@ Welcome /o HCAI @ What will we learn today ? /o HCAI
185.A83 Machine Learning for Health Informatics
2021S, VU, 2.0 h, 3.0 ECTS
Andreas Holzinger, Rudolf Freund = 00 Reflection from last lecture
Marcus Bloice, Florian Endel, Anna Saranti . . .
= 01 Decision Making under uncertainty
From Decision Ma kl ng u nder 02 Some Basics of Graphs/Networks
. = 03 Bayesian Networks (BN)
Uncertalnty to = 04 Markov Chain Monte Carlo (MCMC)
Probabilistic Gra phical Models = 05 Metropolis Hastings Algorithm (MH)
Contact: andreas.holzinger AT tuwien.ac.at = 06 PrOba blllStIC Progra mmi ng (P P)
https://human-centered.ai/lv-185-a83-machine-learning-for-health-informatics-class-of-2021
@ /o HCAI @ Warm-up Quiz /o HEAI

00 Reflection
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On top-level - which machine learning approaches do we know ? /o HCAI Why is this important for us? /o HCAI
" SymbOHC ML Death from cancer
= First orf:ier logic, inverse deduction, knovyledge composition & Decision node Eiﬁﬁi'@—l’é&" 2%
= Tom Mitchell, Steve Muggleton, Ross Quinlan, ... ‘@ Chance node
. 4 Qutcome Fertile survival
= Bayesian ML Probability 98%
Mo further Utility 100%

= Statistical learning, probabilistic inference
= Judea Pearl, Michael Jordan, David Heckermann, ...
= Cognitive ML

surgery

Surgical death
Probability 0-5%
Utility 0%

Microinvasive
cancer of the

= Analogisms from Psychology, Kernel machines cen Infertile survival
.. . ! Radical Probability 98% Physician treating a patient
= Vladimir Vapnik, Peter Hart, Douglas Hofstaedter, ... hysterectomy Utility 95% BOHOBC st
= Connectionist ML Infertile survival \éase-Ptainters,fSGB, 9k6.Et
: . Survives (p=99-5%) Probability 5% cpartment of reek, Etuscan
= Neuroscience, Backpropagation Utility 95% floor, Campan Callors, room 43

Spread (p=2%) Louvre, Paris

= Geoffrey Hinton, Yoshua Bengio, Yann LeCun, ...
= Evolutionary ML
= Nature-inspired concepts, genetic programming
= John Holland (1929-2015), John Koza, Hod Lipson, ...

Death from cancer
Probability 5%
Utility 5%

Pedro Domingos 2015. The Master Algorithm: How the Quest for the
Ultimate Learning Machine Will Remake Our World, Penguin UK.
https://learning.acm.org/techtalks/machinelearning

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care.
The Lancet, 358, (9281), 571-574.
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/& HEA!

Remember: What is “personalized medicine” ? /o HCAI

What Kind of Healthcare Decisions Should Be Made I How Healtheare Decisions Should Be Made |

Personalised

TS

Strategies that control risk factors of diseases Health care decisions will be tailor-made based on

will be implemented based on a mixture of individualised individualised modelling from genomic to system levels
and population approaches. with reference to statistical analysis of a population.

Participatory F Predictive
uture
Health care decision making and health Health Risk of developing a disease will be
information will be shared by pl_\ﬂ e: | constantly assessed based on the
ode

individuals and relevant practitioners. health information accumulated up-to-date.

Pre-emptive Pervasive

Targets of Intervention will be broadened Health services will be available to anyone,
beyond treatment response and remission to anytime and anywhere to facilitate healthcare
maintain and restore body health and functions. decisions to be made whenever necessary.

Zhang, Y. T. & Poon, C. C. Y. (2010) Editorial Note on Bio, Medical, and Health Informatics.
Information Technology in Biomedicine, IEEE Transactions on, 14, 3, 543-545.

Both Images are in the public domain
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@;3‘@? How to go from System 1 deep learning to System 2 deep learning?

01 Decision Making
under uncertainty

Pierre-Simon Laplace 1781. Mémoire sur les probabilités. Mémoires de
[Académie Royale des sciences de Paris, 1778, 227-332.

SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categaries of coguitive tasks):

Sten ] ThrsEs Lot
+ Intuitive, fast, UNCONSCIOUS, + Slow, logical, sequential, CONSCIOUS,
‘noa-liaguistic, habitual linguistic, algocithmic, planning, rexsoning

‘Yashua Bengia: From System 1 Deep Learning o System 2 Deep Leaming (NeurlPS 2013}

s Wy e TE SPECHER

https://www.youtube.com/watch?v=T3sxeTgT4qc

Daniel Kahneman 2011. Thinking, fast and slow, New York, Macmillan.

Amos Tversky & Daniel Kahneman 1974. Judgment under uncertainty: Heuristics and
biases. Science, 185, (4157), 1124-1131, doi:10.1126/science.185.4157.1124.

human-centered.ai 9 2021 health Al 01 human-centered.ai 10 2021 health Al 01
TV What is medical action? /o HCAI TUESS Decision Making: Learn good policy for selecting actions /b HCAI

decision making

.. permanengd
underuncertainty!

human-centered.ai 11
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Goal: Learn an optimal policy for selecting best actions
within a given context

Fort=1,..,T

1) The world produces a
“context” x; € X

Bench

~J—

2) The learner selects an action

History | Decision |Check a; €{1,..., K}
— 1~ | Predict t
3) The world reacts with
Bedside areward r:(a;) € [0,1]



Why is decision making so difficult ?

/& HEA!

How does a medical doctor make a decision ?

/& HEA!

PATIENT/

PREF!
-Cultural beliefs
-Personal values

EVIDENCE
-Patient data
-Basic, clinical,

and epidemiological

research

-Randomized -Education
controlled trials -Experience
-Systematic

reviews CLINICAL

DECISION

N
-Formal policies and laws
~Community standards
Time
-Financial
William Hersh 2010. Information
Retrieval: A Health and Biomedical

Perspective, New York, Springer.

human-centered.ai 13
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3 July 1959, Volume 130, Number 3366

Reasoning Foundations of

Medical Diagnosis

Symbolic logic, probability, and value theory

aid our understanding of how physicians reason.

Robert 8. Ledley and Lee B. Lusted

The purpose of this article is to ana-
lyze the complicated reasoning processes
inherent in medical diagnosis. The im-
portance of this problem has received
recent emphasis by the increasing inter-
est in the use of electronic computers as
an aid to medical diagnostic processes

fitted info a definite disease category, or
that it may be one of several possible dis-
eases, or else that its exact nature cannot
be determined.” This, obviously, is a
greatly simplified explanation of the
process of diagnosis, for the physician
might also comment that after sceing a

SCIENCE

ance are the ones who do remember and
consider the most possibilities.”

Computers are especially suited to
help the physician collect and process
clinical information and remind him of
diagnoses which he may have over-
locked. In many cases computers may be
as simple as a set of hand-sorted cards,
whereas in other cases the use of a farge-
scale digital electronic computer may be
indicated. There are other ways in which
computers may serve the physician, and
some of these are suggested in this paper.
For example, medical students might
find the computer an important aid in
learning the methods of differential di-
agnosis. But to use the computer thus
we must understand how the physician
makes a medical diagnosis. This, then,
brings us to the subject of our investiga-
tion: the reasoning foundations of med-
ical diagnosis and treatment.

