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Abstract. Forestry work is one of the most difficult and dangerous pro-
fessions in all production areas worldwide - therefore, any kind of occu-
pational safety and any contribution to increasing occupational safety
plays a major role, in line with addressing sustainability goal SDG 3 (good
health and well-being). Detailed records of occupational accidents and the
analysis of these data play an important role in understanding the inter-
acting factors that lead to occupational accidents and, if possible, adjust-
ing them for the future. However, the application of machine learning and
knowledge extraction in this domain is still in its infancy, so this contribu-
tion is also intended to serve as a starting point and test bed for the future
application of artificial intelligence in occupational safety and health, par-
ticularly in forestry. In this context, this study evaluates the accident data
of Österreichische Bundesforste AG (ÖBf), Austria’s largest forestry com-
pany, for the years 2005–2021. Overall, there are 2481 registered accidents,
9 of which were fatal. For the task of forecasting the absence hours due to
an accident as well as the classification of fatal or non-fatal cases, decision
trees, random forests and fully-connected neuronal networks were used.

Keywords: Occupational accident · Artificial Intelligence ·
Explainable AI · Forestry · Machine learning · Explainability ·
Human-in-the-Loop

1 Introduction

Even though mechanization significantly reduced the number of accidents and
fatalities in forestry [26], they remain on a high level. The 2021 accident statis-
tics for forestry work in Austria [2] recorded 1189 accidents, 21 of which were
fatal. Forestry work is thereby still one of the most dangerous and difficult occupa-
tions in all fields of production and also appears in the list of heavy physical labor
(§ 1 Abs 1 Z 4 SchwerarbeiterVO, BGBl. II 104/2006 as amended by BGBl. II
413/2019). New approaches are needed to further reduce the number of accidents.
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Extraordinarily high hopes are therefore being placed in digital transformation
to support the sustainable development goals [13], and its applications to make a
major step toward improving ergonomics and occupational safety addressing the
sustainability goal SDG 3 [37]. Detailed records of work accidents and the analy-
sis of these data play an important role (and are therefore also legally required)
in order to understand the interacting factors that lead to occupational accidents
and, if possible, adjust them for the future. Various studies have looked at and
analyzed different aspects of such accident records. Tsioras et al. (2014) [34] for
example evaluated accidents during timber harvesting in Austria. Such studies
were also completed for other countries (e.g. Poland [10], Slovakia [3,15], Italy [17],
or Brazil [18]) as well as comparisons between different countries [1]. One focus of
research centers on accidents during the work with chainsaws respectively dur-
ing motor-manual tree felling [5,19,24]. All these approaches and contributions
reach their limits where a multitude of factors and influences interact. Therefore,
this contribution compares ML methods with “conventional” statistical methods.
Today, machine learning and knowledge extraction permeate practically all appli-
cation domains and especially in the domain of forestry it has great future poten-
tial [12]. The use of ML owes it especially to the application in the field of accident
prediction to two factors: on the one hand due to its explanatory capacity and with
that the ability to gain insights into major causes of accidents [21], and secondly
with its predictive capacity [22], enabling better accident prevention. Other pro-
fessions, mainly those with high accident risk or high accident severity, also start
to exploit the capabilities of machine learning for the analysis of occupational acci-
dents. For example, the analysis of serious occupational accidents in the chemical
industry [33], or in the steel industry [28]. For electrical engineering, Oyedele et
al. (2021) [25] used deep learning and boosted trees algorithms to test the possi-
bilities and effectiveness for the use in the area of safety risk management. Refer
to [8,23,29,35] for other examples of the application of ML in the field of accident
prediction.

In general, however, the application of machine learning and knowledge extrac-
tion in this domain is still in its infancy. Therefore, this contribution is intended
to serve as an important starting point and test bed not only for the application of
machine learning in occupational safety and health, especially in forestry, but also
for new developments, especially in emerging subfields of artificial intelligence,
including explainable AI and counterfactual explanations (“what if ... questions
”) - especially with respect to a future trustworthy AI [11]. In this context, this
study evaluates accident data from Österreichische Bundesforste AG (ÖBf), Aus-
tria’s largest forestry company, for the years 2005–2021 using “conventional” sta-
tistical methods as well as machine learning algorithms to analyze and contrast
the context of occupational accidents and lay the foundation for further work.

