; Expert

Shortliffe, T. & Davis, R. (1975) Some considerations for the implementation of knowledge-based
expert systems ACM SIGART Bulletin, 55, 9-12.
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What is static Knowledge versus dynamic knowledge ? 4\ HCAl
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Static Knowledge

PRODUCTION RULES
Judgmental Knowledge

about domain
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4

USER

f
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the problem
entered by user
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Shortliffe & Buchanan (1984)
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How to deal with uncertainty in the real world ? /2 HCAI

= The information available to humans is often
imperfect — imprecise - uncertain.

" This is especially in the medical domain the case.
= An human agent can cope with deficiencies.
= Classical logic permits only exact reasoning:

= |[F Aistrue THEN A is non-false and
IF B is false THEN B is non-true

" Most real-world problems do not provide this
exact information, mostly it is inexact,
incomplete, uncertain and/or un-measurable!
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What are the certainty factors in MYCIN ? /2 HCAI

= MYCIN is a rule-based Expert System, which is used for
therapy planning for patients with bacterial infections

= Goal oriented strategy (“Rickwartsverkettung”)

= To every rule and every entry a certainty factor (CF) is
assigned, which is between O und 1

= Two measures are derived:
= VIB: measure of belief
= MD: measure of disbelief

= Certainty factor — CF of an element is calculated by:
CF[h] = MB[h] —MD[h]

= CFis positive, if more evidence is given for a hypothesis,
otherwise CF is negative

= CF[h]=+1->his 100 % true
= CF[h]=-1->his 100% false
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Original Example from MYCIN /A HCA|

h, = The identity of ORGANISM-1 is streptococcus
= PATIENT-1 is febrile
h, = The name of PATIENT-1 is John Jones

-
ha
|

CF[h,,E] = .8 . There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h,,E] = —.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[hy,E] = +1 : Itis definite (1) that the name of PATIENT-1 is
John Jones

Shortliffe, E. H. & Buchanan, B. G. (1984) Rule-based expert systems: the MYCIN experiments of
the Stanford Heuristic Programming Project. Addison-Wesley.
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Why was MYCIN no success in the clinical routine ? /A HCAI
Y[]ll:'E real nurse triage

HUMAN-CENTERED.AI

Real Triage Nurse

@ Jon Bell

+ Add to A Share ese More

61,434 views
& 77 P2
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Why was Al so on vogue in the 1970ies ? S HCAI

Die Geheimnisse
des Rechenautomaten

Furden Winter
Kostume
und Mante

sportliche Pelze
Anoraks

SIBYLLE ",l,‘!,,,_.jl_.“‘.
Pullover

Lll'l.j 1'-':'. eanroc Lr

Image credit to Bernhard Scholkopf
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Cybernetics was praised as the solution for everything & HCAl
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Evdenrion kybernatischer Ragollreise - Kochan (1g70)

Image credit to Bernhard Schoélkopf
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The Al winter was bitter cold ... /A HCA|
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https://blogs.dxc.technology/2017/04/25/are-we-heading-toward-an-ai-winter/
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From Al Hype, via the Al Winter to the Al Renaissance /& HCAI
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https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
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Why is the history of “Deep Learning” interesting forus? /4 HCAI
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Deep Neural Network

(Pretraining)
Multi-layered :
— Perceptron i
ADALINE Problem (Backpropagation)
A A
r 3
Perceptron
Golden Age Dark Age (“Al Winter”)

Electronic Brain

1990 2000

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow - M. Hoff

X AND Y XORY NOT X
te . X o R e e
- .
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« Adjustable Weights « Learnable Weights and Threshold « XOR Problem « Solution to nonlinearly separable problems  + Limitations of learning prior knowledge * Hierarchical feature Learning
* Weights are not Learned + Big computation, local optima and overfitting *+ Kernel function: Human Intervention

«§—— Backward Error

Image source: Andrew Beam, Department of Biomedical Informatics, Harvard Medical School
https://slides.com/beamandrew/deep-learning-101/#/12
This image is used according UrhG §42 lit. f Abs 1 as “Belegfunktion” for discussion with students

Mini Course Part 4: From DSS to Causability 20 Medical Al, Andreas Holzinger



What is the problem with the current state-of-the-art ? &\ HCAI

*"The current data-driven
machine learning approach
of artificial intelligence
misses an essential element
of human intelligence:

" Al cannot reason why!
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02 Causality and
Decision Making

Medical Al, Andreas Holzinger



Causation — beware of counterfactuals! /2 HCAI

= David Hume (1711-1776): Causation is a matter
of perception: observing fire > result feeling heat

= Karl Pearson (1857-1936): Forget Causation, you
should be able to calculate correlation

" Judea Pearl (1936- ): Be careful with purely
empirical observations, instead define causality
based on known causal relationships, and
beware of counterfactuals ...