Medical diagnosis involves processes
that can be systematically analyzed, as
well as those characterized as “intan-
gible.” For instance, the reasoning foun-
dations of medical diagnostic procedures

2021 health Al 01

What about the accuracy and uncertainty in medicine ? /o HCAI

Why is the patient-doctor dialogue so important ? /o HCAI

Clinician influences patient's giving of information

= Medical (clinical) data are defined and detected disturbingly “soft” ...

Fatient influences clinician's reception of information

= ... having an obvious degree of variability and inaccuracy.

Patient provides
information

Patient seeks
medical care

Patiént responds with
certain feelings, and
decides to take
those therapeutic
actions recommended [
by clinician

interprets information

Y

Clinician makes tentative
decisions about diagnosis,
treatment, and prognosis

[ ]
Clinician describes/
explains these
decisions to patient

[}
Clinician collects/ I

= Taking a medical history, the performance of a physical examination,
the interpretation of laboratory tests, even the definition of diseases ...
are surprisingly inexact.

= Data is defined, collected, and interpreted with a degree of variability
and inaccuracy which falls far short of the standards which engineers
do expect from most data.

|

Patient's response influences clinician’s decisions

= Moreover, standards might be interpreted variably by different
medical doctors, different hospitals, different medical schools,
different medical cultures, ...

Clinician's description/explanation influences patient's response

inaccuracy of medical data. Proceedings of the

Anthony L. Komaroff 1979. The variability and
IEEE, 67, (9), 1196-1207.

| Qutcome of medical care | ————————

Anthony L. Komaroff 1979. The variability and inaccuracy of medical data. Proceedings of the IEEE, 67, (9), 1196-1207.
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How can we learn and infer from data ? Ja HCAI How do humans make decisions under uncertainty ? /o HCAI
d .. data H ..{hq, hy, .., h,} UNGCERTAINTY p(glp) -
h .. hypotheses Cuss ‘
Likelihood Prior Probability — D
AN — 3 DIAGNOSIS CHOICE
Working 4 _
p (h | d)z p (h’) > manm":,: P perception +H‘ Hy ETTY_’ N Action | | o tcome
2 (d|n’) p(h") t ¥
/ heH P p
Posterior Probability \
Problem in R™ — complex g;
o Hgb Memory (A)A
Hy™ (H) Hypolhesus
(A) Act

.

>
Feature parameter 0
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What are Probabilistic Graphical Models (PGM) ? /o HCAI

ULV TUE

= PGM can be seen as a combination between

= Graph Theory + Probability Theory +

02 G h Machine Learning
rap S= * One of the most exciting advanceme_n:cs n/ 'decades—

with enormous future potential

N etwo rks » Compact representation for exponert

dlstrlbut|§;n§1 (X7 = edge (X,Y)
= Examplhe Quirskion:= edge (X,Y), path(Z, Y) N
“Is there thpath Nmﬂmeeabmgdzwmpmteenb%lc f

human-centered.ai 19 2021 health Al 01 human-centered.ai 20 2021 health Al 01



We start in 1736 /o HCAI 252 years later: Belief propagation algorithm /o HCAI

Image from https://people.kth.se/~carlofi/teaching/FEL3250-2013/courseinfo.html
Leonhard Euler 1741. Solutio problematis ad geometriam situs pertinentis. Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.
Commentarii academiae scientiarum Petropolitanae, 8, 128-140.

human-centered.ai 21 2021 health A1 01 human-centered.ai 22 2021 health Al 01

275 years later ... the “Nobel-prize in Computer Science” /o HCAI

Nobel Prize in Chemistry 2013 /o HCAI

M. ' r BoA%
© HRiNG ETE8Sd e @

AWARD _— | i 3 Scientific Background on the Nobel Prize in Chemistry 2013

DEVELOPMENT OF MULTISCALE MODELS FOR
COMPLEX CHEMICAL SYSTEMS

ALFRABETIESL LINTING VEAR OF THE AWART

Martin Karplus Michael Levitt Arkeh Warshel
Prize share: 113 Prize share: 173 Prize share: 1/3

JUDEA PEARL http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

United States - 2011

For fundamental contributions to artificial intelligenee through the
ibevelopment of a caleulus for probabilistic and cansal reasoning,

[ ——

a " 2702 Paar] O Bad e DTSSR A1 UMM TS b e R 3 e ude
oty

Sl 4. 8, T A p— T ——

B Llestriead 1
e, S Pl

et i P sl neae

s P mars e 0 Shaplarntiad 4, UML) Tl v, hach ik P o ek arwtort st i s
Manmne o Paesine. 1 grew 18 o 8 BSacal lewn Nt granaiames went 3 rEestabs 1 1824, in
r Serveng in T |afae A1y A1 Y] & SEBGL Akiea BeCaed 1 S SrgReerng. He ineded N

[
" ey o ot by, Flety, v e 1.5, dwgrwe 1 Eiwevical Erprsersy i1 1900 Recabes

htt;;?//amturing.acm.org/vp/pear|_2658896,cfm http://news.harvard.edu/gazette/story/2013/10/nobel prize awarded 2013
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m.f e First Question: Where do graphs come from? /o HCAI m e What do you see here ? /o HCAI
= Graphs as Graphs as
models for networks nonparametric basis
= gjven as direct input (point cloud we learn the structure
data sets) from samples and infer
= Given as properties of a flat vector data, e.g.
structure similarity graphs
= Given as a representation of encoding structural
information (e.g. Facebook data, properties (e.g.
viral marketing, etc., ...) smoothness,
independence, ...)
_ .NGC 5139 Omega_Centa'uri by E-dmunr-drHaIVI'ey in 16'%7; ESO, Atacama, Chile
human-centered.a 2 2021 health A1 01 human-centered.a 2 2021 health A1 01
m.f - Why is time and space important in health informatics ? /o HCAI m - Why is the Complexity Problem: Time versus Space affecting us ? /o HCAI
: exponential cubic quadratic
o(n?) ‘(y{/’ linear
O(vn)
Time e
2
e.g. Entropy [ O(log n) H——

Dali, S. (1931) The persistence of memory

human-centered.ai 27

Bagula & Bourke (2012) Klein-Bottle

2021 health Al 01

0(1)
') constant

Data Input (Space)

P versus NP and the Computational Complexity Zoo, please have a look at
https://www.youtube.com/watch?v=YX40hbAHx3s

human-centered.ai 28
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Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical
and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech
Technical University (CTU), 69-74

29 2021 health Al 01

human-centered.ai

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular
Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New
York, Springer, 199-212.

30 2021 health Al 01
First human protein-protein interaction network /o HCAI

human-centered.ai

Nodes = proteins

Links = physical interactions
(bindings)

Red Nodes = lethal

Green Nodes = non-lethal
Orange = slow growth
Yellow = not known

Jeong, H., Mason, S.
P., Barabasi, A. L. &
Oltvai, Z. N. (2001)
Lethality and
centrality in protein
networks. Nature,
411, 6833, 41-42.

31 2021 health Al 01
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Light blue = known proteins

Orange = disease proteins ;

Yellow ones = not known yet .:go
o

—
.0

OD L

[ o >
6P %
o™, !
& o]
88— 3

Stelzl, U.etal. $og7 0g

(2005) A Human % 5?