2 Dataset

2.1 Description

The dataset consists of tabular data containing information about occupational
accidents. In principle, an accident can be fatal or non-fatal; in the latter case,
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the injured person will not be able to work for a particular number of hours
or days. The information that is most descriptive from domain knowledge and
previous models [33,34] is mainly contained in the columns that specify the time
on the day on which the accident happened (given in minutes), the age of the
person, and the day in the week (starting with 1 = Monday). Furthermore,
there is a differentiation between workers and employees in that manner, since
severe accidents rather happen to workers. The cause of the accident, working
sector, and body part are also provided with an appropriate encoding. It is
apparent that there are associations between the columns and potential causal
relationships, but for the scope of this research work, only their linear and non-
linear correlations were explored.

The dataset was explored and analyzed with the use of Python libraries
pandas: https://pandas.pydata.org/, preprocessed mainly with
https://scikit-learn.org and visualized with
matplotlib: https://matplotlib.org/ and Bokeh: https://bokeh.org/:.

2.2 Preprocessing

Overall, there are 2481 registered accidents from 01 October 2005 until 21
December 2021. Of those, only 9 were fatal, which does not provide enough
information on the influencing and decisive factors of those accidents. Neverthe-
less, a classification between non-fatal and fatal accidents is of great importance
and can be supported with the gathering of more relevant data. A dedicated
pre-processing stage consisted of the removal of non-filled entries and invalid
content rows. In total, there were 7 input feature columns that were used for
prediction: “worker or employee”, “age at accident”, “day of the week”, “time
in the day”, “working sector”, “accident cause” and “injured body part”. After
the removal of invalid entries (empty string, invalid value as f.e. working sector
51 where the valid ones are only between 1 and 35) there were 1965 rows with
valid data left.

Before using the data as input for the predictive models, histograms that
visualized their contents were computed. It is important to note that the car-
dinality of the domain of the input feature is playing a substantial role in its
importance. Continuous features and categorical features with many categories
have a bias towards being more descriptive than ones with less categories [14].
In the case of the input features “injured body part”, “working sector” and
“accident cause”, grouping of values was used. For example, all accidents that
affected the head and neck area were grouped together.

Both linear and non-linear correlations between all pairs of features were
computed before they were used as input to the predictive models. The linear
correlations were measured with the Pearson coefficient [9] and the non-linear
with Mutual Information (MI) [20]. The highest linear correlation was found
between working sector and cause of the accident (0.26), the second-highest
between working sector and worker or employee (−0.26) and the third between
cause and body part (−0.13). All other pairs had values < 0.1. The MI is corre-
spondingly 0.25, 0.19 and 0.06 for the aforementioned pairs, and anything else

https://pandas.pydata.org/
https://scikit-learn.org
https://matplotlib.org/
https://bokeh.org/:
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is < 0.1. Those values are supported by domain knowledge and by previous
research work. No substantial correlations were found in any of the pairs, so it
was not necessary to remove redundant input features to trim the model, or even
apply some dimensionality reduction before the training [9,36].

3 Predictive Models

3.1 Regression Task

Decision Tree. The main predictive task is - in case of a non-fatal accident
- to predict the number of hours the injured person will not be able to work,
because of the need to recover. There is a differentiation between workers and
employees in that manner; the hours that employees need for recovery are quite
different from the ones of the workers. Figure 1 shows the difference between the
two distributions of values; this was to be expected, since manual work tends
to cause more and more serious accidents. We created one model that picks up
commonalities and differences between those two groups, but we are well aware
that in the future, if necessary, we could create two different detailed models.