Judea Pearl 2009. Causal inference in statistics: An overview. Statistics surveys, 3, 96-146

Judea Pearl, Madelyn Glymour & Nicholas P. Jewell 2016. Causal inference in statistics: A primer, John Wiley & Sons.
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What is a counterfactual? /2 HCAI

" Hume again: “.. if the first object had not been,
the second never had existed ...”

" Causal inference as a missing data problem
* x;: = fi(ParentsOf, Noise,)

" |nterventions can only take place on the right side

user data

main line reserve \

l/ user intention Léon Bottou, Jonas Peters, Joaquin Quifionero-Candela,

Denis X Charles, D Max Chickering, Elon Portugaly, Dipankar
Ray, Patrice Simard & Ed Snelson 2013. Counterfactual
reasoning and learning systems: The example of
computational advertising. The Journal of Machine Learning
Research, 14, (1), 3207-3260.

#£ ads in main line

click
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Remember: Correlation is NOT Causality /A HCA|
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Country Arca Storks | Humans @ Birth rale
(km”) | (pairs) (10" (10°/yr)
Dependence vs. Causation Aigals | A7N] | 32 | ®
P ’ Austria | 83,860 W 16 | 87
Belgium | 30,520 1 99 | us
Bulgaria | 111,000 5000 90 | 117
Denmark | 43,100 9 51 59
France | 544,000 140 % | T4
Storks Deliver Bables (p= 0.008) Cermany | 397000 ) 200 #® | o
Reberd Matthews Greece . 132,000 2500 10 . 106
Holland 41,900 4 15 188
Article first published online; 26 DEC 2001 m Teaching Statistics - — t 93,000 2000 T | =
DOI: 10.1111/1467-9630.00013 Ll . ‘;’:‘L:::::bé;'“” ltaly | 301.280 | s| st | sa
Poland | 312,680 | 30,000 maincrajm@compuserve.com
Portugal | 92,390 1500 10 120
; Romania | 237,500 - 5000 - k| - 367
hoar — Spain | 504,750 8000 | 439
Switzerland | 41,200 150 67 | 82
Turkey | 779450 25000 6 | 1576

Table 1. Geographic, human and stork data for 17
European countries

Robert Matthews 2000. Storks deliver babies (p= 0.008). Teaching Statistics, 22, (2), 36-38.
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Correlation does not tell anything about causality! S HECAI

HUMAN-CENTERED.AI

= Hans Reichenbach (1891-1953): Common Cause Principle
= This principle links causality with probability:

= |f XandY are statistically dependent, there is a Z influencing both

= whereas:

= A, B, .. events

= X, Y, Zrandom variables

= P ... probability measure

= Px ... probability distribution of X

= p...probability density

= p(X) .. Density of Px

= p(x) probability density of Px evaluated at the point x

Hans Reichenbach 1956. The direction of time (Edited by Maria Reichenbach), Mineola, New York, Dover.
https://plato.stanford.edu/entries/physics-Rpcc/

Jonas Peters, Dominik Janzing, and Bern hard Schalkapf

For details please refer to the excellent book of: Jonas Peters, Dominik Janzing & Bernhard .
Scholkopf 2017. Elements of causal inference: foundations and learning algorithms, Elements/of
Cambridge (MA). https://mitpress.mit.edu/books/elements-causal-inference Causal In

Foundations and Lea
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Functional Causal Model /2 HCAI

