Learning from Mutual Explanations for Cooperative Decision Making in Medicin

Ute Schmid & Bettina Finzel

Cognitive Systems, Applied Computer Science, University of Bamberg www.uni-bamberg.de/cogsys

AI+Health, University Luxembourg, Nov. 4, 2020

Machine Learning - From the Lab to the Real World

- Impressive success of deep learning
- CNNs, LSTMs, GANs
- AlexNet, AlphaGo, DeepFace, DeepL

www.researchgate.net/publication/ 323108787_Introduction_to_Machine_ Learning/

$\mathsf{BUT:} \hookrightarrow \mathsf{Data} \text{ engineering bottleneck}$

- Some domains only have small data sets
- Data sets often are highly imbalanced
- Sampling biases may be not avoidable
- Ground truth labeling either not existent or expensive

Machine Learning - From the Lab to the Real World

- Impressive success of deep learning
- CNNs, LSTMs, GANs
- AlexNet, AlphaGo, DeepFace, DeepL

www.researchgate.net/publication/

323108787_Introduction_to_Machine_

Learning/

$\mathsf{BUT:} \hookrightarrow \mathsf{Necessity} \text{ of explainability}$

- Transparency for ML experts: recognize overfitting
- For critial domains: Provable safety guaranties for deep neural nets
- Legal/ethical obligation to explain decisions to end-users
- Establish trust for joint human-machine decision making

Tim Miller, Explanation in artificial intelligence, AIJ 2019

U. Schmid (CogSys, UniBA)

- **Inductive Logic Programming** (ILP) as highly expressive approach to interpretable machine learning
- Multimodal Explanation Generation for Interactive Learning

• Application Examples

- Classification of medical images (BMBF ML3 TraMeExCo)
- ► Facial expression analysis (DFG PainfaceReader)

Inductive Logic Programming (ILP)

- Proposed by Stephen Muggleton 1991
- Highly expressive interpretable ML approach
- Learning declarative programs from small data sets
- Models can capture arbitrary relations, can be defined over variables, allow recursion
- Exploiting relational structure in data
- Natural combination of reasoning and learning
- Allows translation into verbal explanations

- Hypotheses/models are represented as Prolog programs
- Examples are presented by target predicates (positive and negative) and by background knowledge
- In some approaches: also by background theories
- Uniform representation as Horn clauses

Gulwani, Hernandez-Orallo, Kitzelmann, Muggleton, Schmid, Zorn, Inductive Programming meets the real world, CACM, 2015

Example: Family Domain

% Background Knowledge father(jake,bill). m father(jake,john). m father(bill,ted). m father(bill,megan). m father(john,harry). m father(john,susan). m father(ted,bob). m father(ted,jane). m father(harry,san). m father(harry,jo). m mother(liz,san). m

mother(matilda,bill).
mother(matilda,john).
mother(alice,jill).
mother(alice,ted).
mother(alice,megan).
mother(mary,harry).
mother(mary,susan).
mother(mary,andy).
mother(jill,bob).
mother(jill,jane).
mother(liz,jo).

% Examples

grandparent(matilda,megan).
grandparent(matilda,harry).
grandparent(jake,susan).

```
not grandparent(megan,matilda).
not grandparent(jake,jake).
not grandparent(matila,alice).
```

```
% Learned hypothesis (parent can be background theory or invented)
grandparent(X,Y) :- parent(X, Z), parent(Z,Y).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
```

- FOIL (Quinlan, 1990): Generate-and-test, sequential covering cf. ID3, C4.5, simulteneous covering by the same author
- Golem, Progol, Aleph, Metagol (Muggleton, since 1990ies): inverse deduction principle in different variants
- Igor (Kitzelmann & Schmid, 2006; Schmid & Kitzelmann, 2011): Inductive (functional) programming
- ProbLog (de Raedt, 2007): combining logical and statistical learning

Algorithm

FOIL(*Target_predicate*, *Predicates*, *Examples*)

- Pos ← those Examples for which the Target_predicate is True
- Neg ← those Examples for which the Target_predicate is False
- Learned_rules $\leftarrow \{\}$
- while Pos, Do
 - ► *NewRule* ← the rule that predicts *Target_predicate* with no precondition
 - $\blacktriangleright NewRuleNeg \leftarrow Neg$
 - ▶ while NewRuleNeg, Do
 - Candidate_literals ← generate new literals for NewRule, based on Predicates
 - $Best_literal \leftarrow argma_{L \in Candidate_literals} FoilGain(L, NewRule)$
 - add Best_literal to preconditions of NewRule
 - ► Learned_rules ← Learned_rules + NewRule
 - ▶ Pos ← Pos {members of Pos covered by NewRule}
- Return Learned_rules

