

Welcome

What will we learn today?

185.A83 Machine Learning for Health Informatics 2021S, VU, 2.0 h, 3.0 ECTS Andreas Holzinger, Rudolf Freund Marcus Bloice, Florian Endel, Anna Saranti

From Decision Making under Uncertainty to Probabilistic Graphical Models

Contact: andreas.holzinger AT tuwien.ac.at

https://human-centered.ai/lv-185-a83-machine-learning-for-health-informatics-class-of-2021

- 00 Reflection from last lecture
- 01 Decision Making under uncertainty
- 02 Some Basics of Graphs/Networks
- 03 Bayesian Networks (BN)
- 04 Markov Chain Monte Carlo (MCMC)
- 05 Metropolis Hastings Algorithm (MH)
- 06 Probabilistic Programming (PP)

human-centered.ai

1

2021 health AL 01

human-centered.a

2

2021 health AI 01

A HCAI

Warm-up Quiz

human-centered.ai 3 2021 health Al 01 human-centered.ai 4 2021 health Al 01

- Symbolic ML
 - First order logic, inverse deduction, knowledge composition
 - Tom Mitchell, Steve Muggleton, Ross Quinlan, ...
- Bayesian ML
 - Statistical learning, probabilistic inference
 - Judea Pearl, Michael Jordan, David Heckermann, ...
- Cognitive ML
 - Analogisms from Psychology, Kernel machines

■ Vladimir Vapnik, Peter Hart, Douglas Hofstaedter, ... Connectionist ML Neuroscience, Backpropagation ■ Geoffrey Hinton, Yoshua Bengio, Yann LeCun, ... Evolutionary ML Nature-inspired concepts, genetic programming John Holland (1929-2015), John Koza, Hod Lipson, ...

■ Decision node Chance node Outcome No further Microinvasive cancer of the cervix Radical hysterectomy Survives (p=99.5%) Spread (p=2%)

Physician treating a patient approx. 480 B.C. Beazley (1963), Attic Red-figured Vase-Painters 813 96 Department of Greek Etruscan and Roman Antiquities, Sully, 1st floor, Campana Gallery, room 43 Louvre, Paris

Elwyn, G., Edwards, A., Eccles, M. & Rovner, D. 2001. Decision analysis in patient care. The Lancet, 358, (9281), 571-574.

Death from cancer

Probability 2%

Fertile survival

Utility 100%

Surgical death

Infertile survival

Infertile survival

Probability 5%

Death from cancer Probability 5%

Utility 95%

Utility 5%

Utility 95%

Probability 98%

Utility 0%

Probability 0.5%

Probability 98%

Utility 5%

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

A HCAI

A short historical digression: whom do you see here?

Both Images are in the public domain

Remember: What is "personalized medicine"?

Zhang, Y. T. & Poon, C. C. Y. (2010) Editorial Note on Bio, Medical, and Health Informatics. Information Technology in Biomedicine, IEEE Transactions on, 14, 3, 543-545.

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

01 Decision Making under uncertainty

Pierre-Simon Laplace 1781. Mémoire sur les probabilités. Mémoires de l'Académie Royale des sciences de Paris, 1778, 227-332.

https://www.voutube.com/watch?v=T3sxeTgT4qc

Yoshua Bengio: From System 1 Deep Learning to System 2 Deep Learning (NeurIPS 2019)

SYSTEM 1 VS. SYSTEM 2 COGNITION

Daniel Kahneman 2011. Thinking, fast and slow, New York, Macmillan.

Amos Tversky & Daniel Kahneman 1974. Judgment under uncertainty: Heuristics and biases. Science, 185, (4157), 1124-1131, doi:10.1126/science.185.4157.1124

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

Decision Making: Learn good policy for selecting actions

Goal: Learn an optimal policy for selecting best actions within a given **context** For t = 1, ..., TBench

de SS1 4F 9 → TELEN II- SPEICHERN

- 1) The world produces a "context" $x_t \in X$
- 2) The learner selects an action $a_t \in \{1, ..., K\}$

Bedside

3) The world reacts with a reward $r_t(a_t) \in [0,1]$

under uncertainty!

2021 health AI 01 2021 health AI 01 human-centered.a human-centered.ai

A HCAI

SCIENCE

Reasoning Foundations of Medical Diagnosis

Symbolic logic, probability, and value theory aid our understanding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to analyze the complicated reasoning processes inherent in medical diagnosis. The importance of this problem has received recent emphasis by the increasing interest in the use of electronic computers as an aid to medical diagnostic processes

fitted into a definite disease category, or that it may be one of several possible disbe determined." This, obviously, is a greatly simplified explanation of the process of diagnosis, for the physician might also comment that after seeing a

ance are the ones who do remember and consider the most possibilities.'

Computers are especially suited to help the physician collect and process clinical information and remind him of diagnoses which he may have overlooked. In many cases computers may be as simple as a set of hand-sorted cards. whereas in other cases the use of a large scale digital electronic computer may be indicated. There are other ways in which computers may serve the physician and some of these are suggested in this paper. For example, medical students might find the computer an important aid in learning the methods of differential diagnosis. But to use the computer thus we must understand how the physician makes a medical diagnosis. This then brings us to the subject of our investigation: the reasoning foundations of medical diagnosis and treatment.

Medical diagnosis involves processes that can be systematically analyzed, as well as those characterized as "intangible." For instance, the reasoning foundations of medical diagnostic procedures

2021 health Al 01

human-centered.a

human-centered.a

What about the accuracy and uncertainty in medicine?

2021 health AI 01

The variability and . Proceedings of the

Anthony L. Komaroff 1979. The inaccuracy of medical data. P. IEEE, 67, (9), 1196-1207.

Why is the patient-doctor dialogue so important?

Medical (clinical) data are defined and detected disturbingly "soft" ...