= X, ...,X, ...setof observables

n

* Draw a directed acyclic graph G with nodes X, ..., X,

. parentsofXJ (PAI_) JUTE PEARL

.““"" =f(PA,, U) | .THE /|
LN B 0 0 K

W,
=  Parents = direct causes

= x;: = f;(ParentsOf,, Noise,) WHY

THE NEW SCIENCE
OF CAUSE AND EFFECT

Remember: Noise means “unexplained (exogenous) data” and is denoted as U,

Question: Can we recover G fromp ?
Answer: under certain assumptions, we can recover an equivalence class

containing the correct G using conditional independence testing (but there are
other problems as well)
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Counterfactual Learning

3. COUNTERFACTUALS

ACTIVITY:  lmagicing, Retsospection, Understadiog

QUESTIONS:  ¥hat if T had dene ...7 Wihy?
at cavsed Y7 Whar if X had not
“har £ 1 had acted differenty?)

EXAMPLES:  Was it the aspirin that stopped my headache?

dy be alive if Oswald had nor

=

2. INTERVENTION
ACTIVITY:  Doug, Intervening
wESTDNS: What if 1do...2 How?

{(What would Y be il Tdo X2
How can I make Y happen?)

EXAMPLES:  If I tuke aspirm, will sy headache be curedr

Whar if we ban ciparettes?

1. ASSOCIATION

ACTIVITY:  Sceing, Observing

QUESTIONS:  1¥¥hat i 1 see .7
{How are the var:ables relared?
How would seemg X change my belef m Y?)

EXAMPLES:  Whar does a symprom rell me abour a disease?
What does a survey rell us about the
clection results?

Figure 1.2 from Judea Pearl & Dana Mackenzie 2018. The book of
why, New York, Basic Books,
Source: lllustrator: Maayan Harel, http://www.maayanillustration.com
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ACTIVITY:
QUESTIONS:

EXAMPLES:

r3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if I had done ...2 Why?
(Was it X that caused Y? What if X had not
occurred? What if T had acted differently?)

Wias 1t the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if I had not smoked for the
last 2 years?

|

ACTIVITY:
QUESTIONS:

EXAMPLES:

(2. INTERVENTION

Doting, Intervening

What if 1do ...72 How?
(What would Y be if T do X?
How can I make Y happen?)

It I take aspirin, will my headache be cured?
What if we ban cigarettes?

— |

ACTIVITY:

QUESTIONS:

EXAMPLES:

(1. ASSOCIATION

Seeing, Observing

What if 1 see ...?
(How are the variables related?
How would seeing X change my belief in Y?)

What does a symptom tell me about a disease?
What does a survey rell us abourt the
election results?




Inside Inception v3: what do the layers learn? /A HCA|

HUMAN-CENTERED.AI

Edges Shapes High level features

Classifiers

i
Convolution
AvgPoal
MaxPool
Concat
@@ Dropout
@ Fully connected
& Softmax

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens & Zbigniew Wojna. Rethinking the inception

architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2016), 2016. 2818-2826.
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What can Explainable Al methods do ?

HCAI
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A

HENEEEEE

_....._.H

cat=.
nocat=|:]

aﬂ(_l) Wij a££+1)

Forward propagation ——>»

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert

Miller & Wojciech Samek 2015. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one, 10, (7), 0130140,

doi:10.1371/journal.pone.0130140.

0
5 )

|
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Q.
O
O

network output
(x) = +1.756

-

1

30

=) Rj=)» Rie=...
g k

Classifier
Image x Features output f(x) f(x) = 3 Feature Relevances = ) Pixel Relevances
I+1 [ [+1 l Ziq +1
a' ):cr( t-(l,g)wz‘j—l‘b( )) RU:Z,—” R(.+ )
J J L J zif Ziri o J
layer 1 layer | layer +1  layer L-1 layerL layer 1 layer | layer I+1  layer L-1 layerL

total relevance

O
O
OO0

566606

OO 2O O Ry =+1.756
OO0 O
OO O
pO 7 R
g J

-«— Layer-wise relevance propagation

f(x)
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Why is explainable Al only a first step ? /2 HCAI
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Why did the algorithm do that?