Probabilistic Inductive Logic Programming

- Statistical Relational Learning (StarAI)
- Motivation: Biological Graphs path(gene_620, disease_altzheimer) edges are typically probabilistic

Example 1 As an example, consider: 1.0: likes(X,Y):- friendof(X,Y). 0.8: likes(X,Y):- friendof(X,Z), likes(Z,Y). 0.5: friendof(john,mary). 0.5: friendof(mary,pedro). 0.5: friendof(mary,tom). 0.5: friendof(pedro,tom).

De Raedt, Kimmig, Toivonen, ProbLog: A probabilistic Prolog and its application in link discovery, IJCAI 2007

Interpretable ML with ILP

Explanation Generation

Explanation Interfaces

http://www.darpa.mil/program/explainable-artificial-intelligence

LIME

Local Interpretable Model-Agnostic Explanations

- Blue/pink background: The black-box model's complex decision function f (unknown to LIME)
- Bold red cross: instance being explained
- LIME samples instances, gets predictions using *f*, and weighs them by the proximity to the instance being explained (represented by size)
- Dashed line: explanation that is locally (but not globally) faithful

Ribeiro, Singh, Guestin, Why Should I Trust You ?: Explaining the Predictions of Any Classifier, KDD 2016

U. Schmid (CogSys, UniBA)

"Perturbed" samples (deleting part of information, e.g., superpixels, words)

Ribeiro, Singh, Guestin, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016

LIME's Superpixel Approach Quick-Shift

Table 2: Jaccard Coefficient of the different superpixel methods

Superpixel method	Mean Value	Variance	Standard deviation
Felzenszwalb	0.85603243	0.03330687	0.18250170
Quick-Shift	0.52272303	0.04613085	0.21478094
Quick-Shift optimized	0.88820585	0.00307818	0.05548137
SLIC	0.96437629	0.00014387	0.01199452
Compact-Watershed	0.97850773	0.00003847	0.00620228

Fig. 4: LIME results for true positive predicted malaria infected cells

Schallner, Rabold, Scholz, Schmid, Effect of Superpixel Aggregation on Explanations in LIME – A Case Study with Biological Data, AIMLA 2019

U. Schmid (CogSys, UniBA)

Visual Explanations

Weitz, Hassan, Schmid, Garbas, Deep-learned faces of pain and emotions: Elucidating the differences of facial expressions with the help of explainable AI methods, tm-Technisches Messen, 2019

U. Schmid (CogSys, UniBA)

4/11/20 17/32

Visual Explanations are not Enough

- Can be helpful to detect unwanted overfitting
- Allow fast communication of information
- BUT highlighting relevant areas cannot express
 - ► Spatial relations (the tumor tissue is **touching** fat tissue)
 - ► General characteristics (all metastases are smaller than 1 mm)
 - Negation (there is not a mole but a scar)
 - \hookrightarrow Combining visual and verbal explanations

Rabold, Siebers, Schmid, ILP 2018; Rabold, Deininger, Siebers, Schmid, Enriching Visual with Verbal Explanations for Relational Concepts – Combining LIME with Aleph, AIMLA 2019

U. Schmid (CogSys, UniBA)

MutExLearning

4/11/20 18/32

LIME-Aleph Algorithm

Require: Instance $x \in X$ **Require:** Classifier f, Selection size k, Threshold θ **Require:** Attribute pool \mathcal{A} , Relation pool \mathcal{R} $S \leftarrow LIME(f, x, k)$ \triangleright Selection of k most important super-pixels. $A \leftarrow \text{extract_attribute_values}(S, A)$ \triangleright Find all attribute values A_i for all $i \in S$. $R \leftarrow \text{extract_relations}(S, \mathcal{R})$ ▷ Find all relations $r : S \times S$ between all $i \in S$. $E^+ \leftarrow \{\langle A, R \rangle\}$ $E^- \leftarrow \{\}$ for each $r(i, j) \in R$ do $z \leftarrow \text{flip_in_image}(x, i, j)$ ▷ Flip the super-pixels in the image space. $r' \leftarrow r(j, i)$ Obtain new predicate for the BK by flipping parameters. $R' \leftarrow R \setminus \{r\} \cup \{r'\}$ ▷ All relations in the BK: also the altered one. $R' \leftarrow calculate_side_effects(R', r')$ \triangleright Re-calculate relations that are affected by the flipped relation. $c' \leftarrow f(z)$ > Obtain new estimator for the perturbed image. if $c' > \theta$ do \triangleright If estimator reaches threshold, add new positive example. $E^+ \leftarrow E^+ \cup \{\langle A, R' \rangle\}$ else Else, add negative example. $E^- \leftarrow E^- \cup \{\langle A, R' \rangle\}$ end for $T \leftarrow \text{Aleph}(E^+, E^-)$ \triangleright Obtain theory T with Aleph. return T