Protein-Protein &

Interaction

Network: A

Resource for

Annotating the

Proteome. Cell,

122, 6, 957-968.
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Non-Natural Network Example: Blogosphere /o HCAI

Hurst, M. (2007), Data
Mining: Text Mining,
Visualization and Social
Media. Online available:
http://datamining.typep
ad.com/data_mining/20
07/01/the_blogosphere.

Aral, S. (2011)
Identifying Social
Influence: A Comment
on Opinion Leadership
and Social Contagion in
New Product Diffusion.

htmi, last access: 2011- Information object e / ¥ Marketing Science, 30,
09-24 2,217-223.
human-centered.ai 33 2021 health Al 01 human-centered.ai 34 2021 health Al 01
Human Disease Network -> Network Medicine /o HCAI /o HCAI

03 Bayesian
Networks
“Bayes’ Nets”

Barabasi, A. L.,
Gulbahce, N. &
Loscalzo, J. 2011.
Network medicine: a
network-based
approach to human
disease. Nature Reviews
Genetics, 12, 56-68.

human-centered.ai 35 2021 health Al 01 human-centered.ai 36 2021 health Al 01



Book recommendations 1

Book recommendations 2

~ BAYESIAN
REASONING
and -

MACHINE
LEARNING

David Barber

David Barber 2012. Bayesian reasoning
and machine learning, Cambridge,
Cambridge University Press.

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

human-centered.ai

What are the rules of probability ?

37

Daphne Koller & Nir Friedman 2009.
Probabilistic graphical models:
principles and techniques, MIT press.

2021 health Al 01

human-centered.ai

https://goo.gl/6a7rOC

Chapter 8 Graphical Models is as sample
chapter fully downloadable for free

Chris Bishop 2006. Pattern Recognition and
Machine Learning, Heidelberg, Springer.

~—= SECOND EDITION

~ MODELS, REASONING,
AND INFERENCE

JUDEA PEARL

http://bayes.cs.ucla.edu/BOOK-2K/

Judea Pearl 2009. Causality:
Models, Reasoning, and Inference
(2nd Edition), Cambridge,
Cambridge University Press.

38
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P() = ) P(x.)
y

P(x,y) = P(y|x)P(x)

P(yIx) = P(x|y)P(y)

P(x)

P() = ) P(xly)P()
¥

human-centered.ai

39
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Digression:
Markov Processes in
Machine Learning

40
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Why are Markov decision processes so important ?

/o HEA|

/o HEA|

= Markov decision
processes (MDP) are ...

* random processes in
which the future, given
the present, is
independent of the past!

= one of the most
important classes of
random processes!

human-centered.ai

From where do we know such behaviour ?

bt Do Mk
The Markov Process
in Medical Prognosis
J. Robert Beck, M.D.,
and Stephen G. Pauker, M.D.
‘The physician’s esti of prognosis under al i plans is a principal

factor in therapeutic decision making. Current methods of reporting prognosis,
which include five-year survivals, survival curves, and quality-adjusted life expec-
tancy, are crude estimates of natural history. In this paper we describe a general-
purpose model of medical prognosis based on the Markov process and show how this
simple mathematical tool may be used to generate detailed and accurate assessments
of life expectancy and health status. (Med Decis Making 3:419-458, 1983)

41 2021 health Al 01

/o HEA|

human-centered.ai

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, 1., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D.
2015. Human-level control through deep reinforcement learning. Nature, 518, (7540), 529-533, doi:10.1038/nature14236

42
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/o HEA|

observation

reward R,

human-centered.ai

action

A

What is the result of the Expected Utility Theory & (1/|d) ? L Mcal

For a single decision variable an agent can select
D = dforanyd € dom(D).
The expected utility of decision D = dis

Pt it kg s g

Z P(wy,...,on | d)U(&1,.... 35, d)

Z1yeeern

E(U | d)
An optimal single decision is the decision D = dmax

whose expected utility is maximal:

dmax = arg max  E(U | d
dedom( D

& 1948, Theory of games. pross.

it et o (alinges Grons] a 2019 heath w121

a3 2021 health Al 01
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initialize V'(s] arbitrarily
loop until policy good encugh
loop for s &8
loop for ae.A
Qisya) = R(s,0) +7 ¥ aes Ts a0, 8)V(S)
Vis) i= maxg Q (s, a)
end loop

end loop

Kaelbling, L. P., Littman, M. L. & Moore, A. W. 1996. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4, 237-285.

4
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/& HeAl

What has an RL-agent to do with MDP ?

RL - Types of Feedback (crucial!)

Intelligent behavior arises from the actions of an
individual seeking to maximize its received reward
signals in a complex and changing world

fort=1.....ndo
The agent perceives state se
The agent performs action a
The environment evolves to 5,1
The agent receives reward r.
end for

Agent
| Representation |
[ Learning algorithm ]
R{-‘\[\";ml l Action selection policy |
State 7t Action
s , t+1) alt)
1
: Environment
]
()

A

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press

human-centered.ai a5 2021 health Al 01

Problem Formulation in a MDP

= Supervised:
Learner told best a

= Exhaustive:
Learner shown every
possible x

= One-shot: Current

x independent of
past a

Littman, M. L. 2015. Reinforcement learning
improves behaviour from evaluative feedback. ¥
Nature, 521, (7553), 445-451. ipsrvised

human-centered.ai 46 2021 health Al 01

Agent observes environmental state at each step t

= Markov decision processes specify setting and tasks

= Planning methods use knowledge of P and R to
compute a good policy T

= Markov decision process model captures both
sequential feedback and the more specific one-shot
feedback (when P(s’[s, @) is independent of both
sanda

action reward action

Q%(s, @) = R(s, a) + YZP(s'ls, a) max, Q%(s', &)

Littman, M. L. 2015. Reinforcement 1earning improves penaviour Trom evaluatve Teeanack.
Nature, 521, (7553), 445-451.

human-centered.ai 47 2021 health Al 01

1) Overserves

2) Executes

Observation O,

3) Receives Reward
= Executes action A;:

O = sa; =se;

Agent state = environment
state = information state

Markov decision process
(MDP)

Image credit to David Silver, UCL
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Environmental State is the current representation /o HCAI TUESS Agent State is the agents internal representation /o HCAI

" je. Whatever data the‘ . = i e. whatever
environment uses to pic AATFHRN information the agent
the next svseraton 1 [ eeten ]
, R Ersadh S & uses to pick the next
observation/reward s i stasration
& action o

= The environment state is
not usually visible to the
agent

= it is the information
used by reinforcement
= Even if S is visible, it may learning algorithms

contain irrelevant

= |t can be any function

mformatlo.n . of history:
= A State S; is Markov iff: «S= f(H)
P[St1+11St] = P[St 41151, 5 St He = Oy, Ry, Aty .oy Ae-1, Or, Re
human-centered.ai w 2021 health A1 01 human-centered.ai 5 2021 heaith A1 01
TUESS Components of RL Agents and Policy of Agents /o HCAI TUESS What if the environment is only partially observable? /o HCAI
= RL agent components: = Partial observability: when agent only indirectly observes
= Policy: agent's behaviour function environment
= Value function: how good is each state and/or action » Formally this is a Partially Observable Markov Decision Process
» Model: agent's representation of the environment (POMDP):
= Policy as the agent's behaviour = Agent must construct its own state representation S,
= is a map from state to action, e.g. for example:

= Deterministic policy: a=(s)
» Stochastic policy: (ajs ) =P[At=ajSt=s

= Value function is pbrediction of future reward: m Complete history: S$2 = H,
N 2 N m Beliefs of environment state: S? = (P[S§ = s],...,P[Sf = s"])
VW(S) =Ex [RH—l +YRet2 + 7 Reqs + ... | 5= 5] m Recurrent neural network: S7 = (57 ; Ws + O:W,)

human-centered.ai 51 2021 health Al 01 human-centered.ai 52 2021 health Al 01



/o HEA)

Three types of Probabilistic Graphical Models

Back to
Bayesian Networks

human-centered.ai 53 2021 health Al 01

So, what is a directed Bayesian Network (BN) ?