Can | trust these results? @ S

% Fs.

lal
A
. ®

| -
How can I correct an error? Ly
Input data
A possible solution
vy.w I
: : -
Explanation i Explainable s ”'59’ %13 x) : ’32 S
Interface Model TV L _‘.“IAJU
Input data

The domain expert can understand why ...
The domain expert can learn and correct errors ...
The domain expert can re-enact on demand ...
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03 Medical
Communication
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What are the key problems in medical data management ? = ;;EAES MCAIl
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@ EKG (12 Ableitungen) 23042009 10:43 MKKARDIO MK KardicAmb KOBEINGR oK 2009187545 * MMW
@ RR-Intervall-Untersuchung 23.04.2009 10:43 MIKIKARDIO MK KardioAmb  KOBEINGR 0K 2000187546
@ Konsil Fa 21042009 10:22 NKKONS NKFAKonsil  LANNMICH 0K 2009187546
Befunde (schriftl. Ersteliung21.04.2009 10:22 NKKONS NKFA Konsil LANNMICH oK 2009187546
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What is the combining link ? /A HCA|

HUMAN-CENTERED.AI

Biomedical R&D data Clinical patient data
(e.g. clinical trial data) (e.g. EPR, lab, reports etc.)
The combining link is text
Health business data Private patient data
(e.g. costs, utilization, etc.) (e.g. AAL, monitoring, etc.)

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. & Byers, A. H. (2011) Big data: The next
frontier for innovation, competition, and productivity. Washington (DC), McKinsey Global Institute.
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Why is medical text important ? /A HCA|

argalagh am D8 05 200820 M

geachs. won
Radiologischer Befund guiracit o 1711300806

Anile: RCHI

Kurzanamnese: Sip. SHT
Frageste lung:
Untersuchung: Thorax &ine Ebene liegend

SB
Bewegungsartefakte. fustand nach Schadelhimtrauma.

Das Cor in der GréBennorm, keine akuten Stauungszeichen.
Fragliches Infiltrat parahilar li. im UF, RW-Erguss |,

Zustand nach Anlage eines ET, die Spitze ca. Scm cranial der Bifurkation, lieg. MS, orthati
itionier. ZVK Ober re., die Spitze in Proj. auf die VCS. Kein Hinweis auf Pneumothorax
er re. Rezessus frai

Mit kollegialen Grulken

*** Elevtranische Freigate dursh am 0052008 ==

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in
medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.
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Why is medical work relying on team communication? & HCAl

= ... and require:
information ex

Image Source: Andreas Holzinger

Holzinger, A., Geierhofer, R., Ackerl, S. & Searle, G. (2005). CARDIAC@VIEW: The User Centered Development of a
new Medical Image Viewer. Central European Multimedia and Virtual Reality Conference, Prague, Czech Technical
University (CTU), 63-68.
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What are problems of the medical report ? /2 HCAI

HUMAN-CENTERED.AI

angelegt am 06.05.2006/20:26

= = geschr. von
Ra.d.l_o_l.o_g.ls.c_h.E.LB_e_fun.d ged[uck‘[ am 17.11.2006/08:24

Anfo: NCHIN

Kurzanamnese: St.p. SHT

Fragestellung:

Untersuchung: Thorax eine Ebene liegend

Special Words
Bewegungsartefakte. Zustand nach Schadelhimtrauma. La N g Uuada g e NI ix
Das Cor in der GréRennorm, keine akuten Stauungszeichen. . .

Abbreviations

Fragliches Infiltrat parahilar li. im UF, RW-Erguss Ii.
Zustand nach Anlage eines ET, die Spitze ca. 5cm cranial der Bifurkation, lieg. MS, orthotop
positioniert. ZVK Uber re., die Spitze in Proj. auf die VCS. Kein Hinweis auf Pneumothorax.

Der re. Rezessus frei. E r ro rs oo

Mit kollegialen Grifien

"** Elektronische Freigabe durch am 09.05.2006 ™

Holzinger, A., Geierhofer, R. & Errath, M. 2007. Semantische Informationsextraktion in
medizinischen Informationssystemen. Informatik Spektrum, 30, (2), 69-78.
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vny IS Synonymity and ampiguity such a nuge 5 HCAI
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Ainterschrifi-

y,die Antrumschleimhaut ist durch Lymphozyten infiltriert”

»lymphozytare Infiltration der Antrummukosa“

»yLymphoyteninfiltration der Magenschleimhaut im
Antrumbereich”
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Why does Language Understanding require knowledge ? 4\ HCAI

HUMAN-CENTERED.AI

= Syntax

" Semantics
" Pragmatics
=" Context

"a young boy is holding a

] ( E m Ot i O n ) baseball bat."