13

- ... having an obvious degree of variability and inaccuracy.
- Taking a medical history, the performance of a physical examination. the interpretation of laboratory tests, even the definition of diseases ... are surprisingly inexact.
- Data is defined, collected, and interpreted with a degree of variability and inaccuracy which falls far short of the standards which engineers do expect from most data.
- Moreover, standards might be interpreted variably by different medical doctors, different hospitals, different medical schools, different medical cultures, ...

Anthony L. Komaroff 1979. The variability and inaccuracy of medical data. Proceedings of the IEEE, 67, (9), 1196-1207.

Clinician influences patient's giving of information Patient influences clinician's reception of information Patient provides Clinician collects/ information interprets information Clinician makes tentative Patient seeks decisions about diagnosis medical care treatment, and prognosis Clinician describes/ Patient responds with certain feelings, and explains these decisions to patient decides to take those therapeutic actions recommended by clinician Patient's response influences clinician's decisions Clinician's description/explanation influences patient's response Outcome of medical care

2021 health AI 01 human-centered.ai human-centered.a

2021 health AI 01

d ... data

 $\mathcal{H}\{h_1, h_2, ..., h_n\}$

UNCERTAINTY $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta) * p(\theta)}{p(\mathcal{D})}$ Cues $\frac{p(\theta|\mathcal{D})}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta) * p(\theta)}{p(\mathcal{D})}$ Selective Attention $\frac{p(\theta|\mathcal{D})}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta) * p(\theta)}{p(\mathcal{D})}$ Unclaim the perception Attention Action Outcomes $\frac{p(\theta|\mathcal{D})}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta) * p(\theta)}{p(\mathcal{D})}$ Unclaim the perception Action Outcomes of outco

Image by Christopher D. Wickens 1984, modified by Andreas Holzinger 2004

Feedback

2021 health Al 01

human-centered.ai

17

2021 health Al 01

human-centered.ai

What are Probabilistic Graphical Models (PGM)?

- PGM can be seen as a combination between
- Graph Theory + Probability Theory + Machine Learning
- One of the most exciting advancements in Al in the last decades with enormous future potential
- Compact representation for exponentially-large probability distributions $P_{ath}(X,Y) := edge(X,Y)$
- Example Question:= edge (X,Y), path(Z,Y)

 "Is there appath noomneesping at world proteins?"

human-centered.ai 19 2021 health Al 01 human-centered.ai 20 2021 health Al 01

Image from https://people.kth.se/~carlofi/teaching/FEL3250-2013/courseinfo.html

Leonhard Euler 1741. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae, 8, 128-140.

Pearl, J. 1988. Embracing causality in default reasoning. Artificial Intelligence, 35, (2), 259-271.

2021 health AI 01 22 2021 health AI 01 human-centered.ai 21 human-centered.ai

275 years later ... the "Nobel-prize in Computer Science"

Nobel Prize in Chemistry 2013

http://amturing.acm.org/vp/pearl_2658896.cfm

Scientific Background on the Nobel Prize in Chemistry 2013

DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS

Martin Karplus

Michael Levitt

Prize share: 1/3 Prize share: 1/3

Prize share: 1/3 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

http://news.harvard.edu/gazette/story/2013/10/nobel prize awarded 2013

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.ai

- What do you see here?

- Graphs as models for networks
- given as direct input (point cloud data sets)
- Given as properties of a structure
- Given as a representation of information (e.g. Facebook data, viral marketing, etc., ...)

- Graphs as nonparametric basis
- we learn the structure from samples and infer
- flat vector data, e.g. similarity graphs
- encoding structural properties (e.g. smoothness, independence, ...)

2021 health AI 01 human-centered.ai 25 human-centered.a

TU TECHNISCHI UNIVERSITATI VICTOR VICTOR VICTOR VICTOR VICTOR VICTOR VICTOR ACUTOR VICTOR VIC

Why is time and space important in health informatics?

Why is the Complexity Problem: Time versus Space affecting us?

Time

e.g. Entropy

Dali, S. (1931) The persistence of memory

Space

e.g. Topology

Bagula & Bourke (2012) Klein-Bottle

P versus NP and the Computational Complexity Zoo, please have a look at https://www.youtube.com/watch?v=YX40hbAHx3s

2021 health AI 01 2021 health AI 01 human-centered.ai 27 human-centered.a

Wiltgen, M. & Holzinger, A. (2005) Visualization in Bioinformatics: Protein Structures with Physicochemical and Biological Annotations. In: Central European Multimedia and Virtual Reality Conference. Prague, Czech Technical University (CTU), 69-74

Wiltgen, M., Holzinger, A. & Tilz, G. P. (2007) Interactive Analysis and Visualization of Macromolecular Interfaces Between Proteins. In: Lecture Notes in Computer Science (LNCS 4799). Berlin, Heidelberg, New York, Springer, 199-212.

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

First yeast protein-protein interaction network

First human protein-protein interaction network

Nodes = proteins Links = physical interactions (bindings) Red Nodes = lethal Green Nodes = non-lethal Orange = slow growth Yellow = not known

Jeong, H., Mason, S. P., Barabasi, A. L. & Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature, 411, 6833, 41-42.

2021 health AI 01 32 2021 health AI 01 human-centered.ai 31 human-centered.a

Hurst, M. (2007), Data Mining: Text Mining,

09-24

Social Behavior Contagion Network

Aral, S. (2011) Identifying Social Influence: A Comment on Opinion Leadership and Social Contagion in New Product Diffusion. Information object Marketing Science, 30, 2, 217-223.

human-centered.ai

human-centered.ai

2021 health AI 01

Human Disease Network -> Network Medicine

03 Bayesian **Networks** "Bayes' Nets"

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.ai

David Barber 2012. Bayesian reasoning and machine learning, Cambridge, Cambridge University Press.

http://www.cs.ucl.ac.uk/staff/d.barber/brml/

Daphne Koller & Nir Friedman 2009. Probabilistic graphical models: principles and techniques, MIT press.

https://goo.gl/6a7rOC

Chapter 8 Graphical Models is as sample chapter fully downloadable for free

Chris Bishop 2006. Pattern Recognition and Machine Learning, Heidelberg, Springer.

http://bayes.cs.ucla.edu/BOOK-2K/

Judea Pearl 2009. Causality: Models, Reasoning, and Inference (2nd Edition), Cambridge, Cambridge University Press.

human-centered.ai

human-centered.a

What are the rules of probability?