Experiment 2 - Concept "Tower"

Positive (a) and negative (b, c) examples for the concept "tower".

Experiment 2 - Concept "Tower"

$$k = 3, \theta = 0.8$$

Experiment 2 - Concept "Tower"

$$k = 4, \ \theta = 0.8$$

concept(A) :- contains(B, A), has_color(B, cyan), contains(C, A), has_color(C, blue), top_of(B, C).

Contrastive Examples

• Al: Winston, 1970, learning from near-miss examples

• Counterfactual reasoning, Wachter et al., 2018:

You were denied a loan because your annual income was 30,000 Euro. If your income had been 45,000 Euro, you would have been offered a loan.

U. Schmid (CogSys, UniBA)

• Cognitive science: Gentner & Markman, 1994, structural alignment

Similar pairs		Dissimilar pairs	
Light bulb	Candle	VCR	Lounge chair
Kitten	Cat	Hammock	Horse track
Magazine	Newspaper	Bed	Hockey
Bowl	Mug	Football	Boutique
Phone book	Dictionary	Kite	Painting
Microphone	Stereo speaker	Sculpture	Navy
Piano	Organ	Army	Abacus
Air conditioner	Furnace	Calculator	Escalator
Freezer	Refrigerator	Stairs	Stool
Hammer	Mallet	Broom	Sailboat
Bicycle	Tricycle	Yacht	Missile
Dumpster	Garbage can	Chair	Banana split
Lake	Ocean	Ice cream sundae	Clock
Telephone	CB radio	McDonald's	Couch
Diamond	Ruby	Police car	Burger King
Sponge	Towel	Rocket	Motel
Computer	Typewriter	Hotel	Tape deck
Staple	Paper clip	Watch	Ambulance
Shoe	Sandal	Casino	Мор
Chemistry	Biology	Stove	Hang glider
VCR	Tape deck	Light bulb	Cat
Hammock	Lounge chair	Kitten	Newspaper

APPENDIX

Natural Language Explanations: From Shallow to Deep

- The rule which is applied to classify a current image can be explained verbally (using a template for text generation from Prolog)
- Verbal explanations can be shallow referring only to the predicates in the body – or deep by expanding them to additional rules or facts.

Why did you classify this expression as pain?

Sequence "sub13_seq37" is a pain sequence because

shallow event "e1" starts the sequence, finishes the sequence, and is an Action Unit 7 of intensity "C". starts(e1,sub13_seq37), finishes(e1,sub13_seq37), is_au(e1,au7),

```
has_intensity(e1,c)
```

Natural Language Explanations: From Shallow to Deep

Why did you classify this expression as pain?

Sequence "sub13_seq37" is a pain sequence because

deep event "e1" begins in frame 17 in sequence "sub13_seq37", there is no other event in this sequence which starts in an earlier frame, event "e1" ends in frame 82 in sequence "sub13_seq37", there is no other event in this sequence which ends in a later frame, and is an Action Unit 7 of intensity "C". event_starts(e1,sub13_seq37,17), not(event_starts(E,sub13_seq37,F), F<17), event_ends(e1,sub13_seq37,82), not(event_ends(E,sub13_seq37,F), F>82), is_au(e1,au7), has_intensity(e1,c)

even deeper An event is the occurance of an action unit with a specific intensity in a sequence of action units shown by a specific person

