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What’s missing?



ML in real life: humans matter
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Is my model any good? Is it racist?

I/ (Why did it say that? |

@ Can | trust this?
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( Which model / features should | use? ] ( Should I trust / deploy this model?

End-user

Business / Product person 3




explain
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make (an idea, situation, or problem) clear to someone by describing it in more detail or revealing
relevant facts or ideas.
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¢ What are explanations for?




Purpose of explanation

this book?

1. Augment humans I Should | buy ] L‘brzﬁlil)djloghrr?:t

Why is Mary ] ( What is wrong |
?

How do | diagnose
disease X?
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Purpose of explanation
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Purpose of explanation

2. Help humans evaluate the Al

( Can | trust |

GDPR compliance!
! Is the Al racist? | | _ Explain every prediction!

&
Al A
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Purpose of explanation
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General Specific



Purpose of explanation

3. Help humans improve the Al

What kind of data
should | get?

latanya sweoenay |
Latanya Sweeney Truth
waAw instanicheckmald, com
Looking for Latanya Sweeney? Check Latanya Sweeney's Amasts
b Y i~ ~u |.]J'

Latanya Sweeney, Arrested?
www inslantcheckr

Latanya Sweeney
Public Records | For: Latanya Swoenoy. View Now

WWAWY . pUDRCTeCOrnds . Com
| need a new How do | fix
architecture? this?
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¢ What are explanations for?

O Augment humans
O Evaluate the Al
D Improve the Al

< What questions do you have?
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Example: predicting income

Feature Value
Age 37 < Age < 48
Workclass Private
Education < High School
Marital Status Married
Occupation Craft-repair
Relationship Husband
Race Black
Sex Male
Capital Gain 0
Capital Loss 0
Hours per week < 40
Country United States

Census Data
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Salary

Less than 50K D 71%

i More than 50K 29% '
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Explanation(s)
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Explanation(s) Which one is the best?

lob type
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Feature importance

Men Women
Sliced Statistics
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¢ What are explanations for?

O Augment humans
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< What questions do you have?
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Works a ot
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Technique: how to get explanations

Can | please have
Interpretable ML?

I’'m comfortable with

I = lagh School
Works & lot
Age > 528

—

L
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Interpretable model
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A, Exact
= Fast

(

G—

Black box explanations

Sure, bring your model
and we’ll explain it

B\, More accurate
[= Flexible




Technique: how to get explanations

Can | trust the Al to
diagnose patients alone?

—

"

L

Interpretable model

—

Sure! Give me a few
more years : )
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A, Exact
2 Fast

(

G—

Black box explanations

Let me give you Rich’s
contact info...

B\, More accurate
[= Flexible




Accuracy vs Interpretability

Accuracy
Real-world use case
/
Research on

,\N 0 Af-/ interpretable models
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V/\ %
Interpretability
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Deep Learning / Ensembles

Focus on accuracy! Human-level
Accuracy
Real-world use case
/

%

Interpretability

19



Being Model-Agnostic...

lgnore the internal structure

/\
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|

Explain any existing, or future model

Compare any 2 models to each other

Adapt explanation to target user
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Model-Agnostic: Explain Any Classifier!

Accuracy _4

— " Make everything

.\t:' interpretable!

V/\ %
Interpretability
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Interpretable model

Accurac ‘
4 Avoid shortcuts,
‘real” accuracy

V/\ %
Interpretability
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< What questions do you have?
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LIME

"Why Should | Trust You?": Explaining the Predictions of Any Classifier
Ribeiro et al, KDD 2016



Explaining individual predictions

“Global” explanation is too complicated
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Being Local...

“Global” explanation is too complicated

26



Being Local...

Explanation is locally faithful

“Global” explanation is too complicated
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What an explanation looks like

AY%
\ l From:Kgith Richards
Subject: Chris!ianity is the answer
Atheism ,-b o NTTP-Posting-Host x.x.com
Christia nity Test set Accuracy | think Christianity is the one true religion.