2021 health AI 01

$$P(x) = \sum_{y} P(x, y) \qquad P(x, y) = P(y|x)P(x)$$

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

37

$$P(x) = \sum_{y} P(x|y)P(y)$$

38

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.ai 40

- random processes in which the future, given the present, is independent of the past!
- one of the most important classes of random processes!

Med Decis Making Vol. 3, No. 4, 1983

The Markov Process in Medical Prognosis

J. Robert Beck, M.D., and Stephen G. Pauker, M.D.

The physician's estimate of prognosis under alternative treatment plans is a principal factor in therapeutic decision making. Current methods of reporting prognosis, which include five-year survivals, survival curves, and quality-adjusted life expectancy, are crude estimates of natural history. In this paper we describe a general-purpose model of medical prognosis based on the Markov process and show how this simple mathematical tool may be used to generate detailed and accurate assessments of life expectancy and health status. (Med Decis Making 3:419-458, 1983)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis, D. 2015. Human-level control through deep reinforcement learning. Nature, 518, (7540), 529-533, doi:10.1038/nature14236

human-centered.ai 41 2021 health Al 01 human-centered.ai 42 2021 health Al 01

From where do we know such behaviour?

Standard RL-Agent Model goes back to Cybernetics 1950


```
initialize V(s) arbitrarily loop until policy good enough loop for s \in \mathcal{S} loop for a \in \mathcal{A} Q(s,a) := R(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s,a,s') V(s') V(s) := \max_a Q(s,a) end loop end loop
```

Kaelbling, L. P., Littman, M. L. & Moore, A. W. 1996. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.

human-centered.ai 43 2021 health Al 01 human-centered.ai 44 2021 health Al 01

Supervised:

Exhaustive:

possible *x*

past a

human-centered.a

Learner told best a

Learner shown every

One-shot: Current

x independent of

Intelligent behavior arises from the actions of an individual seeking to maximize its received reward

Sutton, R. S. & Barto, A. G. 1998. Reinforcement learning: An introduction, Cambridge MIT press

signals in a complex and changing world

Littman, M. L. 2015, Reinforcement learning improves behaviour from evaluative feedback. Nature, 521, (7553), 445-451.

Bandits one-shot

2021 health AI 01

human-centered.a

2021 health AI 01

Problem Formulation in a MDP

- Markov decision processes specify setting and tasks
- Planning methods use knowledge of P and R to compute a good policy π
- Markov decision process model captures both sequential feedback and the more specific one-shot feedback (when P(s'|s,a) is independent of both s and a

 $Q^*(s, a) = R(s, a) + \gamma \Sigma P(s'|s, a) \max_{s} Q^*(s', a')$

Littman, M. L. 2015. Reinforcement learning improves behaviour from evaluative reedback. Nature, 521, (7553), 445-451.

Agent observes environmental state at each step t

- 1) Overserves
- 2) Executes
- 3) Receives Reward
- Executes action A_t :
- \bullet $O_t = sa_t = se_t$
- Agent state = environment state = information state
- Markov decision process (MDP)

Observation O.

Image credit to David Silver, UCL

2021 health AI 01 2021 health AI 01 human-centered.a human-centered.ai

- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S is visible, it may contain irrelevant information
- A State S_t is Markov iff:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, \dots, S_t]$$

- i.e. whatever information the agent uses to pick the next action
- it is the information used by reinforcement learning algorithms
- It can be any function of history:
- S = f(H)

human-centered.a

 $H_t = O_1, R_1, A_1, ..., A_{t-1}, O_t, R_t$

human-centered.a

Components of RL Agents and Policy of Agents

What if the environment is only partially observable?

- RL agent components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment
 - Policy as the agent's behaviour
 - is a map from state to action, e.g.
 - Deterministic policy: a = (s)
 - Stochastic policy: (ajs) = P[At = ajS t = s
 - Value function is prediction of future reward:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

- Partial observability: when agent only indirectly observes environment
- Formally this is a Partially Observable Markov Decision Process (POMDP):
 - Agent must construct its own state representation S, for example:
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^e = s^n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

2021 health AI 01 2021 health AI 01 numan-centered.a

Back to Bayesian Networks

Undirected: Markov random fields, useful e.g. for computer vision (Details: Murphy 19)

Directed: Bayes Nets, useful for designing models (Details: Murphy 10)

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

$$p(\mathbf{x}) = \prod_s f_s(\mathbf{x}_s)$$

human-centered.ai

1 health Al 01

human-centered.ai

1

2021 health AI 01

So, what is a directed Bayesian Network (BN)?

TU TECHNISCHE UNIVERSITÄT WITH WITH Vierna | Austra

Example: Directed Bayesian Network with 7 nodes

- is a **probabilistic model**, consisting of two parts:
- 1) a dependency structure and
- 2) local probability models.

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i \mid Pa(x_i))$$

Where $Pa(x_i)$ are the parents of x_i

BN inherently model the <u>uncertainty in the data.</u> They are a successful marriage between probability theory and graph theory; allow to model a multidimensional probability distribution in a sparse way by searching independency relations in the data. Furthermore this model allows different strategies to integrate two data sources.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, Morgan Kaufmann.

human-centered.ai 55 2021 health Al 01 human-centered.ai 56 2021 health Al 01

Overmover, B. A., Lee, J. M. & Lerwill, M. F. (2011) Case 17-2011 A 49-Year-Old Woman with a Mass in the Breast and Overlying Skin Changes. New **England Journal of** Medicine, 364, 23, 2246-2254.