Multi-Level Explanations – Demo

Please enter the identifier of the example that you want to classify and explain: subl seg2 pain03 Ask me a guestion and I will tell you more! You can ask me (1) What class is <example>...? - to ask for a class label of an instance. (2) Explain why <part of explanation> - to ask for more details, (3) Get back to the last explanation - to get back to the previous explanation (one-level higher) Please ask a valid question. Your question: What class is subl seq2 pain03 sub1 seq2 pain03 is of class pain Your question: Explain why subl seq2 pain03 is of class pain B overlaps C in subl seq2 pain03 and C is au06 and B is au07. Your question: Explain why B overlaps C Start of B is earlier than Start of C and End of B is later than Start of C and End of B is earlier than End of C. Your question: Get back to the last explanation Getting back... B overlaps C in subl seq2 pain03 and C is au06 and B is au07. Your question: Explain why au06 Displaying frame that shows au06 and description that says that au06 is the cheek raiser. Your question: Explain why au04 You want me to tell you something more about something undefined. Please ask a valid question. Your question: Explain why au07 Displaying frame that shows au06 and description that says that au07 is the lid tightener. Your question: Ouit Program guits now.... >>>

Human-Al-Partnership

- Combine the strengths of humans and strength of AI-systems
- Joint performance should surpass performance of human or machine alone (cf. Donals Michie's Ultra-stong machine learnin criterion)
- Need for suitable interaction interfaces based on extended/novel machine learning approaches
 - transparent and comprehensible ML explanations, justifications, argumentations
 - incremental learning by feedback from human experts

Assistance System

human decides

U. Schmid (CogSys, UniBA)

Interactive ML System

joint decision making

Autonomous System

machine decides

Supporting Nurses - Pain Classification

Medical Expert Support for Tissue Classification

Activitie	es 🔢 LearnWithME-v1.py 👻	MI 10:28	
	Olavera I. avel. Occurate inte	CogSys Companion - LearnWithME - version 09/2019	
	Clause-Level-Constraints		
	© sys		TraMeExCo
<u> </u>	All examples (labeled as learned by a CNN)	Positive examples	Negative examples
	Label Example Facts	Label Example Facts	Label Example Facts
		1 pT3 scan0523 Backgr	1 gesund scan0502 Backgr
		2 pT3 scan0569 Backgr	2 gesund scan0506 Backgr
			3 pT3 scan0538 Backgr
٤			4 pT3 scan0562 Backgr
?		5	Covered negative examples
<u>▲</u> 2		First rule: pT3(scan0523) pT3(scan0569) Second rule:	No examples covered.
	Learn and show model	pT3(scan0562) pT3(scan0538)	
	Learned model		Constraint history
	A scan is classified as pT3 if a scan A contains a tissue B and B is a tumor and B touches C and C is fat. Rule:		
	pT3(A) :- contains_tissue(A,B), is_tumor(B), touches(B,C), is_fat(C).	B touches C and C is fascia	
	A scan is classified as pT3 if a scan A contains a tissue B and B is a tumor and B touches C and C is muscle.	, must not occur in explanation	•
- 1	I Columial (Concurrent IIn: DA)	MutEul comina	4/11/20 20/22

U. Schmid (CogSys, UniBA)

wutexcearning

```
% Background Theory for Spatial Relations
% ------
% Area X touches area Y if holds that they have at least one boundary point
% in common, but no interior points.
touches(X,Y) :- I is intersection(X,Y), not(empty(I)),
InteriorX is interior(X), InteriorY is interior(Y),
J is intersection(InteriorX,InteriorY), empty(J).
% disjoint(X.Y) :- ...
% includes (X,Y) :- ...
% ...
% positive examples for diagnostic class pT3
% ------
% scan123 is classified as pT3. The scan is composed of areas of
% different tissues such as fat and tumor which are in specific spatial relations.
pt3(scan123).
contains_tissue(scan123,t1). contains_tissue(scan123,f1).
contains_tissue(scan123,f2).
is tumor(t1). is fat(f1). is fat(f2)
touches(t1.f1). disjoint(f1.t1).
% negative examples for diagnostic class pT3 (e.g. pT2, pT4)
۰.
۲.
% ...
% Induced Rules: (learned from data with ILP)
% ------
% A scan is classified as pT3 if a scan A contains a tissue B
% and B is a tumor and B touches C and C is fat.
pT3(A) :-
  contains tissue(A.B), is tumor(B), touches(B.C), is fat(C).
% further rules ...
```

Take Away

- Machine learning in the real world has many requirements which cannot be met by blackbox machine learning alone
- Inductive Logic Programming is a highly expressive approach to interpretable machine learning
- Combination of deep learning and ILP allows relational explanations
- Verbal explanations can be generated from reasoning traces
- Contrastive examples can highlight relevant aspects
- Mutual explanations allow to introduce expert knowledge (less data needed, correcting wrong labels) as constraints for learning