Fig. 1. Difference in the distributions of recovery working hours after an accident in
workers and employees. The figure is cropped on the right side, to zoom on the vast
majority of the values that are < 2000.
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This is a regression problem [6] and the use of a Decision Tree (DT) [9]
is a straightforward, explainable-per-design method for such a task. It is not
necessary to scale the numeric or continuous features; nevertheless, as far as
non-ordinal input features are concerned - such as the working sector, the cause
of the accident and the injured body part - there is already a mapping to integer
numbers. For example, in the body part feature, the ears are encoded with the
number 102, the eyes with 113, 123, 133 to denote right, left or both eyes, the
face with 104, the teeth with 105. As one can observe, those body parts are
not in an ordinal relationship with each other, that means a predictive model
should be prevented to assume so or base its decision and generalization on
this. Furthermore, as mentioned in the previous Sect. 2.2, on those features,
grouping of conceptually similar values was applied and composed one category.
The one-hot encoding was used [36], where each category was encoded by a vector
containing only one 1 while the rest of the entries are 0 and being orthonormal
to the rest. This still contains issues in this case, since there is a column for each
category, the feature values matrix is quite sparse and large.

Fig. 2. The learned rules of the decision tree trained with 4 features.

The dataset was shuffled and split in two parts, the training set contains
80% of the original data, whereas 20% are used for the test set. There was
a grid search applied to find out the best parameters for the decision tree on
the training set, which were maximum depth of tree: 5, maximum number of
features to consider: “auto” (denoting that the number of features considered
for the best split equals the number of all input features), and the minimum
number of sample necessary for split: 2. The performance of the decision tree
on the test set with the use of 4 features, namely the age of the person at the
time of the accident, the day in the week, the point of time in the day and the
information if the person is a worker or an employee was a Mean Squared Error
(MSE) of 151222.99 and a Relative Root Mean Squared Error (RRMSE) of 1.15.
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The learned rules of the decision tree trained with 4 features are depicted in
Fig. 2. The decision tree rules can also be extracted and compared to previous
research insights. According to the decision tree it can be shown that a rather
small number of recovery hours is expected for younger employee and workers in
dependence to the time of the accident; furthermore differences can be observed
between the first days of the week and the rest of the week.

|--- Day <= 5.50
| |--- Worker or employee <= 0.50
| | |--- Age at accident year <= 41.50
| | | |--- Timepoint <= 1275.00
| | | | |--- Age at accident year <= 20.50
| | | | | |--- value: [58.00]
| | | | |--- Age at accident year > 20.50
| | | | | |--- value: [17.67]
| | | |--- Timepoint > 1275.00
| | | | |--- Timepoint <= 1320.00
| | | | | |--- value: [504.00]
| | | | |--- Timepoint > 1320.00
| | | | | |--- value: [80.00]
| | |--- Age at accident year > 41.50
| | | |--- Age at accident year <= 45.50
| | | | |--- Timepoint <= 525.00
| | | | | |--- value: [484.80]
| | | | |--- Timepoint > 525.00
| | | | | |--- value: [61.33]
| | | |--- Age at accident year > 45.50
| | | | |--- Age at accident year <= 54.50
| | | | | |--- value: [34.57]
| | | | |--- Age at accident year > 54.50
| | | | | |--- value: [70.95]
...
|--- Day > 5.50
...

The input features importances are in accordance to previous research work
[33,34] and are depicted in Fig. 3.
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Fig. 3. The feature importances of the decision tree that is trained with 4 features.

Training with all 7 input features does have an impact on the MSE 164610.79
and RRMSE 1.83. The learned rules of the decision tree are more detailed, and
the order of feature importances changes.

Random Forest. A random forest was also trained in a way similar to the
decision tree as far as pre-processing, dataset split and grid search of the best
parameters is concerned. 200 estimators were found, enough to achieve an accept-
able prediction performance with MSE for 4 features: 121154.73 and RRMSE
1.84, whereas for 7 features: 114203.96 and 1.71 correspondingly.

The feature importances are more robust than the ones from the decision
trees [9], but there is no tree to depict the rules. Random forests are not consid-
ered interpretable, but have generally better performance than decision trees.