- Danger: probable Information!
- Therefore valid prognostic models can be of great benefit for clinical decision making and of great value to the patient, e.g., for notification and quality of-life decisions

Knaus, W. A., Wagner, D. P. & Lynn, J. (1991) Short-term mortality predictions for critically ill hospitalized adults: science and ethics. Science, 254, 5030, 389.

2021 health AI 01 57 human-centered.a

human-centered.a

2021 health AI 01

How can one predict the future on past data and present status?

Example: Breast cancer - Probability Table

Risk factors Pathogenesis Disorders Pathophysiology Findings	patient model	Risk factors Pathogenesis Disorders Pathophysiology Findings
physic	- HD	future

van Gerven, M. A. J., Taal, B. G. & Lucas, P. J. F. (2008) Dynamic Bayesian networks as prognostic models for clinical patient management. Journal of Biomedical Informatics, 41, 4, 515-529.

Category State description Node description Diagnosis Present, absent. Breast cancer Clinical his-Habit of drinking alcoholic beverages and Yes, no. smoking Taking female hormones Yes, no. Have gone through menopause Yes. no. Have ever been pregnant Yes. no. Family member has breast cancer Yes, no. Physical find- Nipple discharge Yes, no. Skin thickening Yes, no. Breast pain Yes, no. Have a lump(s) Yes, no. Mammo-Architectural distortion Present, absent graphic findings Mass Score from one to three, score from four to five, Microcalcification cluster Score from one to three, score from four to five, absent Asymmetry Present, absent

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. International Journal of Medical Informatics, 54, 2, 115-126.

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

Breast cancer - big picture - state of 1999

10 years later: Integration of microarray data

Alcoholic & Skin Nipple Breast Smoking Thickening Discharge Pain Hormones Have a Lump Breast Cancer Menopause Pregnant Mass Architectural Microcalci-Family Tissue

Wang, X. H., et al. (1999) Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. *International Journal of Medical Informatics*, 54, 2, 115-126.

Asymmetry

fications

Distortion

 Integrating microarray data from multiple studies to increase sample size;

= approach to the development of more robust prognostic tests

Xu, L., Tan, A., Winslow, R. & Geman, D. (2008) Merging microarray data from separate breast cancer studies provides a robust prognostic test. *BMC Bioinformatics*, *9*, *1*, 125-139.

human-centered.ai 61 2021 health Al 01 human-centered.ai 62 2021 health Al 01

Example: Bayes Net with four binary variables

History

Concept Markov-Blanket

Gevaert, O., Smet, F. D., Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. *Bioinformatics*, 22, 14, 184-190.

networks. *Bioinformatics, 22, 14,*

184-190.

human-centered.ai 63 2021 health Al 01 human-centered.ai 64 2021 health Al 01

- First the structure is learned using a search strategy.
- Since the number of possible structures increases super exponentially with the number of variables.
- the well-known greedy search algorithm K2 can be used in combination with the Bayesian Dirichlet (BD) scoring metric:

$$p(S|D) \propto p(S) \prod_{i=1}^{n} \prod_{j=1}^{q_i} \left[\frac{\Gamma(N'_{ij})}{\Gamma(N'_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N'_{ijk} + N_{ijk})}{\Gamma(N'_{ijk})} \right]$$

 N_{ijk} ... number of cases in the data set D having variable i in state k associated with the j-th instantiation of its parents in current structure S. n is the total number of variables.

- Next, N_{ij} is calculated by summing over all states of a variable:
- $N_{ij} = \sum_{k=1}^{r_i} N_{ijk} \cdot N'_{ijk}$ and N'_{ij} have similar meanings but refer to prior knowledge for the parameters.
- When no knowledge is available they are estimated using $N_{ijk} = N/(r_i q_i)$
- with N the equivalent sample size.
- r_i the number of states of variable i and
- q_i the number of instantiations of the parents of variable i.
- $\Gamma(.)$ corresponds to the gamma distribution.
- Finally p(S) is the prior probability of the structure.
- p(S) is calculated by:
- $p(S) = \prod_{i=1}^{n} \prod_{l=1}^{p_i} p(l_i \to x_i) \prod_{m=1}^{o_i} p(m_i x_i)$
- with p_i the number of parents of variable x_i and o_i all the variables that are not a parent of x_i .
- Next. $p(a \to b)$ is the probability that there is an edge from a to b while p(ab) is the inverse, i.e. the probability that there is no edge from a to b

2021 health AI 01 2021 health AI 01 human-centered.a human-centered.a

Parameter learning -> second step

Predicting the prognosis of breast cancer (integrated a.)

- Estimating the parameters of the local probability models corresponding with the dependency structure.
- CPTs are used to model these local probability models.
- For each variable and instantiation of its parents there exists a CPT that consists of a set of parameters.
- Each set of parameters was given a uniform Dirichlet prior:

$$p(\theta_{ij}|S) = Dir(\theta_{ij}|N'_{ij1}, ..., N'_{ijk}, ..., N'_{ijr_i})$$

Note: With θ_{ij} a parameter set where i refers to the variable and j to the j-th instantiation of the parents in the current structure. θ_{ij} contains a probability for every value of the variable x_i given the current instantiation of the parents. Dir corresponds to the Dirichlet distribution with $(N'_{ij1},...,N'_{ijr_i})$ as parameters of this Dirichlet distribution. Parameter learning then consists of updating these Dirichlet priors with data. This is straightforward because the multinomial distribution that is used to model the data, and the Dirichlet distribution that models the prior, are conjugate distributions. This results in a Dirichlet posterior over the parameter set:

$$p(\theta_{ij}|D,S) = Dir(\theta_{ij}|N'_{ij1} + N_{ij1}, ..., N'_{ijk} + N_{ijk}, ..., N'_{ijr_i} + N_{ijr_i})$$

with N_{iik} defined as before.

