This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
Accept all cookies and servicesDo not acceptLearn moreWe may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and Menus of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
The following cookies are also needed - You can choose if you want to allow them:
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
Legal Information – Impressum
Explainability vs. Causability of Artificial Intelligence in Medicine
/in Recent Publications, Science News/by Andreas HolzingerIn our recent highly cited paper we define the notion of causability, which is different from explainability in that causability is a property of a person, while explainability is a property of a system!
The need for deep understanding of algorithms
/in Explainability, Science News/by Andreas HolzingerThere are many different machine learning algorithms for a certain problem, but which one to chose for solving a practical problem? The comparison of learning algorithms is very difficult and is highly dependent of the quality of the data!
Caution to seemingly “Intelligent” Clever Hans Behaviour
/in Recent Publications, Science News/by Andreas HolzingerFeatureCloud Project sucessfully started!
/in HCI-KDD Events, Projects/by Andreas HolzingerMiniconf Monday, 4th February 2019: Miroslav HUDEC
/in HCI-KDD Events, Lectures/by Andreas HolzingerThird ITU/WHO Workshop on Artificial Intelligence for Health today at EPFL Lausanne
/in HCI-KDD Events, Lectures/by Andreas HolzingerPlease take part in our explainable AI experiment (10 Minutes)
/in experiments, Projects/by Andreas HolzingerMiniconf Thursday, 20th December 2018: Raphaël Marée
/in HCI-KDD Events, Lectures/by Andreas HolzingerRaphaël MARÉE from the Montefiori Institute, Unviersity of Liege will visit us in week 51 and give a lecture on
Open and Collaborative Digital Pathology using Cytomine
When: Thursday, 20th December, 2018, at 10:00
Where: BBMRI Conference Room (joint invitation of BBMRI, ADOPT and HCI-KDD)
Address: Neue Stiftingtalstrasse 2/B/6, A-8010 Graz, Austria
Download pdf, 72kB
Abstract:
In this talk Raphael Maree will present the past, present, and future of Cytomine.
Cytomine [1], [2] is an open-source software, continuously developed since 2010. It is based on modern web and distributed software development methodologies and machine learning, i.e. deep learning. It provides remote and collaborative features so that users can readily and securely share their large-scale imaging data worldwide. It relies on data models that allow to easily organize and semantically annotate imaging datasets in a standardized way (e.g. to build pathology atlases for training courses or ground-truth datasets for machine learning). It efficiently supports digital slides produced by most scanner vendors. It provides mechanisms to proofread and share image quantifications produced by machine/deep learning-based algorithms. Cytomine can be used free of charge and it is distributed under a permissive license. It has been installed at various institutes worldwide and it is used by thousands of users in research and educational settings.
Recent research and developments will be presented such as our new web user interfaces and new modules for multimodal and multispectral data (Proteomics Clin Appl, 2019), object recognition in histology and cytology using deep transfer learning (CVMI 2018), user behavior analytics in educational settings (ECDP 2018), as well as our new reproducible architecture to benchmark bioimage analysis workflows.
Short Bio:
Raphaël Marée received the PhD degree in computer science in 2005 from the University of Liège, Belgium, where he is now working at the Montefiore EE&CS Institute (https://www.montefiore.ulg.ac.be/~maree/). In 2010 he initiated the CYTOMINE research project (https://uliege.cytomine.org/), and since 2017 he is also co-founder of the not-for-profit Cytomine cooperative (https://cytomine.coop). His research interests are in the broad area of machine learning, computer vision techniques, and web-based software development, with specific focus on their applications on big imaging data such as in digital pathology and life science research, while following open science principles.
[1] Raphaël Marée, Loïc Rollus, Benjamin Stévens, Renaud Hoyoux, Gilles Louppe, Rémy Vandaele, Jean-Michel Begon, Philipp Kainz, Pierre Geurts & Louis Wehenkel 2016. Collaborative analysis of multi-gigapixel imaging data using Cytomine. Bioinformatics, 32, (9), 1395-1401, doi:10.1093/bioinformatics/btw013.
[2] https://www.cytomine.org
Google Scholar Profile of Raphael Maree:
https://scholar.google.com/citations?user=qG66mF8AAAAJ&hl=en
Homepage of Raphael Maree:
https://www.montefiore.ulg.ac.be/~maree/
Third ITU/WHO Workshop on “Artificial Intelligence for Health” on Di, 22.01.2019
/in Conferences/by Andreas HolzingerInteractive Machine Learning: Experimental Evidence for the human-in-the-loop
/in Recent Publications/by Andreas HolzingerRecent advances in automatic machine learning (aML) allow solving problems without any human intervention, which is excellent in certain domains, e.g. in autonomous cars, where we want to exclude the human from the loop and want fully automatic learning. However, sometimes a human-in-the-loop can be beneficial – particularly in solving computationally hard problems. We provide new experimental insights [1] on how we can improve computational intelligence by complementing it with human intelligence in an interactive machine learning approach (iML). For this purpose, an Ant Colony Optimization (ACO) framework was used, because this fosters multi-agent approaches with human agents in the loop. We propose unification between the human intelligence and interaction skills and the computational power of an artificial system. The ACO framework is used on a case study solving the Traveling Salesman Problem, because of its many practical implications, e.g. in the medical domain. We used ACO due to the fact that it is one of the best algorithms used in many applied intelligence problems. For the evaluation we used gamification, i.e. we implemented a snake-like game called Traveling Snakesman with the MAX–MIN Ant System (MMAS) in the background. We extended the MMAS–Algorithm in a way, that the human can directly interact and influence the ants. This is done by “traveling” with the snake across the graph. Each time the human travels over an ant, the current pheromone value of the edge is multiplied by 5. This manipulation has an impact on the ant’s behavior (the probability that this edge is taken by the ant increases). The results show that the humans performing one tour through the graphs have a significant impact on the shortest path found by the MMAS. Consequently, our experiment demonstrates that in our case human intelligence can positively influence machine intelligence. To the best of our knowledge this is the first study of this kind and it is a wonderful experimental platform for explainable AI.
[1] Holzinger, A. et al. (2018). Interactive machine learning: experimental evidence for the human in the algorithmic loop. Springer/Nature: Applied Intelligence, doi:10.1007/s10489-018-1361-5.
Read the full article here:
https://link.springer.com/article/10.1007/s10489-018-1361-5