Andrej Karpathy & Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015. 3128-3137.

Image Source: https://cs.stanford.edu/people/karpathy/deepimagesent/
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Why is text a good example for Non-Standardized Data 4\ HCAI

HUMAN-CENTERED.AI

Thomas, J. J. & Cook, K. A.
2005. llluminating the path:
The research and
development agenda for
visual analytics, New York,
IEEE Computer Society Press.
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04 Causal Reasoning
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Humans can understand the context /2 HCAI

" “How do humans generalize
from few examples?”

" Learning relevant representations
" Disentangling the explanatory factors

" Finding the shared underlying explanatory
factors, in particular between P(x) and
P(Y|X), with a causal link betweenY — X

Bengio, Y., Courville, A. & Vincent, P. 2013. Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence, 35, (8), 1798-1828, do0i:10.1109/TPAMI.2013.50.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics,
structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.
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Decide if X — Y, or Y — X using only observed data /& HCAI

T —® @O0

P}’#PY|dD{I} II;D’}f’|..ﬁ: —P?’Ido #PY|I
0 05 Px =Py o) 7 Px |y Px#Pmdo{y) Px iy

Joris M. Mooij, Jonas a

Peters, Dominik @ @ @C@
Janzing, Jakob

Zscheischler & = Py |do(z) = Py |z Py # Py |do) # Py |z
Bernhard Schoélkopf IP"X = Px do(y) = Px |y Px #P}{mo{y #Px |y
2016. Distinguishing

cause from effect

using observational 5 6

data: methods and

benchmarks. The

Journal of Machine

;iazggnif()e;—elazréz’ PY — IPY | do(x) 7£ P}” | = PY | s # IPY |do(x).s — IFDY | .8
P | Px = Px|do(y) 7 Px |y Px|s # Px|do(y).s = Pxy.s
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Remember: Reasoning = “Sensemaking” /2 HCAI

Mini Course Part 4: From DSS to Causability 44

Deductive Reasoning = Hypothesis > Observations > Logical

Conclusions
= DANGER: Hypothesis must be correct! DR defines whether the truth
of a conclusion can be determined for that rule, based on the truth
of premises: A=B, B=C, therefore A=C
Inductive reasoning = makes broad generalizations from
specific observations
= DANGER: allows a conclusion to be false if the premises are true

= generate hypotheses and use DR for answering specific questions

Abductive reasoning = inference = to get the best explanation
from an incomplete set of preconditions.
= Given a true conclusion and a rule, it attempts to select some
possible premises that, if true also, may support the conclusion,
though not uniquely.

= Example: "When it rains, the grass gets wet. The grass is wet.
Therefore, it might have rained." This kind of reasoning can be used
to develop a hypothesis, which in turn can be tested by additional

reasoning or data.

Medical Al, Andreas Holzinger



Important Definition: Ground truth S HCAI

" .= information provided by direct observation
(empirical evidence) in contrast to information

provided by inference

" Empirical evidence = information acquired by
observation or by experimentation in order to verify
the truth (fit to reality) or falsify (non-fit to reality).

» Empirical inference = drawing conclusions from
empirical data (observations, measurements)

" Causal inference = drawing a conclusion about a
causal connection based on the conditions of the
occurrence of an effect.

= Causal inference is an example of causal reasoning.
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Empirical Inference Example /A HCA|

HUMAN-CENTERED.AI

y=2 a;k(xx) +b

y=a*x

Gottfried W. Leibniz (1646-1716)
Hermann Weyl (1885-1955)
Vladimir Vapnik (1936-)

Alexey Chervonenkis (1938-2014)
Gregory Chaitin (1947-)
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Remember: hard inference problems /A HCA|

= High dimensionality (curse of dim., many factors contribute)
= Complexity (real-world is non-linear, non-stationary, non-IID *)
= Need of large top-quality data sets

= Little prior data (no mechanistic models of the data)