Timmerman, D., Moreau, Y. & Moor, B. D. (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22, 14. 184-190.

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

- For certain cases it is tractable if:
 - Just one variable is unobserved
 - We have singly connected graphs (no undirected loops -> belief propagation)
 - Assigning probability to fully observed set of variables
- Possibility: Monte Carlo Methods (generate many samples according to the Bayes Net distribution and then count the results)
- Otherwise: approximate solutions ...

Often it is better to have a good solution within time – than an perfect solution too late ...

2021 health AI 01

human-centered.a

/0

2021 health AI 01

human-centered.a

What Classes of Graphical Models do we know?

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press.

human-centered.ai 71 2021 health Al 01 human-centered.ai 72 2021 health Al 01

weighted

Murphy, K. P. 2012. Machine learning: a probabilistic perspective, Cambridge (MA), MIT press.

Image credit to Anna Goldenberg, Toronto

weighted

Transcription factor

2021 health AI 01

Undirected

Undirected

human-centered.ai

Remember

A HCAI

A HCAI

human-centered.a

- Medicine is an extremely complex application domain dealing most of the time with uncertainties -> probable information!
- When we have big data but little knowledge automatic ML can help to gain insight:
- Structure learning and prediction in large-scale biomedical networks with probabilistic graphical models
- If we have little data and deal with NP-hard problems we still need the human-in-the-loop

Baldi, P. & Pollastri, G. 2003. The principled design of large-scale recursive neural network architectures--dag-rnns and the protein structure prediction problem. The Journal of Machine Learning Research, 4, 575-602.

2021 health AI 01 2021 health AI 01 human-centered.ai 75 human-centered.a

- Hypothesis: most biological functions involve the interactions between many proteins, and the complexity of living systems arises as a result of such interactions.
- In this context, the problem of inferring a global protein network for a given organism,
- using all (genomic) data of the organism,
- is one of the main challenges in computational biology

Yamanishi, Y., Vert, J.-P. & Kanehisa, M. 2004. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics, 20, (suppl 1), i363-i370.

77

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J. & Kriegel, H.-P. 2005. Protein function prediction via graph kernels. Bioinformatics, 21, (suppl 1), i47-i56.

- Important for health informatics: Discovering relationships between biological components
- Unsolved problem in computer science:
- Can the graph isomorphism problem be solved in polynomial time?
 - So far, no polynomial time algorithm is known.
 - It is also not known if it is NP-complete
 - We know that subgraph-isomorphism is NP-complete

human-centered.ai 78 2021 health Al 01

human-centered.a

Finally a practical example

04 Markov Chain Monte Carlo (MCMC)

Monte Carlo Method (MC)
Monte Carlo Sampling
Markov Chains (MC)
MCMC

Metropolis-Hastings

human-centered.ai 79 2021 health Al 01 human-centered.ai 80 2021 health Al 01

 Often we want to calculate characteristics of a high-dimensional probability distribution ...

 $p(\mathcal{D}|\theta)$

$$p(h|d) \propto p(\mathcal{D}|\theta) * p(h)$$

Posterior integration problem: (almost) all statistical inference can be deduced from the posterior distribution by calculating the appropriate sums, which involves an integration:

$$J = \int f(\theta) * p(\theta|\mathcal{D}) d\theta$$

 Statistical physics: computing the partition function – this is evaluating the posterior probability of a hypothesis and this requires summing over all hypotheses ... remember:

$$\mathcal{H} = \{H_1, H_2, ..., H_n\} \quad \forall (h, d)$$

 $P(h|d) = \frac{P(d|h) * P(h)}{\sum_{h' \in \mathcal{H}} P(d|h')P(h')}$

human-centered.a

A HCAI

human-centered.a

2021 health AI 01

Summary: What are Monte Carlo methods?

- Class of algorithms that rely on repeated random sampling
- Basic idea: using **randomness** to solve problems with high uncertainty (Laplace, 1781)
- For solving multidimensional integrals which would otherwise intractable
- For simulation of systems with many dof
- e.g. fluids, gases, particle collectives, cellular structures see our last tutorial on Tumor growth simulation!

2021 health AI 01 2021 health AI 01 human-centered.ai

- for solving problems of probabilistic inference involved in developing computational models
- as a source of hypotheses about how the human mind might solve problems of inference
- For a function f(x) and distribution P(x), the expectation of fwith respect to P is generally the average of f, when x is drawn from the probability distribution P(x)

$$\mathbb{E}_{p(x)}(f(x)) = \sum_{X} f(x)P(x)dx$$

human-centered.a

Solving intractable integrals

- Bayesian statistics: normalizing constants, expectations, marginalization
- Stochastic Optimization
- Generalization of simulated annealing
- Monte Carlo expectation maximization (EM)

human-centered.a

Physical simulation via MC

Notations

- Physical simulation
- estimating neutron diffusion time
- Computing expected utilities and best respon equilibria
- Computing volumes in high-dimensions
- Computing eigen-functions and values of operators legg. Schrödinger)
- Statistical physics
- Counting many things as fast as possible

• Expectation of a function f(x, y) with respect to a random variable x is denoted by $\mathbb{E}_x [f(x,y)]$

- In situations where there is no ambiguity as to which variable is being averaged over, this will be simplified by omitting the suffix, for instance $\mathbb{E}x$.
- If the distribution of x is conditioned on another variable z, then the corresponding conditional expectation will be written $\mathbb{E}_{x}[f(x)|z]$
- Similarly, the variance is denoted var[f(x)], and for vector variables the covariance is written cov[x, y]

human-centered.a 2021 health AI 01 2021 health AI 01

 $\operatorname{argmax} f(x)$

Normalization: $p(x|y) = \frac{p(y|x) * p(x)}{\int_X p(y|x) * p(x) dx}$

 $p(x) = \int_{\mathbb{R}} p(x, z) dz$ Marginalization:

Expectation: $\mathbb{E}_{p(x)}(f(x)) = \int_{Y} f(x)p(x)dx$

05 Metropolis-Hastings Algorithm

2021 health AI 01 human-centered.a 2021 health Al 01 human-centered.ai

34,140 cits (26.3.2017)- 37,202 (10.4.2018) - 41,751 (22.4.2020)

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

SEPTEMBER 1949

THE MONTE CARLO METHOD

NICHOLAS METROPOLIS AND S. ULAM Los Alamos Laboratory

We shall present here the motivation and a general description of a method dealing with a class of problems in mathematical physics. The method is, essentially, a statistical approach to the study of differential equations, or more generally, of integro-differential equations that occur in

ALREADY in the nineteenth century a sharp distinction began to appear between two different mathematical methods of treating physical phenomena. Problems involving only a few particles were studied in classical mechanics, through the study of systems of ordinary differential equations. For the description of systems with very many particles, an entirely different technique was used, namely, the method of statistical mechanics. In this latter approach, one does not concentrate on the individual particles but studies the properties of sets of particles. In pure mathematics an intensive study of the properties of sets of points was the subject of a new field. This is the so-called theory of sets, the basic theory of integration, and the twentieth century development of the theory of probabilities prepared the formal apparatus for the use of such models in theoretical physics, i.e., description of properties of aggregates of points rather than of individual points and

Image Source: http://www.manhattanprojectvoices.org/or al-histories/nicholas-metropolis-interview

THE IOURNAL OF CHEMICAL PHYSICS

VOLUME 21. NUMBER 6

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configurations space. Results for the voi-climensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term wind coefficient expansion.

I. INTRODUCTION

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules. Classical statistics is assumed, only two-body forces are considered, and the potential field of a molecule is assumed spherically symmetric These are the usual assumptions made in theories of liquids. Subject to the above assumptions, the method is not restricted to any range of temperature or density. This paper will also present results of a preliminary twodimensional calculation for the rigid-sphere system. Work on the two-dimensional case with a Lennard-land potential is in progress and will be reported in a squares which compress the complete substance. I we appare the compress the complete substance in the compress the complete substance. I we appare the compress the complete substance in the compress the complete substance. I we appare the compress the complete substance in the compress the complete substance in the compress the compress the complete substance. In we appare the compress the c later paper. Also, the problem in three dimensions is

*Now at the Radiation Laboratory of the University of Cali-fornia. Livermore, California.

† We will use the two-dimensional nomenclature here since it is easier to visualize. The extension to three dimensions is obvious.

II. THE GENERAL METHOD FOR AN ARBITRARY POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for numerical work, we can, of course, consider only a finite number of particles. This number N may be as high as several hundred. Our system consists of a square† containing N particles. In order to minimize the surface effects we suppose the complete substance to be periodic, consisting of many such squares, each square containing N particles in the same configuration. Thus we define d_{AB} , the minimum distance between particles Aand B, as the shortest distance between A and any o the particles B, of which there is one in each of the squares which comprise the complete substance. If we have a potential which falls off rapidly with distance, consider only the minimum distance d_{AB} .

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 1953. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21, (6), 1087-1092, doi:10.1063/1.1699114.

2021 health AI 01 2021 health AI 01 human-centered.ai 91 human-centered.a

Biometrika (1970), 57, 1, p. 97 Printed in Great Britain

97

Monte Carlo sampling methods using Markov chains and their applications

By W. K. HASTINGS University of Toronto

A generalization of the sampling method introduced by Metropolis et al. (1953) is pre sented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the methods, including the generation of random orthogonal matrices and potential applications of the methods to numerical problems arising in statistics, are discussed

1. Introduction

For numerical problems in a large number of dimensions, Monte Carlo methods are often more efficient than conventional numerical methods. However, implementation of the Monte Carlo methods requires sampling from high dimensional probability distributions and this may be very difficult and expensive in analysis and computer time. General methods for sampling from, or estimating expectations with respect to, such distributions are as

- (i) If possible, factorize the distribution into the product of one-dimensional conditional distributions from which samples may be obtained.
- (ii) Use importance sampling, which may also be used for variance reduction. That is, in order to evaluate the integral $J = \int f(x) p(x) dx = E_n(f),$

where p(x) is a probability density function, instead of obtaining independent samples x_1, \dots, x_N from p(x) and using the estimate $\hat{J}_1 = \sum f(x_i)/N$, we instead obtain the sample from

So what is the MH-algorithm doing?

 Choose a starting point x¹. 2: for i=2 to L do

if $a \ge 1$ then $x^l = x^{cand}$

 $x^l=x^{l-1}$

end if

end if

if u < a then $x^l = x^{cand}$

11:

12:

13: end for

Draw a candidate sample x^{cand} from the proposal $\tilde{q}(x'|x^{l-1})$.

draw a random value u uniformly from the unit interval [0,1].

human-centered.a

human-centered.a

2021 health AI 01

2021 health AI 01

What is importance sampling in general?

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, (1), 97-109.

Why is Gibbs Sampling important?

- Importance sampling is a technique to approximate averages with respect to an intractable distribution p(x).
- The term 'sampling' is arguably a misnomer since the method does not attempt to draw samples from p(x).
- Rather the method draws samples from a simpler importance distribution q(x) and then reweights them
- such that averages with respect to p(x) can be approximated using the samples from q(x).