Undirected: Markov random fields, useful
e.g. for computer vision (Details: Murphy 19)

1 ® @
P(X) = exp (Z W;; xix; +le-b,-) oo
i

Directed: Bayes Nets, useful for designing
models (Details: Murphy 10)

K
p(x) = H plzk|pay,)

k=1

Factored: useful for inference/learning

p(x) = [ ] fs(xs)
Ja i Je Ja S
2021 health Al 01

human-centered.ai 54

Example: Directed Bayesian Network with 7 nodes

1Y)
= is a probabilistic model, consisting of two parts:
= 1) a dependency structure and

= 2) local probability models.

PGy, x) = | x| PaG))
i=1

Where Pa(x;) are the parents of x;

BN inherently model the uncertainty in the data. They are a successful marriage between
probability theory and graph theory; allow to model a multidimensional probability

distribution in a sparse way by searching independency relations in the data. Furthermore
this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San

Francisco, Morgan Kaufmann.

human-centered.ai 55 2021 health Al 01

oK gy o X7) =
p(X1)p( X2 )p(XS)p(X:lle-. X2.X3)-
p(X5| X1, X3)p(Xe| X4)p(X7| X4, X5)

2021 health Al 01
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Clinical Case Example

What is important in clinical decision making ?

Overmoyer, B. A.,
Lee, ). M. &
Lerwill, M. F.
(2011) Case 17-
2011 A 49-Year-
Old Woman with a
Mass in the Breast
and Overlying Skin
Changes. New

England Journal of
Medicine, 364, 23,
2246-2254.
human-centered.ai 57 2021 health Al 01
How can one predict the future on past data and present status ? /o HCAI

» = the prediction of the future course

of a disease conditional on the

patient’s history and a projected
treatment strategy

= Danger: probable Information !

= Therefore valid prognostic models
can be of great benefit for clinical
decision making and of great value
to the patient, e.g., for notification

and quality of-life decisions

human-centered.ai

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill
hospitalized adults: science and ethics. Science, 254, 5030, 389.

58

Example: Breast cancer - Probability Table

2021 health Al 01

current patient state

next pa.fien.f State

Risk factors Risk factors
Pathogenesis Pathogenesis
Disorders "“"T": Disorders
Pathophysiology Pathophysiology
Findings Findings
physician Tests
model Treatments
physician
past future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic
models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.

human-centered.ai

59
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Category Node description State description
Diagnosis Breast cancer Present. absent.
Clinical his- Habit of drinking alcoholic beverages and  Yes. no.
tory smoking
Taking female hormones Yes, no.
Have gone through menopause Yes. no.
Have ever been pregnant Yes. no.
Family member has breast cancer Yes. no.
Physical find-  Nipple discharge Yes. no.
ings
Skin thickening Yes, no.
Breast pain Yes, no.
Have a lump(s) Yes. no.

Mammo-
graphic
findings

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

Architectural distortion

Mass
Microcalcification cluster

Asymmetry

60

Present. absent.

Score from one to three. score from four to five,

absent

Score from one to three. score from four to five,

absent

Present. absent.
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Breast cancer — big picture — state of 1999 /o HCAI , 10 years later: Integration of microarray data /o HCAI
= |ntegrating microarray data from multiple studies to increase
Alcoholic & Skin Nipple Breast Samp|e Size;
Smoking Thickenin, Discharge Pain .
r = = approach to the development of more robust prognostic tests
Hormones Have a
Lump
Menopause Breast Cancer
Pregnant Mass
A 4
Family Architectural Tissue Microcalci-
History Distortion Asymmetry fications ; F
Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven Xy, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast
Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126. cancer studies provides a robust prognostic test. BMC Bioinformatics, 9, 1, 125-139.
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Example: Bayes Net with four binary variables /o HCAI Concept Markov-Blanket /o HCAI
Gene 1
P(on) 0.8
P(off) 0.2
Gene2 Gene 1 Gene 1 Gene2 Gene1 Gene 1
on off on off
Plon) 03 0.6 @ @ Plon) 0.3 0.6
P(off) 0.7 0.4 P(off) 0.7 0.4
Gevaert, O., Smet, F. D.,
Timmerman, D.,
Moreau, Y. & Moor, B. D.
@ (2006) Predicting the
Prognosis  Gene2on Gene2on Gene2off Gene 2 off prognosis of breast
Gene3on Gene3off Gene2on Gene 3 off cancer by integrating
P(good) 0.6 0.1 0.9 0.5 clinical and microarray
P(poor) 0.4 0.9 0.1 0.5 data with Bayesian
networks.
Gevaert, 0., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the Bioinformatics, 22, 14,
prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. 184-190.
Bioinformatics, 22, 14, 184-190.
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Dependency Structure -> first step (1/2) /o HCAI

HOMIN CENTERERE

Dependency Structure - first step (2/2) /o HCAI

HOMIN CENTERERE

First the structure is learned using a search strategy.

Since the number of possible structures increases super exponentially with the number
of variables,

the well-known greedy search algorithm K2 can be used in combination with the
Bayesian Dirichlet (BD) scoring metric:

et T(N';j) = T(N'gjk + Niji)
psio) )| [[ | F(N,UJFN_,)B T

i=1 j=1 Y

Njj ... number of cases in the data set D

having variable i in state k associated with the j-th instantiation
of its parents in current structure S.

n is the total number of variables.

human-centered.ai 65 2021 health Al 01

Parameter learning -> second step /o HCAI

Next, N;; is calculated by summing over all states of a variable:

N;; = Z;"zl Niji - N’ijk and N’L-]- have similar meanings but refer to prior knowledge for the parameters.
When no knowledge is available they are estimated using N;j, = N/(1;q;)

with N the equivalent sample size,

1; the number of states of variable i and

q; the number of instantiations of the parents of variable i.

I'(.) corresponds to the gamma distribution.

Finally p(S) is the prior probability of the structure.

p(S) is calculated by:

p(S) = [T, [T 2, Pl — x) TToh =y P(Mix)

with p; the number of parents of variable x; and o; all the variables that are not a parent of x;.

Next, p(a — b) is the probability that there is an edge from a to b while p(ab) is the inverse, i.e. the
probability that there is no edge from a to b
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Predicting the prognosis of breast cancer (integrated a.) /o HCAI

e Estimating the parameters of the local probability models corresponding
with the dependency structure.

e CPTs are used to model these local probability models.

e For each variable and instantiation of its parents there exists a CPT that
consists of a set of parameters.