Fully-Connected Neural Network. A fully-connected neural network [6]
was implemented to also tackle the problem of regression. Four layers with 50
neurons each are enough to reach an MSE of 93215.32 and an RRMSE 35.39
with the 4 basic features, whereas 155141.41 and 37.97 with all 7 correspondingly.
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The optimizer that was used was “RMSprop” and the activation unit was the
Rectified Linear Unit (ReLU). The results of the prediction for 4 features can
be seen in Fig. 4.

Fig. 4. The results of the neural network on the test set for 4 input features.

One way to compute the importance of features is the SHAP (Shapley) values
Explainable AI method [30–32] as depicted in Fig. 5 for 4 features.

Fig. 5. The feature importances of the neural network that is trained with 4 features.
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Table 1. Comparison of different regression models using 4 features for the prediction
of lost working hours due to accidents

Decision tree Random forest Neural network

MSE 151222.99 121154.73 93215.32

RRMSE 1.15 1.84 35.39

Table 2. Comparison of different regression models using all features for the prediction
of lost working hours due to accidents.

Decision tree Random forest Neural network

MSE 164610.79 114203.96 155141.41

RRMSE 1.83 1.71 37.97

3.2 Classification

The classification of fatal and non-fatal cases is a task that is characterized by its
great imbalance - 9 fatal cases in 1965 data samples led to classifiers with high
accuracy but very low, near zero Mutual Information (MI) - which was expected,
as explained in [20]. Therefore, the metrics that were used for the classification
were the confusion matrix and Mutual Information (MI) [9]. Another way to
counteract the imbalance is to perform oversampling on the class with the smaller
number of samples. The Synthetic Minority Oversampling TEchnique (SMOTE)
[7] was used with the help of the imbalanced-learn Python package https://
imbalanced-learn.org to create a balanced dataset. The number of neighbors
that were used to construct synthetic samples was 4, this has provided the most
profitable performance results.

Decision Tree. The decision tree parameters were defined by a grid search
similar to the one described in the regression Sect. 3.1. The Mutual Information
(MI) is 0.60, and accuracy 0.98 for the balanced dataset after oversampling
with 4 features. The confusion matrix is described by the true negatives: 463,
true positives: 470, false positives: 17 and false negatives: 2. As far as the feature
importances is concerned, the most important feature is found to be the “worker
or employee” feature; since this is a binary feature and does not carry such
discriminating information in comparison to the other categorical with more
categories or the continuous ones, it must be of great significance. From the raw
data 5 out of 9 fatal accidents occurred among employees. The rules can be
extracted as text, equal to the regression task 3.1.

For 7 input features the MI is 0.67 and the accuracy is 0.99. The feature
importances are depicted in the Fig. 6.

https://imbalanced-learn.org
https://imbalanced-learn.org
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Fig. 6. The feature importances of the decision tree that is trained with all features.

Random Forest. MI with random forest, 100 estimators and 4 input features
0.63, whereas accuracy reaches 0.98. 7 input features reach MI 0.69, accuracy
1.0 with a “perfect” confusion matrix (no false positives or negatives), although
this needs to be further examined with care since it might be an over-fitting
indication.

Fully-Connected Neural Network. The architecture of the neural network
is similar to the one used in the regression task 3.1. The fundamental difference
lies in the use of a sigmoid non-linearity in the output layer. MI with 4 features:
0.64, with accuracy 0.98 and with 7 features: MI 0.67 and accuracy 0.99.
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Table 3. Comparison of different classification models with 4 features for fatal and
non-fatal accidents.

Decision tree Random forest Neural network

Accuracy 0.98 0.98 0.98

Mutual Information 0.60 0.63 0.64

Table 4. Comparison of different classification models with all features for fatal and
non-fatal accidents.