■ The Gibbs Sampler is an interesting special case of MH:

Image Source: Peter Mueller, Anderson Cancer Center

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

Elham Azizi, Edoardo M. Airoldi & James E. Galagan. Learning Modular Structures from Network Data and Node Variables. In: Xing, Eric P. & Jebara, Tony, eds. Proceedings of the 31st International Conference on Machine Learning (ICML), 2014 Beijing, JMLR, 1440-1448.

Elham Azizi, Edoardo M. Airoldi & James E. Galagan. Learning Modular Structures from Network Data and Node Variables. In: Xing, Eric P. & Jebara, Tony, eds. Proceedings of the 31st International Conference on Machine Learning (ICML), 2014 Beijing. JMLR, 1440-1448.

human-centered.ai 97 2021 health Al 01 human-centered.ai 98 2021 health Al 01

How can you estimate the parameters using RJMCMC?

Myobacterium tuberculosis Gene Regulatory Network

Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014. Learning Modular Structures from Network Data and Node Variables. Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.

Azizi, E., Airoldi, E. M. & Galagan, J. E. 2014. Learning Modular Structures from Network Data and Node Variables. Proceedings of the 31st International Conference on Machine Learning (ICML). Beijing: JMLR. 1440-1448.

human-centered.ai 99 2021 health Al 01 human-centered.ai 100 2021 health Al 01

Henao, R., Lu, J. T., Lucas, J. E., Ferranti, J. & Carin, L. 2016. Electronic health record analysis via deep poisson factor models. Journal of Machine Learning Research JMLR, 17, 1-32.

101

Modelling of Disease Incidence Time Series

Alexander Morton & Bärbel F. Finkenstädt 2005. Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54, (3), 575-594, doi:10.1111/j.1467-9876.2005.05366.x

2021 health AI 01 2021 health AI 01 human-centered.a

human-centered.ai

Discrete-time stochastic epidemic model of COVID-19

- $B_{11}(t)$ is the number of susceptible individuals who become newly infected; $B_{12}(t)$ is the number of quarantined susceptible individuals who have contact with infected individuals tare not infected.
- viduals but are not infected; $B_{21}(t)$ is the number of new cases with symptom onset; $B_{31}(t)$ is the number of new confirmed and admitted patients $B_{32}(t)$ is the number of new death from infected individuals;
- B₁₃(t) is the number of newly recovered from infected individuals;
- $\theta_{33}(t)$ is the number of newly recovered from microtic unavousity. $\theta_{44}(t)$ is the number of people released from quarantine; $\theta_{34}(t)$ is the number of people admitted to hospital (also isolated); $\theta_{34}(t)$ is the number of newly recovered from hospitalized cases; $\theta_{32}(t)$ is the number of newly recovered from hospitalized cases; $\theta_{32}(t)$ is the number of new death from hospitalized cases;

Sha He, Sanyi Tang & Libin Rong 2020. A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Journal of Mathematical Biosciences & Engineering, 17, (4), 2792-2804, doi:10.3934/mbe.2020153 https://www.aimspress.co

m/MBE/2020/4/2792

(Online open available)

Death

$$L(B_{11}(t),B_{12}(t),B_{21}(t),B_{31}(t),B_{32}(t),B_{33}(t),B_{41}(t),B_{51}(t),B_{61}(t),B_{62}(t)|\Theta) = \prod_{i=0}^{T^n} g_{i,j}(B_{ij}(t)|\cdot)$$

06 Probabilistic Programming

2021 health AI 01 2021 health AI 01 human-centered.ai 103 human-centered.ai 104

Avi Pfeffer 2016. Practical probabilistic programming, Shelter Island (NY), Manning. Cameron Davidson-Pilon 2015. Bayesian methods for hackers: probabilistic programming and Bayesian inference, Addison-Wesley Professional. Fabrizio Riguzzi 2018. Foundations of Probabilistic Logic Programming, River Publishers.

Arnaud N. Fadja & Fabrizio Riguzzi 2017. Probabilistic Logic Programming in Action. In: Holzinger, Andreas, Goebel, Randy, Ferri, Massimo & Palade, Vasile (eds.) Towards Integrative Machine Learning and Knowledge Extraction: BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers. Cham: Springer, pp. 89-116, doi:10.1007/978-3-319-69775-8_5.

Probabilistic thinking is a valuable tool for decision making

- Overcoming uncertainties is the huge success currently in machine learning (and for AI;-)
- Probabilistic reasoning is a versatile tool
- PPLs are domain specific languages that use probabilistic models and the methods to make inferences in those models
- The "magic" is in combining "probability methods" with "representational power"

human-centered.ai 105 2021 health Al 01 human-centered.ai 106 2021 health Al 01

Probabilistic-programming.org

Medical Example

- $C \rightarrow Probabilistic-C$
- Scala → Figaro
- Scheme → Church
- Excel → Tabular
- Prolog → Problog
- Javascript → webPP
- ightharpoonup Venture
- Python → PyMC

Image Source: Dan Williams, Life Technologies, Austin TX

human-centered.ai 107 2021 health Al 01 human-centered.ai 108 2021 health Al 01

Digression on Concept Learning

You are talking to you colleague and want to refer to the middle object – which wording would you prefer: circle or blue?

Michael C. Frank & Noah D. Goodman 2012. Predicting pragmatic reasoning in language games. *Science*, 336, (6084), 998-998, doi:10.1126/science.1218633.

human-centered.ai 109 2021 health Al 01 human-centered.ai 110 2021 health Al 01 02021 hea

Why do we need concepts?

Noah D. Goodman & Michael C. Frank 2016. Pragmatic language interpretation as probabilistic inference. *Trends in Cognitive Sciences*, 20, (11), 818-829, doi:10.1016/j.tics.2016.08.005.

human-centered.ai 111 2021 health Al 01 human-centered.ai 112 2:

Concepts can be defined as a category membership

HCAI

- can be relational and abstract
- category = set of objects that have commonalities
- concept = mental representation of categories
- concepts can be defined, e.g. triangle = a polygon with three sides, a gland = group of cells

two people sitting on a bench and talking

https://www.proteinatlas.org

human-centered.ai

Cigdem Gunduz-Demir, Melih Kandemir, Akif Burak Tosun & Cenk Sokmensuer (2010). Automatic segmentation of colon glands using object-graphs. Medical image analysis, 14, (1), 1-12, doi:10.1016/j.media.2009.09.001.