* Each set of parameters was given a uniform Dirichlet prior:

p(9U|S) = Dir(9U|N'ij1, ...,N’,:jk, ---'N’ijr,-)

Note: With 6;; a parameter set where i refers to the variable and j to the j-th instantiation of
the parents in the current structure. 8;; contains a probability for every value of the variable x;
given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with
(N,ijlv - N’im) as parameters of this Dirichlet distribution. Parameter learning then consists of
updating these Dirichlet priors with data. This is straightforward because the multinomial
distribution that is used to model the data, and the Dirichlet distribution that models the prior,
are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

p(6|D,S) = Dir(8;IN"ij1 + Nij1, .. N'ijie + Nijs s N' iy, + Nijre)

with Njj defined as before.
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Gevaert, O., Smet, F. D.,
Timmerman, D., Moreau, Y. &
Moor, B. D. (2006) Predicting
the prognosis of breast cancer
by integrating clinical and
microarray data with Bayesian
networks. Bioinformatics, 22,

14, 184-190.
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TUESS Inference in Bayes Nets is intractable (NP-complete!) /o HCAI TUESS A practical advise /o HCAI

= For certain cases it is tractable if:

= Just one variable is unobserved Often it iS bEtter tO have a

= We have singly connected graphs (no undirected loops -> belief ° ° ° °
propagation) good solution within time —

= Assigning probability to fully observed set of variables

= Possibility: Monte Carlo Methods (generate many samples tha n a n pe rfECt SOI ution too

according to the Bayes Net distribution and then count the

results) Iate ven

= Otherwise: approximate solutions ...
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TUESS /o HCAI TUESS What Classes of Graphical Models do we know ? /o HCAI

Graph Model

. = M ) p——
D.'f ession: Graphical

M,dels and Decision

Data

Making,

m z1

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press.
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@:f}'f Naive Bayes classifier as DGM (single/nested plates)

@ s Regulatory>Metabolic>Signaling>Protein>Co-expression

[

Xy Xy

Receptors Protein

Transcription factor. . Enzymes
(TF)
) y complex

W Q\E’/J?. $

Gene C Metabolites

o TF
DIORCRC () &
S o ©@ T e
Directed, Signed, Undirected, o
weighted weighted Directed Undirected Undirected
Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press. Image credit to Anna Goldenberg, Toronto
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TV Remember /o HCAI TUESS From structure to function prediction /2 HCAI
= Medicine is an extremely complex application domain — dealing ke
£ Topology

most of the time with uncertainties -> probable information!
= When we have big data but little knowledge automatic ML can

help to gain insight:
= Structure learning and prediction in large-scale
biomedical networks with probabilistic

graphical models

= |f we have little data and deal with NP-hard problems we still need
the human-in-the-loop
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i ondary Structure
" “Prediction

3D Structure

Contacts and

Solvent Accessibility
Prediction

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network
architectures--dag-rnns and the protein structure prediction problem. The Journal of
Machine Learning Research, 4, 575-602.
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TUES Protein Network Inference /o HCAI TUESS Problem: Is Graph Isomorphism NP-complete ? /o HECAl

S H H H H H H Borgwardt, K. M., Ong, C. S., Schonauer, S., ; -"‘:"‘

= Hypothesis: most biological functions involve the interactions Vishwanathan, 5. Smola A1 & Kriegel, -7, {0

between many proteins, and the complexity of living systems 2005, Protein function prediction via graph ~ SE o

. i X kernels. Bioinformatics, 21, (suppl 1), i47-i56. A e

arises as a result of such interactions. psl seoondary  sequence - stracture
* |n this context, the problem of inferring a global protein network * Important for health informatics: Discovering relationships

for a given organism, between biological components
= - using all (genomic) data of the organism, = Unsolved problem in computer science:
* is one of the main challenges in computational biology = Can the graph isomorphism problem be solved in polynomial

time?

= So far, no polynomial time algorithm is known.

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple ® |t is also not known if it is NP-complete
enomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370. . . .
g P PP (suppl 1) = We know that subgraph-isomorphism is NP-complete
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TUESS Finally a practical example /o HCAI TUESS

Monte Carlo Method (MC)

: Monte Carlo Sampling
04 Markov Chain Markov Chains (MC)
Monte Carlo MCMC

(MCMCQ) Metropolis-Hastings
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TUESS What is the problem with observable data D in the real-world ? /o HCAI TUESS What is the problem of learning and inference ? /o HCAI

* Often we want to calculate characteristics of a = Statistical physics: computing the partition function — this is
high-dimensional probability distribution ... p(D|0) evaluating the posterior probability of a hypothesis and this

p(hld) o p(DI) % p(h) requires summing over all hypotheses ... remember:

Posterior integration problem: (almost) all statistical —[H., H H
inference can be deduced from the posterior H= { 15 242y 00 ”} V(h’ d)
distribution by calculating the appropriate sums,
which involves an integration: P(d'h) * P(h)
P(h|d) =
> _wen PdR)P(R)
J = [ f(6) % p(6|D)db
@ What was the origin of MCMC ? /o HEA @ Summary: What are Monte Carlo methods? /o HCAl

= Class of algorithms that rely on repeated random sampling

= Basic idea: using randomness to solve problems with high
uncertainty (Laplace, 1781)

* For solving multidimensional integrals which would otherwise
intractable

= For simulation of systems with many dof

= e.g. fluids, gases, particle collectives, cellular structures - see our
last tutorial on Tumor growth simulation!

human-centered.ai 83 2021 health Al 01 human-centered.ai 84 2021 health Al 01



TUESS MC connects Computer Science with Cognitive Science /o HCAI TUESS Mathematical simulation via MC /o HCAI

= for solving problems of probabilistic inference involved in = Solving intractable integrals

developing computational models . Lo .
= Baye5|an statistics: normallzmg constants,

= as a source of hypotheses about how the human mind might solve . L
expectations, marglnal|zat|on

problems of inference

= For a function f(x) and distribution P(x), the expectation of f = Stochastic Optimization
with respect to P is generally the average of f, when x is drawn

. L : :
from the probability distribution P(x) Generalization of simulated annealing

= Monte Carlo expectation maximization (EM)
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@jﬁ'\:‘:ﬁf’_“; Physical simulation via MC /o HCAl @ Notations /o HEA|

= Expectation of a function f(x, y) with respect to a random
variable x is denoted by E,, [f(x,y)]

Computing expected utilities and best respon CN— = ash * |n situations where there is no ambiguity as to which variable is

equilibria being averaged over, this will be simplified by omitting the suffix,

for instance Ex.

Physical simulation

= estimating neutron diffusion time

Computing volumes in high-dimensions

= Computing eigen-functions and values of operafél’i‘fﬂ?g = |f the dlstrlbutlgn of x |s. c.ondltloned oq anot.her varlgble z, then
Schrédinger) K- | the corresponding conditional expectation will be written
: @ | Ex[f (x)|2]
= Statistical physics .| i _ _
| g’* = Similarly, the variance is denoted var|[f (x)], and for vector

Counting many things as fast as possible variables the covariance is written cov|[x, y]
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Global optimization: What is the main problem?

Finally a practical example

human-centered.ai

argmax f(z)

T

) = o DulIE) £ DiE)
fx p(y|z) * p(x)dx

Normalization: p(z

Marginalization: p(z) =

Expectation: ]Ep(m)(f(x)):/Xf(.r)p(a:)dz:
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5,223 citations as of 26.03.2017 (6,552 as of 22.04.2020)

05 Metropolis-

Hastings Algorithm

90

34,140 cits (26.3.2017)- 37,202 (10.4.2018) — 41,751 (22.4.2020)
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JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 247 SEPTEMBER 1049 Volume 44

THE MONTE CARLO METHOD

Nicrovas Merrorous axp 8. Urax
Los Alamos Laboratory

We shall present here the motivation and & general deserip-
tion of & method dealing with a class of problems in mathe-
matical physics. The method is, essentially, a statistical
approsch to the study of differential equations, or more
generally, of integro-differential equations that occur in
wvarious branches of the natural sciences.