Decision tree Random forest Neural network

Accuracy 0.99 1.0 0.99

Mutual Information 0.67 0.69 0.67

4 Conclusion and Future Research Questions

The current study analyzes the occupational accidents of the ÖBf AG, which
manages about 10% of the Austrian state area [38]. For the task of forecasting
the absence hours due to an accident as well as the classification of fatal or
non-fatal cases, a decision tree, a random forest, and a fully-connected neuronal
network were used. According to the decision tree it can be shown that a rather
small number of recovery hours is expected for younger employee and workers in
dependence to the time of the accident; furthermore differences can be observed
between the first days of the week and the rest of the week.

Our results show further, that age is a decisive factor especially when pre-
dicting the number of hours the injured person will not be able to work. Our
results are consistent with other studies [15] and once again show that attention
must be paid to the health of elder workers and employees. In the light of the
demographic change this statement is especially relevant. The found difference
between workers and employees confirms the expectation, that manual work
tends to cause more and more serious accidents. The time is also an important
factor in our models. Peaks in occupational accidents occur between 10 and 12
am. A second smaller peak occurs between 2 and 4 pm. Our study is here in
line with other studies of occupational accidents, which highlighted fatigue and
dehydration as possible explanations [18,34] for different accident probabilities
during the day.

In the future, by expanding the database, the methodology could be further
refined and extended to include factors such as the size of the company, the
level of training or the professional background of the people involved. Further-
more, it would be insightful to compare this data to data from other institutions
throughout Europe and search for hidden patterns or correlations. A long-term
goal of this research is a causal model [4,16,27]. As seen, the values of the cat-
egorical variables do have some relationship with each other; one of the most
prominent examples is the “body part” feature, where one of the values encom-
passes accidents in several parts of the body whereas the rest concentrate on
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only one (especially before grouping). The existence, structure and parameters
of relationships between working sector, cause of the accident and the affected
body part are subject of future investigations and are expected to have higher
data quality requirements in general.
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The authors would like to thank ÖBf AG, and especially Mr. Stefan Trzesniowski,
for the kind provision of accident data.

References

1. Akay, A.O.: Evaluation of occupational accidents in forestry in Europe and Turkey
by k-means clustering analysis. Turkish J. Agric. Forest. 45(4), 495–509 (2021).
https://doi.org/10.3906/tar-2010-55

2. Allgemeine Unfallversicherungsanstalt (AUVA): Unfallstatistik 2021
forstwirtschaftliche arbeiten. AUVA Schwerpunktauswertungen (2022)

3. Allman, M., et al.: Work accidents during cable yarding operations in central
Europe 2006–2014. Forest Syst. 26(1), 13 (2017). https://doi.org/10.5424/fs/
2017261-10365

4. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University
Press, Cambridge (2012)

5. Bentley, T.A., Parker, R.J., Ashby, L.: Understanding felling safety in the New
Zealand forest industry. Appl. Egonom. 36(2), 165–175 (2005). https://doi.org/
10.1016/j.apergo.2004.10.009

6. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning.
Springer (2006)

7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

8. Galatioto, F., Catalano, M., Shaikh, N., McCormick, E., Johnston, R.: Advanced
accident prediction models and impacts assessment. IET Intell. Transp. Syst.
12(9), 1131–1141 (2018)
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15. Jankovskỳ, M., Allman, M., Allmanová, Z.: What are the occupational risks in
forestry? Results of a long-term study in Slovakia. Int. J. Environ. Res. Public
Health 16(24), 4931 (2019). https://doi.org/10.3390/ijerph16244931

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles And Tech-
niques. MIT Press, London (2009)

17. Laschi, A., Marchi, E., Foderi, C., Neri, F.: Identifying causes, dynamics and con-
sequences of work accidents in forest operations in an alpine context. Safety Sci.
89, 28–35 (2016). https://doi.org/10.1016/j.ssci.2016.05.017

18. Lima, K.S., Meira Castro, A.C., Torres Costa, J., Baptista, J.S.: Occupational
accidents in native and planted forests in Brazil: 2007–2018. Work 71(3), 719–728
(2022). https://doi.org/10.3233/WOR-210543
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