A HCAI

Example: How do human pathologists make diagnoses?

Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal & Heimo Müller (2019). Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9, (4), 1-13, doi:10.1002/widm.1312.

human-centered.a

What is ground truth? Where is the ground truth?

- := information provided by direct observation (empirical evidence) in contrast to information provided by inference
 - *Empirical evidence* = information acquired by observation or by experimentation in order to verify the truth (fit to reality) or falsify (nonfit to reality).
 - Empirical inference = drawing conclusions from empirical data (observations, measurements)
 - Causal inference = drawing conclusions about a causal connection based on the conditions of the occurrence of an effect
 - Causal machine learning is key to ethical AI in health to model explainability for bias avoidance and algorithmic fairness for decision making

Mattia Prosperi, Yi Guo, Matt Sperrin, James S. Koopman, Jae S. Min, Xing He, Shannan Rich, Mo Wang, lain E. Buchan, Jiang Bian (2020). Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nature Mach.Intelligence, 2, (7), 369-375, doi:10.1038/s42256-020-0197-y

2021 health AI 01 2021 health AI 01 human-centered.ai

Note: Image is in the public domain and is used according UrhG \$42 lit. f Abs 1 as "Belegfunktion" for discussion with students Komposition VIII, 1923, Solomon R, Guggenheim Museum, New York, Source: https://de.wikipedia.org/wiki/Wassily Kandinsky

117

David G.T. Barrett, Ari S. Morcos & Jakob H. Macke (2019). Analyzing biological and artificial neural networks: challenges with opportunities for synergy? Current opinion in neurobiology, 55, 55-64 human-centered.a 118

human-centered.a

When is a cup a cup? (When is a cat a cat?)

2021 health AI 01

Concept learning

2021 health AI 01

- Bruner, Goodnow, and Austin (1956) published "A Study of Thinking", which became a landmark in cognitive science and has much influence on machine learning.
 - Rule-Based Categories
 - A concept specifies conditions for membership

- which is highly relevant for ML research, concerns the factors that determine the subjective difficulty of concepts:
- Why are some concepts psychologically extremely simple and easy to learn,
- while others seem to be extremely difficult, complex, or even incoherent?
- These questions have been studied since the 1960s but are still unanswered ...

Jerome S. Bruner, Jacqueline J. Goodnow & George A. Austin 1986. A Study of Thinking, Transaction Books.

Feldman, J. 2000. Minimization of Boolean complexity in human concept learning. Nature, 407, (6804), 630-633, doi:10.1038/35036586.

2021 health AI 01 2021 health AI 01 human-centered.ai human-centered.a

- Representativeness and evidential support
- Causal judgement
- Coincidences and causal discovery
- Diagnostic inference
- Predicting the future

Joshua B. Tenenbaum, Thomas L. Griffiths & Charles Kemp 2006. Theory-based Bayesian models of inductive learning and reasoning. Trends in cognitive sciences, 10, (7), 309-318, doi:10.1016/j.tics.2006.05.009.

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.

human-centered.ai 121 2021 health Al 01 human-centered.ai 122 2021 health Al 01

How do we understand our world?

Salakhutdinov, R., Tenenbaum, J. & Torralba, A. 2012. One-shot learning with a hierarchical nonparametric Bayesian model. Journal of Machine Learning Research, 27, 195-207.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. 2011. How to grow a mind: Statistics, structure, and abstraction. Science, 331, (6022), 1279-1285.

human-centered.ai 123 2021 health Al 01 human-centered.ai 124 2021 health Al 01

Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015, Human-level concept learning through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.

Deductive Reasoning = Hypothesis > Observations > Logical Conclusions (general

- → specific proven correctness)
- DANGER: Hypothesis must be correct! DR defines whether the truth of a conclusion can be determined for that rule, based on the truth of premises: A=B, B=C, therefore A=C
- Inductive reasoning = makes broad generalizations from specific observations $(specific \rightarrow general - not proven correctness)$
 - DANGER: allows a conclusion to be false if the premises are true
 - generate hypotheses and use DR for answering specific questions
- Abductive reasoning = inference = to get the best explanation from an incomplete set of preconditions.
 - Given a true conclusion and a rule, it attempts to select some possible premises that, if true also, may support the conclusion, though not uniquely.
 - Example: "When it rains, the grass gets wet. The grass is wet. Therefore, it might have rained." This kind of reasoning can be used to develop a hypothesis, which in turn can be tested by additional reasoning or data.

2021 health AI 01 2021 health AI 01 human-centered.a 126 human-centered.a

Drawn by Human or Machine Learning Algorithm?

What can a Bayesian program learning (BPL) framework do?

A Bayesian program learning (BPL) framework, capable of learning a and 0 om people

Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015. Human-level concept learning through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050.

Brenden M. Lake, Ruslan Salakhutdinov & Joshua B. Tenenbaum 2015. Human-level concept learning through probabilistic program induction. Science, 350, (6266), 1332-1338, doi:10.1126/science.aab3050

2021 health AI 01 2021 health AI 01 human-centered.ai 127 human-centered.a 128

2021 health AI 01

A HCAI

- Cognition as probabilistic inference
 - Visual perception, language acquisition, motor learning, associative learning, memory, attention, categorization, reasoning, causal inference, decision making, theory of mind
- Learning concepts from examples
- Learning causation from correlation
- Learning and applying intuitive theories (balancing complexity vs. fit)

human-centered.ai 130 2021 health Al 01

human-centered.ai

Appendix