LREADY in the nineteenth century a sharp distinction began to ap- Image Source:
pear between two different mathematical methods of treating 3 . . .
physieal phenomena. Problems involving only a few particles were http://www.manhattanprojectvoices.org/or
studied in classical mechanics, through the study of systems of ordinary al-histories/nicholas-metropolis-interview
differential equations. For the description of systems with very many
particles, an entirely different technique was used, namely, the method
of statistical mechanics. In this latter approach, one does not concen-
trate on the individual particles but studies the properties of sefs of
particles. In pure mathematics an intensive study of the properties of
sets of points was the subject of a new field. This iz the so-called theory
of sets, the basic theory of integration, and the twentieth century de-
velopment of the theory of probabilities prepared the formal apparatus
for the use of such models in theoretical physics, i.e., deseription of

THE JOURNAL OF CHEMICAL PHVSICS

VOLUME 21, NUMBER & JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicworas Amanxa W. R

Mamsuazz N. , axp Avovsta H. Teiiex,

Los Alawos Scientific Labaralory, Las Alamos, New Mexico

axn

Eowarp TeLLek,* Department af Physics, University of Chicago, Chicage, Hlinais
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations af
state for sabstances consisting of interacting individual molecules is described. The methad consisis of &
‘madified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been abtained on the Los Alamos MANTAC and are preseated here. These results are compaced
1o the free volume equation of state and to a four-term virial coefficient expansion.

1. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of & molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
imensi lculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, Califomia.

IL. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number V may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. Tn order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define d45, the minimum distance between particles .
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider anly the minimum distance d1p.

tWe will use the two-dimensional nomenclature here since it
i easier to visualizn:, The extension to three dimensions is obvious.

].J.m-perhes .?f ﬂ.ggmgmm al pointa rather than of individeal points and Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 1953. Equation of State Calculations

by Fast Computing Machines. The Journal of Chemical Physics, 21, (6), 1087-1092, doi:10.1063/1.1699114.
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12,081 10.4.2018 - 10,624 26.03.2017 — 14,798 as of 22.4.2020

So what is the MH-algorithm doing ? /o HCAI

Hastings, W. K. 1970. Monte Carlo sampling

methods using Markov chains and their

applications. Biometrika, 57, (1), 97-109.

Biometrika (1970}, 57, 1, p. 97 97
Printed in Great Britain

Monte Carlo sampling methods using Markov
chains and their applications
Br W. K. HASTINGS
University of Toronto

SuMMARY
A ization of the ing method i duced by M polis et al. (1953) is pre-
sented along with an exposition of the relevant theory, techniques of application and
methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the
methods, including the g ion of random orth | matrices and pnmntml applica-
tions of the methods to ical problems arising in statistics, are d

1. INTRODUCTION
For numerical problems in a large number of rhmenmnna Monte Csrlo methods are often

more efficient than conventional ical mbhnda L i ul' the
Monte Carlo methods requires ling from high d i

and this may be very difficult and expensive in analysnsa,ndwmpu!ernme Gemara,l methods
for ling from, or estimating ex| ions with respect to, such distributions are as
follows.

(i) Ifpossible, factorize the distribution into the product of one-dimensional conditional
distributions from which samples may be obtained.
(i) Use importance sampling, which may also be used for variance reduction. That is, in
order to evaluate the integral
7 = [forpiariz - B,

where p(x) is a probability density function, instead of obtaining independent samples
Zu. oo o from pl) and using the estimate J, = £ffz)(N. we instead obtain thesample from

1: Choose a starting point x'.
2 fori=2to L do

3 Draw a candldate sample ™ from the proposal §(a'[x'~1).

5: ifa>1 then Jr = J"‘""‘r

6 else

7 draw a random value wu uniformly from the unit interval [0, 1].
8 if u < a then ! = zoond

9 else

Barber, D. 2012. Bayesian reasoning
and machine learning, Cambridge,

Cambridge University

10.’ IJ { 1
& 11 end if
s 12 end if
ﬁ‘-é;ﬁ’ L7 13: end for
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What is importance sampling in general ? /o HCAI TUE Why is Gibbs Sampling important ? /o HCAI
® I[mportance sampling is a technique to approximate averages with ® The Gibbs Sampler is an
respect to an intractable distribution p(x). interesting special case of MH:
* The term ‘sampling’ is arguably a misnomer since the method -
does not attempt to draw samples from p(x). -
= Rather the method draws samples from a simpler importance L -
distribution g(x) and then reweights them E‘_“ LT
» such that averages with respect to p(x) can be approximated .
using the samples from g (x).
L S 5
=
Image Source: Peter Mueller,
Anderson Cancer Center
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How to learn modular structures from Network Data ?

Graphical Model /o HCAI

human-centered.ai

Node Vanable Data (X)

- : Model for
Model for variables
Em . network data
Modular Structures Wik Neitvetor' ) it y) b
E —A, H
[
N e T + :
5 a i a
3 Fu e P2y ) i
b -
§ = '—tA’ 2 b
Y[ | #<o i
8 @0 (% (i) e & ° A
2 W
iywvEEE §e
; N fa
| 5
Contett) W 0 z

Elham Azizi, Edoardo M. Airoldi & James E. Galagan. Learning Modular Structures from Network Data and Node
Variables. In: Xing, Eric P. & Jebara, Tony, eds. Proceedings of the 31st International Conference on Machine Learning
(ICML), 2014 Beijing. JMLR, 1440-1448.
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How can you estimate the parameters using RIMCMC ?

human-centered.ai

Ny
K kR k o

A

o3

Elham Azizi, Edoardo M. Airoldi & James E. Galagan. Learning Modular Structures from Network Data and Node
Variables. In: Xing, Eric P. & Jebara, Tony, eds. Proceedings of the 31st International Conference on Machine Learning
(ICML), 2014 Beijing. JMLR, 1440-1448.
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Myobacterium tuberculosis Gene Regulatory Network

human-centered.ai

Algorithm 1 RIMCMC for sampling parameters § I
Inputs: § o
Nexle Variahles Dara X E
Network Data B < e o Co— o
for iterations j = 1 to J do -
Sample AU+ given AU using Alg 2 in (Azizi et al., = "awwwm“{L
2014) 10000 TR0 i
Sample SO+ given SU) using Alg 3 in (Azizi et al., ‘ !
2[}|4p} * e L WP—‘—'H" e TR o, PO 4% 3
for modules k = 1 to K0 do o ] l|||“]| | |'_|| J'[]l“| ll.ﬂll’llfTH 3
Propose w) ' R .-\f(u-i”, I) 2 LI o5
Accept with probability §%,y,; update 30+ ol — —h
for parents r = 1 to i) do : Tt .

Propose :;[H V. .-'\-r{.:;_[j] ) aceept with By,
Propose ﬂLU+I} ~ N(E 1) accept with

P
end for E )
end for N
for condition ¢ = 1to C'do_ §
Propose ger 2 o A (™Y 1); secept with By, g
Propose vor T o A7 (™9, 1); accept with Py, = —integrated model
- e W RrIAbRS mOciel
end for o
end for o
(5] 04 [13 [T 1
False Positve Rate

Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014. Learning Modular Structures from Network Data and Node Variables.
Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.
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Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014. Learning Modular Structures from Network Data and Node Variables.
Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.
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An alternative approach

Discrete time modelling of disease incidence time series by MCMC

k=l K -

Tk Thent

W), o Pin ? beien by,

?