If you'd like to know more, send me a note

RBF SVM
Prediction Probabilities

Atheism
atheism E 9
ations Christianity , 82%
christianity 18% '
Posting L

Host
E—— 3
Keith

Maode| seems good,

t5h'sdesk dtaemphexplarn

— 11% of training, always in atheism
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Local Interpretable Model-Agnostic Explanations

1. Sample points around x

2. Get predictions from complex model !‘

3. Weight samples according to ﬁ @
distance to x @

4. Learn simple model on \
weighted samples \

5. Use simple model to explain x

29



Interpretable representations

—

X (embeddings)
—~[——3\ \.\')\Yﬂ o,\l
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X' (words)

This is a horrible movie.

8
B

We use x’ to perturb and explain




Interpretable representation: images

I

X (3 color channels / pixel)

|

X' (contiguous superpixels)
g

2




Sampling example - images

Original Image
P(labrador) =0.21

Perturbed Instances

P(Labrador)

Locally weighted
regression

Explanation



Explaining Global behavior

LIME explains a single prediction

Can’t examine all explanations,
pick k to show the user

Chosen set must be representative...

...and diverse

How: Submodular optimization

33



LIME
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¢ What are explanations for?
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Interpretable models

Black box
LIME [Ribeiro et al 2016]




Experiments

Purpose




Experiment: Wolf or a Husky?

N

Predicted: Predicted: husky Predicted: v

True: True: husky True:

Only 1 mistake!

Predicted: husky Predicted. woll
True: husky True: woli



Neural Network Explanations

s o e
| &

Predicted: husky
True: husky

We built a deep snow detector

37



Do ML people get this insight?
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Tna Fegey

ML Person -

' A
P

Pradictad: Prisct by Pradicsed: v
Toue: pusky  Tru husky Trua
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1. Would you trust this model?
2. What is the model doing?




Explanations help experts get insights, avoid mistakes

B Before explanations M After explanations

92,6
88,9

44,4

% of subjects (out of 27)

Didn't trust the "Snow insight"
model 39



Experiments

Purpose

D Augment humans
\ &/ satathe Al

L) Improve the A




Experiment: Model selection

Turkers asked to pick model that generalizes better

Example #3 of 6

True Class: . Atheism

COCO 0O

Algorithm 1
Words that Al considers important:

GOD

mean

Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nnip-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp
Lines: 8

Algorithm 2
Words that A2 considers important: Predicted:

Posting
Host
Re

by

in

Nntp

Document
From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp
Lines: 8

41



Turkers can do model selection

% picked better model

50

Guessing LIME - Random LIME - Submodular

42



Fixing bad classifiers

‘—"—é New

Dataset

Atheism ————§

Christianity

Repeat

Turkers don’t know

Atheism  Christianity Atheism (?hrist.ianity about this dataset
Chrlstlanlty Chrlstnan!gﬂ
RegtTT Posting
-

Host,
| . n
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Turkers can do feature engineering

0,8 Train on 20 newsgroups

)
N turkers clean data

c 075 - °

s

S 07 - / Train on hand-cleaned
i 20 newsgroups

O 0,65 -

>

O

C 06

8 ' Train on 20 newsgroups
O

<{ 0,55 -
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Experiments

Purpose

D Augment humans
EA Evaluate the Al
BA Improve the Al
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LIME vs SHAP

What’s the difference?



Different meanings for weights

LIME: weight is local
approximation

Average age

If you inSJElsA'EE:, W@dg hIN'\S

John’s age contributes positively
towards f(x) w.r.t. the average.
L Ergo, Age has posive weight —

fge Which one is right?

canteibiition W.rt baseline



Another example

)

LIME: Age doesn’t matter

John

SHAP: Age has positive weight




SHAP experiments
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Real-time hypoxemia prediction

, — Anesthesiologist + Prescience
- Anesthesiologist

.0 0.2 0.4 0.6 0.8 1.0

FPR (% of non-desats incorrectly predicted)

Lundberg et al., Explainable machine-learning predictions for the prevention of
hypoxemia during surgery, Nature Biomedical Engineering 2018 (cover article)
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