= *) = Def.: a sequence or collection of random variables is
independent and identically distributed if each random variable has
the same probability distribution as the others and all are mutually
independent
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& - O~ - MKL WD linadd 1CPU[: i e it gl
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Séren Sonnenburg, Gunnar Ratsch, Christin Schaefer & Bernhard Scholkopf 2006. Large scale multiple kernel learning. Journal of
Machine Learning Research, 7, (7), 1531-1565.
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What makes it hard ... ? /2 HCAI

Example 3.4 (Eye disease) There exists a rather effective treatment for an eye
disease. For 99% of all patients, the treatment works and the patient gets cured (B =
0); if untreated, these patients turn blind within a day (B = 1). For the remaining
1%, the treatment has the opposite effect and they turn blind (B = 1) within a day.
If untreated, they regain normal vision (B = 0).

Which category a patient belongs to is controlled by a rare condition (Ng = 1)
that is unknown to the doctor, whose decision whether to administer the treatment
(I = 1) is thus independent of Ng. We write it as a noise variable Ny.

Assume the underlving SCM

T = N’;’

B = TNg+(1=T)-(1=Np)

with Bernoulli distributed Ng ~ Ber(0.01); note that the corresponding causal
graphis T — B.

Now imagine a specific patient with poor eyesight comes to the hospital and goes
blind (B = 1) after the doctor administers the treatment (7 = 1). We can now ask
the counterfactual question “What would have happened had the doctor admin-
istered treatment T = 07" Surprisingly, this can be answered. The observation
B =T =1 implies with (3.5) that for the given patient, we had Ny = 1. This, in
turn, lets us calculate the effect of do (T :=0).

To this end, we first condition on our observation to update the distribution over
the noise variables. As we have seen, conditioned on B =T = 1, the distribution

for Ng and the one for Ny collapses to a point mass on 1, that is, 8;. This leads to
a modified SCM:

2017. Elements of causal inference: foundations and

Jonas Peters, Dominik Janzing & Bernhard Scholkopf
learning algorithms, Cambridge (MA).
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What makes it hard ? /2 HCAI

HUMAN-CENTERED.AI

= 1

T
CQB=LT=1: p o ra4(1-T)-(1-1)=T

(3.6)

Note that we only update the noise distributions; conditioning does not change the
structure of the assignments themselves. The idea is that the physical mechanisms
are unchanged (in our case, what leads to a cure and what leads to blindness), but
we have gleaned knowledge about the previously unknown noise variables for the
given patient.

Next, we calculate the effect of do (T = 0) for this patient:

T =1

ClB=1,T=1;do(T :=0): g o

(3.7)

Clearly, the entailed distribution puts all mass on (0, 0), and hence

PE|B=|_T=1:da{T:=U'](B =l =1.

This means that the patient would thus have been cured (B = 0) if the doctor had
not given him treatment, in other words, do (T := 0). Because of

PE:n‘aI{T:=1}|{B — [’]} =099 and
PE:n‘ﬂI{T:=m (B' E= I:]} =0.01.

however, we can still argue that the doctor acted optimally (according to the avail-
able knowledge). O
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How can we use counterfactual statements ? S HECAI

HUMAN-CENTERED.AI

Interestingly, Example 3.4 shows that we can use counterfactual statements to
falsify the underlying causal model (see Section 6.8). Imagine that the rare con-
dition Ng can be tested, but the test results take longer than a day. In this case,
it is possible that we observe a counterfactual statement that contradicts the mea-
surement result for Ng. The same argument is given by Pearl [2009, p.220, point
(2)]. Since the scientific content of counterfactuals has been debated extensively, it
should be emphasized that the counterfactual statement here is falsifiable because
the noise variable is not unobservable in principle but only at the moment when the
decision of the doctor has to be made.

Judea Pearl 2009. Causality: Models, Reasoning, and Inference
(2nd Edition), Cambridge, Cambridge University Press.
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05 Interpretability:
Mapping Al with
Human Intelligence
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Mapping human intelligence with artificial intelligence 4\ HCAl

HUMAN-CENTERED.AI

causal learning P N
observations &

causal model / outcomes incl.