? 25

MPFA(2)
e \‘\

7(1.2)

2,2)
Zn (? z}l

Qi

(pracn) (pracn) (pracn)

O x (].[)XE?’

(v)

Henao, R., Lu, J. T., Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep
poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.
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Discrete-time stochastic epidemic model of COVID-19
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Modeliing of Disease Incidence Time Series
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Alexander Morton & Bérbel F. Finkenstadt 2005. Discrete time modelling of disease incidence time series by
using Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series C (Applied Statistics),
54, (3), 575-594, doi:10.1111/j.1467-9876.2005.05366.x
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& (1) is the mumber of susceptible individuals who become newly infected:

& fitr) is the number of guarantined susceptible individuals who have contact with infected indi-
viduals bus ane riot infected:

mber of new cases with symptom onset;

imber of new confirmsed and adritted patients:

o fyte) s the mumber of new death from infected individuals;

& Byt is the mumbsr of newly recovered from infocted individuals;

o By(1) is the mumber of people released from quarantine;

o By, (1) is the number of people admitted to hospital (also isolated):

o Batn)is b of newly recovered from hospitalized cases,

o Balf s the mimmber of new death from Mospitalizd cases

(1 - )8y, ()
S@) | ——

Sha He, Sanyi Tang & Libin
Rong 2020. A discrete
stochastic model of the
COVID-19 outbreak:
Forecast and control.
Journal of Mathematical
Biosciences & Engineering,
17, (4), 2792-2804,
doi:10.3934/mbe.2020153
https://www.aimspress.co
m/MBE/2020/4/2792

(Online open available)

Quarantine

B () - B3a(t)

Death

Enr:;l

== 1)
—_—

B3, (1)
Bgy (t)
B“‘:Ejl
Death
™

L(Byy (1), B2(1), B2 (1), B3y (1), B3a(1), Baz(t), By (1), Bs (1), B (1), Be(1)]©) = l_[ £ /(B (D))
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06 Probabilistic
Programming
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TUESS Book recommendations

/& HEA!

@;"ﬁ:{f So, what is probabilistic programming ?

Avi Pfeffer 2016.

Practical probabilistic
programming, Shelter
Island (NY), Manning.

. BAYESIAN
METHODS

HaCkers

»
B

O BAVIGEGH RILOR

Cameron Davidson-Pilon 2015.
Bayesian methods for hackers:
probabilistic programming and
Bayesian inference, Addison-
Wesley Professional.

OF PROBABILISTIC

Fabrizio Riguzzi 2018.
Foundations of
Probabilistic Logic
Programming, River
Publishers.

Arnaud N. Fadja & Fabrizio Riguzzi 2017. Probabilistic Logic Programming in Action. In: Holzinger, Andreas, Goebel,
Randy, Ferri, Massimo & Palade, Vasile (eds.) Towards Integrative Machine Learning and Knowledge Extraction:
BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers. Cham: Springer, pp. 89-116,

doi:10.1007/978-3-319-69775-8_5.

= Probabilistic thinking is a valuable tool for decision making

= Overcoming uncertainties is the huge success currently in machine
learning (and for Al ;-)

= Probabilistic reasoning is a versatile tool

= PPLs are domain specific languages that use probabilistic models
and the methods to make inferences in those models

= The “magic” is in combining “probability methods” with
“representational power”
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TUESS Probabilistic-programming.org /o HCA! TV Medical Example ALl
= C — Probabilistic-C - pommm g

Scala — Figaro

Scheme — Church

Excel — Tabular

Prolog — Problog

Javascript — webPP
. — Venture
Python - PyMC

human-centered.ai

PYMCsieas v

kov chain Monte Carlo

IR L T NG B
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* Simple example: Nucleotide “A™ may follow nucleotide “T" in the
sequences more frequently for outcome X than for outcome Y,

P(AIT,X)>P(AIT,Y) 2

Priof Distbuson
1o Nacloatides

Slll s

PeID)= P(DLZ))'

Experimenial Daia

« Specily the prior distribution:

~ Specity the experimental data:
oxp_duta = rpamranlly, 1.3.2.2.1.0,..0)

« Spacity tha value to maimize using numerical simulation,
‘as well a3 the expected form of the postarior distribution:

o pym import Categarica
1.1 = Caegorcal(cat, prob. dit, vshio-aep. data, cbrsevod-Troe)

o o) ERILED)  piop)- AL LE)

Image Source: Dan Williams, Life Technologies, Austin TX
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Why is decision making so hard for machines ?

Digression on
Concept Learning

human-centered.ai 109

m B Recursive reasoning: a case for probabilistic programming

2021 health Al 01

human-centered.ai

You are talking to you colleague and want to refer
to the middle object — which wording would you
prefer: circle or blue?

Michael C. Frank & Noah D. Goodman 2012. Predicting pragmatic reasoning in language games.
Science, 336, (6084), 998-998, doi:10.1126/science.1218633.

2021 health Al 01

var literallListener = function(property){
Infer(func

return cbject

\wvar speaker = function{object) {
Infer(function(){
var property = propPrior()
condition(
obiject ==

var listener = function(property)
Infer( ction(){
fPrior(context)

Noah D. Goodman & Michael C. Frank 2016. Pragmatic language interpretation as probabilistic

inference. Trends in Cognitive Sciences, 20, (11), 818-829, doi:10.1016/j.tics.2016.08.005.
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Why do we need
concepts ?
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Concepts can be defined as a category membership

= can be relational and abstract 0

= category = set of objects that
have commonalities

= concept = mental representation  J, s &
of categories W N

= concepts can be defined, e.g. ‘
triangle = a polygon with three

two people sitting on

sides, a gland = group of cells
. v a bench and talking

o O prE

() X F

Cigdem Gunduz-Demir, Melih Kandemir, Akif Burak Tosun & Cenk Sokmensuer (2010). Automatic segmentation
of colon glands using object-graphs. Medical image analysis, 14, (1), 1-12, doi:10.1016/j.media.2009.09.001.
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hman (2017). Building machines that learn and think like people.
Behavioral and Brain Sciences, 40, (e253), doi:10.1017/S0140525X16001837.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum & Samuel J.

@
4
o

O

2021 health Al 01

HUMAN PROTEIN ATLAS &

RNA cancer category: Cancer enhanced (prostate cancer)
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https://www.proteinatlas.org

human-centered.ai = S =

TUESS What is ground truth ? Where is the ground truth ? /o HCAI

Example: How do human pathologists make diagnoses ?

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal & Heimo Midiller (2019). Causability and Explainability of Artificial Intelligence
in Medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9, (4), 1-13, doi:10.1002/widm.1312.
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» := information provided by direct observation (empirical evidence)
in contrast to information provided by inference

= Empirical evidence = information acquired by observation or by
experimentation in order to verify the truth (fit to reality) or falsify (non-
fit to reality).

