Please take part in our EMPAIA XAI Survey
The Human-Centered AI Lab invites to take part in a causability measurement study to test the new causabilometer
The Human-Centered AI Lab invites to take part in a causability measurement study to test the new causabilometer
Accepted Papers will be published in the Springer/Nature Lecture Notes in Computer Science Volume “Cross Domain Conference for Machine Learning and Knowlege Extraction” (CD-MAKE 2020)
In the following we present “10 Commandments for human-AI interaction” and ask our colleagues from the international AI/ML-community to comment on these. We will collect the results and present it openly to the international research community.
Springer Lecture Notes in Artificial Intelligence LNAI 9605 Machine Learning for Health Informatics exceeded 80,000 downloads
Andreas Holzinger provided a talk on 26.07.2019 in Edmonton for the faculty members of the University of Alberta Computing Science Faculty
“It’s time for AI to move out its adolescent, game-playing phase and take seriously the notions of quality and reliability.”
There is an interesting commentary with interviews by Don MONROE in the recent Communications of the ACM, November 2018, Volume 61, Number 11, Pages 11-13, doi: 10.1145/3276742 which emphasizes the importance of explainability and the need for effective human-computer interaction:
Artificial Intelligence (AI) systems are taking over a vast array of tasks that previously depended on human expertise and judgment (only). Often, however, the “reasoning” behind their actions is unclear, and can produce surprising errors or reinforce biased processes. One way to address this issue is to make AI “explainable” to humans—for example, designers who can improve it or let users better know when to trust it. Although the best styles of explanation for different purposes are still being studied, they will profoundly shape how future AI is used.
Some explainable AI, or XAI, has long been familiar, as part of online recommender systems: book purchasers or movie viewers see suggestions for additional selections described as having certain similar attributes, or being chosen by similar users. The stakes are low, however, and occasional misfires are easily ignored, with or without these explanations.
“Considering the internal complexity of modern AI, it may seem unreasonable to hope for a human-scale explanation of its decision-making rationale”.
Read the full article here:
https://cacm.acm.org/magazines/2018/11/232193-ai-explain-yourself/fulltext
Cartoon no. 1838 from the xkcd [1] Web comic by Randall MUNROE [2] describes in a brilliant sarcastic way the state of the art in AI/machine learning today and shows us the current main problem directly. Of course you will always get results from one of your machine learning models. Just fill in your data and you will get results – any results. That’s easy. The main question remains open: “What if the results are wrong?” The central problem is to know at all that my results are wrong and to what degree. Do you know your error? Or do you just believe what you get? This can be ignored in some areas, desired in other areas, but in a safety critical domain, e.g. in the medical area, this is crucial [3]. Here also the interactive machine learning approach can help to compensate or lower the generalization error through human intuition [4].
[1] https://xkcd.com
[2] https://en.wikipedia.org/wiki/Randall_Munroe
[3] Andreas Holzinger, Chris Biemann, Constantinos S. Pattichis & Douglas B. Kell 2017. What do we need to build explainable AI systems for the medical domain? arXiv:1712.09923. online available: https://arxiv.org/abs/1712.09923v1
[4] Andreas Holzinger 2016. Interactive Machine Learning for Health Informatics: When do we need the human-in-the-loop? Brain Informatics, 3, (2), 119-131, doi:10.1007/s40708-016-0042-6. online available, see:
https://human-centered.ai/2018/01/29/iml-human-loop-mentioned-among-10-coolest-applications-machine-learning
There is also a discussion on the image above:
https://www.explainxkcd.com/wiki/index.php/1838:_Machine_Learning
Microsoft invests into explainable AI and acquired on June, 20, 2018 Bonsai, a California start-up, which was founded by Mark HAMMOND and Keen BROWNE in 2014. Watch an excellent introduction “Programming your way to explainable AI” by Mark HAMMOND here:
and read read the original story about the acquisition here:
“No one really knows how the most advanced algorithms do what they do. That could be a problem.” Will KNIGHT in “The dark secret of the heart of AI”
https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai
Enjoy the new version of our travelling snakesman game:
https://human-centered.ai/gamification-interactive-machine-learning/
Please follow the instructions given. By playing this game you help to proof the following hypothesis:
“A human-in-the-loop enhances the performance of an automatic algorithm”
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept all cookies and servicesDo not acceptLearn moreWe may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and Menus of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
The following cookies are also needed - You can choose if you want to allow them:
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
Legal Information – Impressum