: interventions

: causal reasoning k | J

l |

l |
subsumes | :

' . subsume

l |

l . . . |

| statistical learning |

' Y

Y /\

observations

probabilistic model

T & outcomes

probabilistic reasoning

Jonas Peters, Dominik Janzing & Bernhard Scholkopf 2017. Elements of causal inference: foundations and learning algorithms, Cambridge (MA).
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Hans Reichenbach (1891-1953) Reichenbach’s Principle 4\ HCAI

@,@\@

There is no correlation
without causation

Hans Reichenbach (1956). The direction of time. New York: Dover.
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Why is this important for deep learning ?

/ \ HUMAN-CENTERED.AI

‘A lifetime’s worth of wisdom'
Steven D, Levitt, co-author of Fremkonomics

PERCEPTION INTUITION REASONING
SYSTEM 1 SYSTEM 2 The Intemationa]
Bestseller

7)) Fast Slow

7)) Parallel Serial

8 Automatic Controlled —

S Effortless Effortful T
Associative Rule-governed Thin kin

E Slow-learning Flexible g’
Emotional Neutral FaSt al'ld SlOW

= Daniel Kahneman

Z Winner of the Nobel Prize @

= Percepts Conceptual representations

o Current stimulation Past, Present and Future

Z. Stimulus-bound Can be evoked by language

o ) guag

@)

Amos Tversky & Daniel Kahneman 1974. Judgment under uncertainty: Heuristics and
biases. Science, 185, (4157), 1124-1131, doi:10.1126/science.185.4157.1124.
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How do humans generalize from a few examples ? /2 HCAI

(Sometimes — not always!) humans are able ...
" to understand the context

" to make inferences from little, noisy,
incomplete data sets

" to learn relevant representations

= to find shared underlying explanatory factors,

" in particular between P(x) and P(Y|X), with
a causal link betweenY — X

Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths & Noah D. Goodman 2011. How to grow a mind:
Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285, doi:10.1126/science.1192788.
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How do human pathologists make diagnoses ? /o HCAI

HUMAN-CENTERED.AI
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What is ground truth ? Where is the ground truth? 4\ HCAI

" .= information provided by direct observation
(empirical evidence) in contrast to information
provided by inference

" Empirical evidence = information acquired by
observation or by experimentation in order to verify
the truth (fit to reality) or falsify (non-fit to reality).

" Empirical inference = drawing conclusions from
empirical data (observations, measurements)

" Causal inference = drawing conclusions about a
causal connection based on the conditions of the
occurrence of an effect.
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What problems do we face in the real (medical) world ? & HCAI

= 1) ground truth is not always
well defined, especially when
making a medical diagnosis;

= 2) although human (scientific)
models are often based on
understanding causal
mechanismes,

" today’s successful machine
models or algorithms are
typically based on correlation or
related concepts of similarity
and distance!
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What are domain concepts from histopathology ? /o HCAI

HUMAN-CENTERED.AI

A) True (the cells are smaller and closer together — it is an tumor ...)

e

o>
&
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What is Causality ? /A HCA|
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Causality:
The art and science of
cause and effect

Judea Pearl 2000. Causality: Models, Reasoning, and Inference,
Cambridge: Cambridge University Press.
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So, what is Causability ? /A HCA|
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Causability:
Mapping machine
explanations with

human understanding

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal & Heimo Mueller 2019.
Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 9, (4), doi:10.1002/widm.1312.
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How can we measure the quality of explanations ? S HCAI

HUMAN-CENTERED.AI

Measuring the quality of
Explanations: The Systems
Causability Scale

Andreas Holzinger, Andre Carrington & Heimo Miiller 2020. Measuring the Quality of Explanations:
The System Causability Scale (SCS). Comparing Human and Machine Explanations. Kl - Kiinstliche
Intelligenz (German Journal of Artificial intelligence), Special Issue on Interactive Machine Learning,
Edited by Kristian Kersting, TU Darmstadt, 34, (2), doi:10.1007/s13218-020-00636-z
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onclusion
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Multimodal Causability: enabling why and what-if ... /& HCAI

HUMAN-CENTERED.AI

DATA MACHINE HUMAN
gm!gchsdiggzi?nm m}(ﬂ ( feature extraction ) Feature Space (RN) Interfaces (R?)
structures well defined

textual data

medium dimensional
natural language

( feature extraction )

imaging data
2D/3D dimensional data C feature extraction )
pixel/vector structure

feature layers classification layer

EXPLAINABILITY
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rhank you!
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