= Empirical inference = drawing conclusions from empirical data
(observations, measurements)

® Causal inference = drawing conclusions about a causal connection based
on the conditions of the occurrence of an effect

® Causal machine learning is key to ethical Al in health to model

explainability for bias avoidance and algorithmic fairness for decision
making

Mattia Prosperi, Yi Guo, Matt Sperrin, James S. Koopman, Jae S. Min, Xing He, Shannan Rich, Mo Wang, lain E. Buchan, Jiang Bian (2020). Causal inference
and counterfactual prediction in machine learning for actionable healthcare. Nature Mach.Intelligence, 2, (7), 369-375, doi:10.1038/s42256-020-0197-y
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Wassily Kandinsky (1866 — 1944)

/& HEA!

Hubel & Wiesel (1962): Our world is compositional !

Kandinsky

Punkt und Linie zu Fliche

Note: Image is in the public domain and is used according UrhG §42 lit. f Abs 1 as “Belegfunktion” for discussion with students

https://de.wikipedia.org/wiki/Wassily Kandinsk

Komposition VIII, 1923, Solomon R. Guggenheim Museum, New York. Source:

human-centered.ai

When is a cup a cup? (When is a cat a cat?)

2021 health Al 01

View-tuned cells

ology, 160, (1),

Complex compaosite cells (C2)

‘Composite feature cells (52)

Stimulus

David H. Hubel & Torsten N. Wiesel
doi:10.1113/jphysiol.1962.sp006837

1962. Receptive fields, binocular

Complex cells (C1)
i~

260

i~

® 8o @@G)@ Simple cells (51)

—— weighted sum
=== MAX

Maximilian Riesenhuber & Tomaso Poggio (1999). Hierarchical models of
object recognition in cortex. Nature Neuroscience, 2, (11), 1019-1025,
doi:10.1038/14819.

David G.T. Barrett, Ari S. Morcos & Jakob H. Macke (2019). Analyzing biological and
artificial neural networks: challenges with opportunities for synergy? Current
opinion in neurobiology, 55, 55-64.
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Concept learning

= Bruner, Goodnow, and Austin (1956)
published “A Study of Thinking”, which
became a landmark in cognitive science
and has much influence on machine
learning.

= Rule-Based Categories

= A concept specifies conditions for
membership

Jerome S. Bruner, Jacqueline J. Goodnow & George A. Austin 1986. A Study of Thinking, Transaction Books.

human-centered.ai 119

which is highly relevant for ML research, concerns the factors that
determine the subjective difficulty of concepts:

= Why are some concepts psychologically extremely simple and easy
to learn,
= while others seem to be extremely difficult, complex, or even

incoherent?

These questions have been studied since the 1960s but are still
unanswered ...

Feldman, J. 2000. Minimization of Boolean complexity in human concept learning. Nature, 407,
(6804), 630-633, doi:10.1038/35036586.
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Al

N HMAN CONTERERS

m : How can we model basic cognitive capacities as intuitive Bayes ?

m : How does our mind get so much out of it ?

Al

N o CeNTERER R

= Similarity
» Representativeness and evidential l fmeest

support

Absiract domain principles

Intuitive theary

l F{Structure | Principles)

= Causal judgement

Structured probabilistic modal

= Coincidences and causal discovery

l FData | Structure)

= Diagnostic inference

Observable dala

= Predicting the future

P(x|h, TP(h|T
o T) = (x|h, T)P(R|T)

P(} =
. > weu, Pxlh', T)PR'|T)

Joshua B. Tenenbaum, Thomas L. Griffiths & Charles Kemp 2006. Theory-based Bayesian models of inductive
learning and reasoning. Trends in cognitive sciences, 10, (7), 309-318, doi:10.1016/j.tics.2006.05.009.

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical

nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.
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TUES How can we learn words for objects — concepts from examples /o HCAI TUES How do we understand our world ? (HCAI
Al ® « M g ) P(d|h)P(h) ) .
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Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric
Bayesian model. Journal of Machine Learning Research, 27, 195-207.
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Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind:

Foatures

Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285.
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What is probabilistic program induction ? /o HCAI

What is the difference between deduction, induction, abduction ? /o HCAI

HOMIN CENTERERE

A ) i) B ) iii).é?
I |

¢ld gl

Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015. Human-level concept learning
through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.
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= Deductive Reasoning = Hypothesis > Observations > Logical Conclusions (general
— specific — proven correctness)
= DANGER: Hypothesis must be correct! DR defines whether the truth of a conclusion can be
determined for that rule, based on the truth of premises: A=B, B=C, therefore A=C
= |nductive reasoning = makes broad generalizations from specific observations
(specific — general — not proven correctness)
= DANGER: allows a conclusion to be false if the premises are true
= generate hypotheses and use DR for answering specific questions
= Abductive reasoning = inference = to get the best explanation from an
incomplete set of preconditions.

= Given a true conclusion and a rule, it attempts to select some possible premises that, if true
also, may support the conclusion, though not uniquely.

= Example: "When it rains, the grass gets wet. The grass is wet. Therefore, it might have
rained." This kind of reasoning can be used to develop a hypothesis, which in turn can be
tested by additional reasoning or data.
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Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015. Human-level concept learning
through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.
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Drawn by Human or Machine Learning Algorithm ? /o HCAI What can a Bayesian program learning (BPL) framework do ? /o HCAI
A Bayesian program learning (BPL) framework, capable of learning a
A

| 5 ’\U T X | B rand
ptindiyes GENERATETYPE om people

A m /\ # +— P(r) = Sample number of parts
fori=1..xdo

T .S ber of sub-part;
i} sub-parts :)—)D L l—) . 5| L & Sample number of sub-parts
\u/ / N l .L i 51y & Plsyylsis1y) & Sample sub-part sequence
end for
iii) parts 3 ’b L =5 ] [ R, PURSY, i) & Sample relatien
J ¥ L end for

s 3 N ¢ {5, RS}

::m’g“: ,,,,.m,\' « ""’"""'\wb —— return @GENERATETOKEN(Y) & Return program
P attachad along atiached along attached al start
type lovel |

|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, M e e R L S R e
token level
procedure GENERATETOKEN(1/)
fori = 1..xdo
&" (S™ IS = Add motor variance
v) exemplars 31_‘ "

vi) raw data

ampla part’s start location
!> Compose a parl's Irajeclory

- Sample affine transform
= Sample image
return /(")

Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015. Human-level concept learning
through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.
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What can we do with graphical models ?

Does a relationship exist? If yes ... how strong?

Classes: {R, D, S} (Risks, Diseases, Symptoms)

Principles
Causal laws:R =D, D— S

Structure

High
fat diet

Haan Lung
dlsea 1) cancer,

Joshua B. Tenenbaum, Thomas L.
Griffiths & Charles Kemp 2006.
Theory-based Bayesian models of
inductive learning and reasoning.
Trends in cognitive sciences, 10, (7),
doi:10.1016/j.tics.2006.05.009.

.;g: hast pa\n Guughlng Headachs Few‘sr
Patient 1: Stressful lifestyle
s Chest Pain
Patient 2: Smoking
Coughing
Patient 3: Working in factory
Chest Pain
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Classes: {R, D, 5}
Causal laws: R == D, D—+=5

?)

ozg S
Classes: {C}
Causal laws: C = C

[Classes: (R, D, S}
Causal laws: D+~ R, 5+ §

e T
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= Cognition as probabilistic inference

= Visual perception, language acquisition, motor learning, associative learning, memory,
attention, categorization, reasoning, causal inference, decision making,
theory of mind

= |Learning concepts from examples
= |earning causation from correlation

= Learning and applying intuitive theories
(balancing complexity vs. fit)
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Appendix
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